bytedance / hyper-flux-16step
Hyper FLUX 16-step by ByteDance
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7ID2ywaqkw3a5rm40cjb6q9btgwbrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a cat smiling and looking directly at the camera, wearing a white t-shirt with the word "HYPER" printed on it.
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \\"HYPER\\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:37:46.075036Z", "created_at": "2024-10-04T22:37:42.097000Z", "data_removed": false, "error": null, "id": "2ywaqkw3a5rm40cjb6q9btgwbr", "input": { "prompt": "a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 45151\nPrompt: a cat smiling and looking directly at the camera, wearing a white t-shirt with the word \"HYPER\" printed on it.\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.32it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.52it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.44it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.41it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.38it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.36it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.35it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.35it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.34it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.33it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.33it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.32it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.32it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.42it/s]", "metrics": { "predict_time": 3.970947661, "total_time": 3.978036 }, "output": [ "https://replicate.delivery/yhqm/0sXEmUlSeFWxWiiod5UYRbOHet2aneSDx94CAe4UHhDoDIOOB/out-0.webp" ], "started_at": "2024-10-04T22:37:42.104088Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2ywaqkw3a5rm40cjb6q9btgwbr", "cancel": "https://api.replicate.com/v1/predictions/2ywaqkw3a5rm40cjb6q9btgwbr/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 45151 Prompt: a cat smiling and looking directly at the camera, wearing a white t-shirt with the word "HYPER" printed on it. txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.32it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.52it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.44it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.41it/s] 50%|█████ | 8/16 [00:01<00:01, 4.38it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.36it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.35it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.35it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.34it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.33it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.33it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.32it/s] 100%|██████████| 16/16 [00:03<00:00, 4.32it/s] 100%|██████████| 16/16 [00:03<00:00, 4.42it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7IDq808tp2e9hrm40cjb6rbcp3c88StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:39:43.598691Z", "created_at": "2024-10-04T22:39:39.596000Z", "data_removed": false, "error": null, "id": "q808tp2e9hrm40cjb6rbcp3c88", "input": { "prompt": "a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 27837\nPrompt: a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.33it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.50it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.49it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.42it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.39it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.36it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.33it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.31it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.31it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.30it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.30it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.29it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.29it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.29it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.39it/s]", "metrics": { "predict_time": 3.9953830630000002, "total_time": 4.002691 }, "output": [ "https://replicate.delivery/yhqm/K8ooWF9W1zprCF4Dt7XD6tWYFwHTS8BybcCLeKIGps6XBxxJA/out-0.webp" ], "started_at": "2024-10-04T22:39:39.603308Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/q808tp2e9hrm40cjb6rbcp3c88", "cancel": "https://api.replicate.com/v1/predictions/q808tp2e9hrm40cjb6rbcp3c88/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 27837 Prompt: a digital portrait of a woman with a pensive expression, her hair styled in a messy bun adorned with splashes of color txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.33it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.50it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.49it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.42it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.39it/s] 50%|█████ | 8/16 [00:01<00:01, 4.36it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.33it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.31it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.31it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.30it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.30it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.29it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.29it/s] 100%|██████████| 16/16 [00:03<00:00, 4.29it/s] 100%|██████████| 16/16 [00:03<00:00, 4.39it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7ID5sh1r34kt1rm20cjb6ra8matcgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:40:01.390742Z", "created_at": "2024-10-04T22:39:57.392000Z", "data_removed": false, "error": null, "id": "5sh1r34kt1rm20cjb6ra8matcg", "input": { "prompt": "a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 34094\nPrompt: a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage.\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.32it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.50it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.36it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.32it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.40it/s]", "metrics": { "predict_time": 3.9920524569999998, "total_time": 3.998742 }, "output": [ "https://replicate.delivery/yhqm/2vlwkHBV2fQlZix2LQoCNl5GjOyes0edSLeMhqWJZB8FMIOOB/out-0.webp" ], "started_at": "2024-10-04T22:39:57.398690Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5sh1r34kt1rm20cjb6ra8matcg", "cancel": "https://api.replicate.com/v1/predictions/5sh1r34kt1rm20cjb6ra8matcg/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 34094 Prompt: a heart-shaped glass object, filled with green plants, rests on a mossy surface, surrounded by rocks and other greenery, with sunlight filtering through the foliage. txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.32it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.50it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s] 50%|█████ | 8/16 [00:01<00:01, 4.36it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.32it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.40it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7IDfcmzravrpsrm40cjb6rsjbrvrrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- womens street skateboarding final in Paris Olympics 2024
