camenduru / renoise-inversion
ReNoise: Real Image Inversion Through Iterative Noising
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDf3qx56lb6uokdnow4i6gy27wpmStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- A kitten is sitting in a basket on a branch
- Target_Prompt
- a lego kitten is sitting in a basket on a branch
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 1
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", Source_Prompt: "A kitten is sitting in a basket on a branch", Target_Prompt: "a lego kitten is sitting in a basket on a branch", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 1, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T11:54:54.372078Z", "created_at": "2024-03-22T11:52:18.732504Z", "data_removed": false, "error": null, "id": "f3qx56lb6uokdnow4i6gy27wpm", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:01<00:03, 1.09s/it]\n 50%|█████ | 2/4 [00:01<00:01, 1.63it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.34it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.98it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.26it/s]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 15.21it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.44it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.38it/s]\nPopping cache", "metrics": { "predict_time": 4.718288, "total_time": 155.639574 }, "output": "https://replicate.delivery/pbxt/rKIofC19lwRwWKy3ToHKBixqMbvTVy8eY4Y6nygPDo8NOyiSA/image.png", "started_at": "2024-03-22T11:54:49.653790Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/f3qx56lb6uokdnow4i6gy27wpm", "cancel": "https://api.replicate.com/v1/predictions/f3qx56lb6uokdnow4i6gy27wpm/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:01<00:03, 1.09s/it] 50%|█████ | 2/4 [00:01<00:01, 1.63it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.34it/s] 100%|██████████| 4/4 [00:01<00:00, 2.98it/s] 100%|██████████| 4/4 [00:01<00:00, 2.26it/s] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 15.21it/s] 100%|██████████| 4/4 [00:00<00:00, 15.44it/s] 100%|██████████| 4/4 [00:00<00:00, 15.38it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDznh2a5lbxpx4ybgyzsgxlozt3uStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- A kitten is sitting in a basket on a branch
- Target_Prompt
- a brokkoli is sitting in a basket on a branch
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 1
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a brokkoli is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", Source_Prompt: "A kitten is sitting in a basket on a branch", Target_Prompt: "a brokkoli is sitting in a basket on a branch", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 1, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a brokkoli is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a brokkoli is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:03:44.319770Z", "created_at": "2024-03-22T12:00:11.801421Z", "data_removed": false, "error": null, "id": "znh2a5lbxpx4ybgyzsgxlozt3u", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a brokkoli is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:02, 1.27it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.24it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 3.03it/s]\n100%|██████████| 4/4 [00:01<00:00, 3.64it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.91it/s]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 15.79it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.97it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.93it/s]\nPopping cache", "metrics": { "predict_time": 3.118733, "total_time": 212.518349 }, "output": "https://replicate.delivery/pbxt/18ORqE4GOrICGVvU6E7DY0b2Xxcq44kfaLEF2f4McwlfskFlA/image.png", "started_at": "2024-03-22T12:03:41.201037Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/znh2a5lbxpx4ybgyzsgxlozt3u", "cancel": "https://api.replicate.com/v1/predictions/znh2a5lbxpx4ybgyzsgxlozt3u/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:02, 1.27it/s] 50%|█████ | 2/4 [00:00<00:00, 2.24it/s] 75%|███████▌ | 3/4 [00:01<00:00, 3.03it/s] 100%|██████████| 4/4 [00:01<00:00, 3.64it/s] 100%|██████████| 4/4 [00:01<00:00, 2.91it/s] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 15.79it/s] 100%|██████████| 4/4 [00:00<00:00, 15.97it/s] 100%|██████████| 4/4 [00:00<00:00, 15.93it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDemjzkndbc3lmpkuxhpx6q3uhbaStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- A kitten is sitting in a basket on a branch
- Target_Prompt
- a dog is sitting in a basket on a branch
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 1
