Readme
This model doesn't have a readme.
An SDXL fine-tune based on Picasso's work
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run archievilliers/sdxl-picasso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"archievilliers/sdxl-picasso:3fabfe8f6d7bc5fea366113398404830e9e231df3d413585057edf8538c819a3",
{
input: {
width: 1024,
height: 1024,
prompt: "a photo of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run archievilliers/sdxl-picasso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"archievilliers/sdxl-picasso:3fabfe8f6d7bc5fea366113398404830e9e231df3d413585057edf8538c819a3",
input={
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run archievilliers/sdxl-picasso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "archievilliers/sdxl-picasso:3fabfe8f6d7bc5fea366113398404830e9e231df3d413585057edf8538c819a3",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{
"completed_at": "2024-01-04T15:59:57.755009Z",
"created_at": "2024-01-04T15:59:29.729352Z",
"data_removed": false,
"error": null,
"id": "tj2nty3bx4zftoj7kmv3z5ijkq",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a photo of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 53930\nEnsuring enough disk space...\nFree disk space: 2035670163456\nDownloading weights: https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar\n2024-01-04T15:59:33Z | INFO | [ Initiating ] dest=/src/weights-cache/eeec9c4593292083 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar\n2024-01-04T15:59:41Z | INFO | [ Complete ] dest=/src/weights-cache/eeec9c4593292083 size=\"186 MB\" total_elapsed=8.415s url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar\nb''\nDownloaded weights in 8.596491813659668 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a photo of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.65it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.63it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.63it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.64it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.65it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.64it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.64it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.63it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.63it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]",
"metrics": {
"predict_time": 24.771562,
"total_time": 28.025657
},
"output": [
"https://replicate.delivery/pbxt/BuJePrQKt7wHNKMaEJzE2mpHDF1M364eYl6w5xzaSko8fQSkA/out-0.png"
],
"started_at": "2024-01-04T15:59:32.983447Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/tj2nty3bx4zftoj7kmv3z5ijkq",
"cancel": "https://api.replicate.com/v1/predictions/tj2nty3bx4zftoj7kmv3z5ijkq/cancel"
},
"version": "3fabfe8f6d7bc5fea366113398404830e9e231df3d413585057edf8538c819a3"
}
Using seed: 53930
Ensuring enough disk space...
Free disk space: 2035670163456
Downloading weights: https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
2024-01-04T15:59:33Z | INFO | [ Initiating ] dest=/src/weights-cache/eeec9c4593292083 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
2024-01-04T15:59:41Z | INFO | [ Complete ] dest=/src/weights-cache/eeec9c4593292083 size="186 MB" total_elapsed=8.415s url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
b''
Downloaded weights in 8.596491813659668 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a photo of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.65it/s]
6%|▌ | 3/50 [00:00<00:12, 3.65it/s]
8%|▊ | 4/50 [00:01<00:12, 3.64it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.63it/s]
20%|██ | 10/50 [00:02<00:11, 3.63it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.64it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]
50%|█████ | 25/50 [00:06<00:06, 3.65it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.64it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.63it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.63it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
This model costs approximately $0.021 to run on Replicate, or 47 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 22 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 53930
Ensuring enough disk space...
Free disk space: 2035670163456
Downloading weights: https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
2024-01-04T15:59:33Z | INFO | [ Initiating ] dest=/src/weights-cache/eeec9c4593292083 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
2024-01-04T15:59:41Z | INFO | [ Complete ] dest=/src/weights-cache/eeec9c4593292083 size="186 MB" total_elapsed=8.415s url=https://replicate.delivery/pbxt/7bR5yE6mhsK8N5zkqOeNngCRM4bxHf9ua07SSjjHwkeQ6QSkA/trained_model.tar
b''
Downloaded weights in 8.596491813659668 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a photo of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.65it/s]
6%|▌ | 3/50 [00:00<00:12, 3.65it/s]
8%|▊ | 4/50 [00:01<00:12, 3.64it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.64it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.63it/s]
20%|██ | 10/50 [00:02<00:11, 3.63it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.64it/s]
30%|███ | 15/50 [00:04<00:09, 3.64it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.64it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.64it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.65it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.65it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.65it/s]
50%|█████ | 25/50 [00:06<00:06, 3.65it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.65it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.65it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.64it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.65it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.65it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.63it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.64it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.63it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]