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "womens street skateboarding final in Paris Olympics 2024", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:40:59.979452Z", "created_at": "2024-10-04T22:40:55.990000Z", "data_removed": false, "error": null, "id": "fcmzravrpsrm40cjb6rsjbrvrr", "input": { "prompt": "womens street skateboarding final in Paris Olympics 2024", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 57819\nPrompt: womens street skateboarding final in Paris Olympics 2024\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.33it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.50it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.49it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.39it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.36it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.30it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.40it/s]", "metrics": { "predict_time": 3.984317216, "total_time": 3.989452 }, "output": [ "https://replicate.delivery/yhqm/OB6eQcqOkvQfrkTSW4ogewaSg2OkEEe9cIDsAQecRof8eBxxJA/out-0.webp" ], "started_at": "2024-10-04T22:40:55.995135Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fcmzravrpsrm40cjb6rsjbrvrr", "cancel": "https://api.replicate.com/v1/predictions/fcmzravrpsrm40cjb6rsjbrvrr/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 57819 Prompt: womens street skateboarding final in Paris Olympics 2024 txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.33it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.50it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.49it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.39it/s] 50%|█████ | 8/16 [00:01<00:01, 4.36it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.30it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.40it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7IDxa0y2zxw61rm40cjb6rs0vntmmStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:41:17.270625Z", "created_at": "2024-10-04T22:41:13.264000Z", "data_removed": false, "error": null, "id": "xa0y2zxw61rm40cjb6rs0vntmm", "input": { "prompt": "a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 49014\nPrompt: a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.32it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.49it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.64it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.50it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.42it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.38it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.37it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.31it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.40it/s]", "metrics": { "predict_time": 4.000136739, "total_time": 4.006625 }, "output": [ "https://replicate.delivery/yhqm/p5cIEj633bbgPhpM9NA3KiMTFqcuzw6vSdfY9MokbnxGCxxJA/out-0.webp" ], "started_at": "2024-10-04T22:41:13.270489Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xa0y2zxw61rm40cjb6rs0vntmm", "cancel": "https://api.replicate.com/v1/predictions/xa0y2zxw61rm40cjb6rs0vntmm/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 49014 Prompt: a deer in a suit with antlers standing amidst a forest of orange leaves, with a light source shining from above txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.32it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.49it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.64it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.50it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.42it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.38it/s] 50%|█████ | 8/16 [00:01<00:01, 4.37it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.34it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.32it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.31it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.40it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7IDpvtqr9qnq9rm40cjb6rstq9tq4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a blue paradise bird in the jungle
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a blue paradise bird in the jungle", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:41:31.983365Z", "created_at": "2024-10-04T22:41:27.994000Z", "data_removed": false, "error": null, "id": "pvtqr9qnq9rm40cjb6rstq9tq4", "input": { "prompt": "a blue paradise bird in the jungle", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 58375\nPrompt: a blue paradise bird in the jungle\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.32it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.48it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.51it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.38it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.35it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.30it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.32it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.32it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.32it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.31it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.41it/s]", "metrics": { "predict_time": 3.977563356, "total_time": 3.989365 }, "output": [ "https://replicate.delivery/yhqm/hTYl9dfZmVwfeIhqQokEYtE375FifftCS0IIxeapeyu2NCxxJA/out-0.webp" ], "started_at": "2024-10-04T22:41:28.005801Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pvtqr9qnq9rm40cjb6rstq9tq4", "cancel": "https://api.replicate.com/v1/predictions/pvtqr9qnq9rm40cjb6rstq9tq4/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 58375 Prompt: a blue paradise bird in the jungle txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.32it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.48it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.89it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.51it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.43it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s] 50%|█████ | 8/16 [00:01<00:01, 4.38it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.35it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.30it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.32it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.32it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.32it/s] 100%|██████████| 16/16 [00:03<00:00, 4.31it/s] 100%|██████████| 16/16 [00:03<00:00, 4.41it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7ID3wjmv31fchrm20cjb6s9p7hdvmStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- a serene landscape with mountains and a lake at sunset