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", Source_Prompt: "A kitten is sitting in a basket on a branch", Target_Prompt: "a dog is sitting in a basket on a branch", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 1, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:04:24.776421Z", "created_at": "2024-03-22T12:04:22.648575Z", "data_removed": false, "error": null, "id": "emjzkndbc3lmpkuxhpx6q3uhba", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.04it/s]\n 50%|█████ | 2/4 [00:00<00:00, 3.16it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 3.79it/s]\n100%|██████████| 4/4 [00:01<00:00, 4.24it/s]\n100%|██████████| 4/4 [00:01<00:00, 3.71it/s]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 15.14it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.33it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.30it/s]\nPopping cache", "metrics": { "predict_time": 2.117347, "total_time": 2.127846 }, "output": "https://replicate.delivery/pbxt/cjyxNmqd0WLeESb87DNepH5PapgfbfiBHIIkyOnJJ5xicJLKB/image.png", "started_at": "2024-03-22T12:04:22.659074Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/emjzkndbc3lmpkuxhpx6q3uhba", "cancel": "https://api.replicate.com/v1/predictions/emjzkndbc3lmpkuxhpx6q3uhba/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.04it/s] 50%|█████ | 2/4 [00:00<00:00, 3.16it/s] 75%|███████▌ | 3/4 [00:00<00:00, 3.79it/s] 100%|██████████| 4/4 [00:01<00:00, 4.24it/s] 100%|██████████| 4/4 [00:01<00:00, 3.71it/s] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 15.14it/s] 100%|██████████| 4/4 [00:00<00:00, 15.33it/s] 100%|██████████| 4/4 [00:00<00:00, 15.30it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDlq4rdcdb2o3k53x2o7nigb74euStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- A kitten is sitting in a basket on a branch
- Target_Prompt
- a lego kitten is sitting in a basket on a branch
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 9
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", Source_Prompt: "A kitten is sitting in a basket on a branch", Target_Prompt: "a lego kitten is sitting in a basket on a branch", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 9, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:13:52.837529Z", "created_at": "2024-03-22T12:09:25.614702Z", "data_removed": false, "error": null, "id": "lq4rdcdb2o3k53x2o7nigb74eu", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:01<00:05, 1.69s/it]\n 50%|█████ | 2/4 [00:02<00:02, 1.32s/it]\n 75%|███████▌ | 3/4 [00:03<00:01, 1.22s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.16s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.23s/it]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 14.56it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.35it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.37it/s]\nPopping cache", "metrics": { "predict_time": 8.021843, "total_time": 267.222827 }, "output": "https://replicate.delivery/pbxt/vUeIc1hHfpuLX0zsPwKRKWMX7NiJ0pJGUej4L5jBBhpefTWUC/image.png", "started_at": "2024-03-22T12:13:44.815686Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lq4rdcdb2o3k53x2o7nigb74eu", "cancel": "https://api.replicate.com/v1/predictions/lq4rdcdb2o3k53x2o7nigb74eu/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:01<00:05, 1.69s/it] 50%|█████ | 2/4 [00:02<00:02, 1.32s/it] 75%|███████▌ | 3/4 [00:03<00:01, 1.22s/it] 100%|██████████| 4/4 [00:04<00:00, 1.16s/it] 100%|██████████| 4/4 [00:04<00:00, 1.23s/it] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 14.56it/s] 100%|██████████| 4/4 [00:00<00:00, 14.35it/s] 100%|██████████| 4/4 [00:00<00:00, 14.37it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDkp4dirlb2vf23ddzcxsvn6rugyStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- A kitten is sitting in a basket on a branch
- Target_Prompt
- a dog is sitting in a basket on a branch
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 7
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 7, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", Source_Prompt: "A kitten is sitting in a basket on a branch", Target_Prompt: "a dog is sitting in a basket on a branch", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 7, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 7, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 7, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:15:57.727305Z", "created_at": "2024-03-22T12:15:52.214493Z", "data_removed": false, "error": null, "id": "kp4dirlb2vf23ddzcxsvn6rugy", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7elOyRLky80eMlw7oKJXrvOfXNa8GF5LXuC9PLneZNH7qi/kitten.jpg", "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a dog is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 7, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:01<00:04, 1.39s/it]\n 50%|█████ | 2/4 [00:02<00:01, 1.06it/s]\n 75%|███████▌ | 3/4 [00:02<00:00, 1.25it/s]\n100%|██████████| 4/4 [00:03<00:00, 1.38it/s]\n100%|██████████| 4/4 [00:03<00:00, 1.23it/s]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 14.44it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.03it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.08it/s]\nPopping cache", "metrics": { "predict_time": 5.470123, "total_time": 5.512812 }, "output": "https://replicate.delivery/pbxt/bKWopi2L3O71KVBF31Ja4bfpMAKP89sDnO5iNafq4CM8hyiSA/image.png", "started_at": "2024-03-22T12:15:52.257182Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kp4dirlb2vf23ddzcxsvn6rugy", "cancel": "https://api.replicate.com/v1/predictions/kp4dirlb2vf23ddzcxsvn6rugy/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:01<00:04, 1.39s/it] 50%|█████ | 2/4 [00:02<00:01, 1.06it/s] 75%|███████▌ | 3/4 [00:02<00:00, 1.25it/s] 100%|██████████| 4/4 [00:03<00:00, 1.38it/s] 100%|██████████| 4/4 [00:03<00:00, 1.23it/s] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 14.44it/s] 100%|██████████| 4/4 [00:00<00:00, 14.03it/s] 100%|██████████| 4/4 [00:00<00:00, 14.08it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDyvobrsdb43deife5rpx6xfjbm4StatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- a lion is sitting in the grass at sunset