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "a serene landscape with mountains and a lake at sunset", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:41:46.763211Z", "created_at": "2024-10-04T22:41:42.756000Z", "data_removed": false, "error": null, "id": "3wjmv31fchrm20cjb6s9p7hdvm", "input": { "prompt": "a serene landscape with mountains and a lake at sunset", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 10454\nPrompt: a serene landscape with mountains and a lake at sunset\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.31it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.49it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.51it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.45it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.37it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.35it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.33it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.32it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.41it/s]", "metrics": { "predict_time": 3.998226791, "total_time": 4.007211 }, "output": [ "https://replicate.delivery/yhqm/OxiNdVd6C04lKlZqwtFnmTNICdfJkmytHKD2EaGt1GfqEijTA/out-0.webp" ], "started_at": "2024-10-04T22:41:42.764984Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3wjmv31fchrm20cjb6s9p7hdvm", "cancel": "https://api.replicate.com/v1/predictions/3wjmv31fchrm20cjb6s9p7hdvm/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 10454 Prompt: a serene landscape with mountains and a lake at sunset txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.31it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.49it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.88it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.65it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.51it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.45it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.40it/s] 50%|█████ | 8/16 [00:01<00:01, 4.37it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.35it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.33it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.33it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.32it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.41it/s]
Prediction
bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7IDbn14m6hb4xrm00cjb6srne29scStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- prompt
- A chocolate cookie
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- num_inference_steps
- 16
{ "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", { input: { prompt: "A chocolate cookie", num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, num_inference_steps: 16 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", input={ "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run bytedance/hyper-flux-16step using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "bytedance/hyper-flux-16step:382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7", "input": { "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-04T22:42:51.219885Z", "created_at": "2024-10-04T22:42:47.207000Z", "data_removed": false, "error": null, "id": "bn14m6hb4xrm00cjb6srne29sc", "input": { "prompt": "A chocolate cookie", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "num_inference_steps": 16 }, "logs": "Using seed: 45466\nPrompt: A chocolate cookie\ntxt2img mode\n 0%| | 0/16 [00:00<?, ?it/s]\n 6%|▋ | 1/16 [00:00<00:03, 4.32it/s]\n 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s]\n 19%|█▉ | 3/16 [00:00<00:02, 4.87it/s]\n 25%|██▌ | 4/16 [00:00<00:02, 4.63it/s]\n 31%|███▏ | 5/16 [00:01<00:02, 4.46it/s]\n 38%|███▊ | 6/16 [00:01<00:02, 4.40it/s]\n 44%|████▍ | 7/16 [00:01<00:02, 4.37it/s]\n 50%|█████ | 8/16 [00:01<00:01, 4.36it/s]\n 56%|█████▋ | 9/16 [00:02<00:01, 4.33it/s]\n 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s]\n 69%|██████▉ | 11/16 [00:02<00:01, 4.31it/s]\n 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s]\n 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s]\n 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s]\n 94%|█████████▍| 15/16 [00:03<00:00, 4.29it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.30it/s]\n100%|██████████| 16/16 [00:03<00:00, 4.39it/s]", "metrics": { "predict_time": 4.004228095, "total_time": 4.012885 }, "output": [ "https://replicate.delivery/yhqm/zpmRSBEKZjZlF5jwSam8jDuBEzffHGlRs1JB6roUe69WLEHnA/out-0.webp" ], "started_at": "2024-10-04T22:42:47.215657Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bn14m6hb4xrm00cjb6srne29sc", "cancel": "https://api.replicate.com/v1/predictions/bn14m6hb4xrm00cjb6srne29sc/cancel" }, "version": "382cf8959fb0f0d665b26e7e80b8d6dc3faaef1510f14ce017e8c732bb3d1eb7" }
Generated inUsing seed: 45466 Prompt: A chocolate cookie txt2img mode 0%| | 0/16 [00:00<?, ?it/s] 6%|▋ | 1/16 [00:00<00:03, 4.32it/s] 12%|█▎ | 2/16 [00:00<00:02, 5.47it/s] 19%|█▉ | 3/16 [00:00<00:02, 4.87it/s] 25%|██▌ | 4/16 [00:00<00:02, 4.63it/s] 31%|███▏ | 5/16 [00:01<00:02, 4.46it/s] 38%|███▊ | 6/16 [00:01<00:02, 4.40it/s] 44%|████▍ | 7/16 [00:01<00:02, 4.37it/s] 50%|█████ | 8/16 [00:01<00:01, 4.36it/s] 56%|█████▋ | 9/16 [00:02<00:01, 4.33it/s] 62%|██████▎ | 10/16 [00:02<00:01, 4.32it/s] 69%|██████▉ | 11/16 [00:02<00:01, 4.31it/s] 75%|███████▌ | 12/16 [00:02<00:00, 4.31it/s] 81%|████████▏ | 13/16 [00:02<00:00, 4.31it/s] 88%|████████▊ | 14/16 [00:03<00:00, 4.30it/s] 94%|█████████▍| 15/16 [00:03<00:00, 4.29it/s] 100%|██████████| 16/16 [00:03<00:00, 4.30it/s] 100%|██████████| 16/16 [00:03<00:00, 4.39it/s]
Want to make some of these yourself?
Run this model