- Target_Prompt
- a tiger is sitting in the grass at sunset
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 9
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", Source_Prompt: "a lion is sitting in the grass at sunset", Target_Prompt: "a tiger is sitting in the grass at sunset", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 9, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:17:24.467131Z", "created_at": "2024-03-22T12:17:17.325899Z", "data_removed": false, "error": null, "id": "yvobrsdb43deife5rpx6xfjbm4", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:01<00:04, 1.38s/it]\n 50%|█████ | 2/4 [00:02<00:02, 1.21s/it]\n 75%|███████▌ | 3/4 [00:03<00:01, 1.14s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.11s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.15s/it]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 15.40it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.75it/s]\n100%|██████████| 4/4 [00:00<00:00, 15.69it/s]\nPopping cache", "metrics": { "predict_time": 7.097825, "total_time": 7.141232 }, "output": "https://replicate.delivery/pbxt/vTqw4nfA6UV0GqLpWvX8BAoQPoOFQsW3qxkOJm25JgypRZRJA/image.png", "started_at": "2024-03-22T12:17:17.369306Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yvobrsdb43deife5rpx6xfjbm4", "cancel": "https://api.replicate.com/v1/predictions/yvobrsdb43deife5rpx6xfjbm4/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:01<00:04, 1.38s/it] 50%|█████ | 2/4 [00:02<00:02, 1.21s/it] 75%|███████▌ | 3/4 [00:03<00:01, 1.14s/it] 100%|██████████| 4/4 [00:04<00:00, 1.11s/it] 100%|██████████| 4/4 [00:04<00:00, 1.15s/it] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 15.40it/s] 100%|██████████| 4/4 [00:00<00:00, 15.75it/s] 100%|██████████| 4/4 [00:00<00:00, 15.69it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aIDo7hxittbfvyhdttc5xaz44yqfqStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- a monkey sitting on a tree branch in the forest
- Target_Prompt
- a beaver sitting on a tree branch in the forest
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 9
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7qyNxBsLB3XOlKx9BchF1whU0d9zPXR9XJsrp1BMNaCt7g/monkey.jpg", "Source_Prompt": "a monkey sitting on a tree branch in the forest", "Target_Prompt": "a beaver sitting on a tree branch in the forest", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7qyNxBsLB3XOlKx9BchF1whU0d9zPXR9XJsrp1BMNaCt7g/monkey.jpg", Source_Prompt: "a monkey sitting on a tree branch in the forest", Target_Prompt: "a beaver sitting on a tree branch in the forest", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 9, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7qyNxBsLB3XOlKx9BchF1whU0d9zPXR9XJsrp1BMNaCt7g/monkey.jpg", "Source_Prompt": "a monkey sitting on a tree branch in the forest", "Target_Prompt": "a beaver sitting on a tree branch in the forest", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7qyNxBsLB3XOlKx9BchF1whU0d9zPXR9XJsrp1BMNaCt7g/monkey.jpg", "Source_Prompt": "a monkey sitting on a tree branch in the forest", "Target_Prompt": "a beaver sitting on a tree branch in the forest", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:16:39.616387Z", "created_at": "2024-03-22T12:16:32.445451Z", "data_removed": false, "error": null, "id": "o7hxittbfvyhdttc5xaz44yqfq", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7qyNxBsLB3XOlKx9BchF1whU0d9zPXR9XJsrp1BMNaCt7g/monkey.jpg", "Source_Prompt": "a monkey sitting on a tree branch in the forest", "Target_Prompt": "a beaver sitting on a tree branch in the forest", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:01<00:04, 1.39s/it]\n 50%|█████ | 2/4 [00:02<00:02, 1.21s/it]\n 75%|███████▌ | 3/4 [00:03<00:01, 1.14s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.11s/it]\n100%|██████████| 4/4 [00:04<00:00, 1.15s/it]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 14.37it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.44it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.42it/s]\nPopping cache", "metrics": { "predict_time": 7.127554, "total_time": 7.170936 }, "output": "https://replicate.delivery/pbxt/QppDpJtm7e2bR6DoAwGHnTcideWN59aIg3IOWlwpeNWNFlFlA/image.png", "started_at": "2024-03-22T12:16:32.488833Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/o7hxittbfvyhdttc5xaz44yqfq", "cancel": "https://api.replicate.com/v1/predictions/o7hxittbfvyhdttc5xaz44yqfq/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:01<00:04, 1.39s/it] 50%|█████ | 2/4 [00:02<00:02, 1.21s/it] 75%|███████▌ | 3/4 [00:03<00:01, 1.14s/it] 100%|██████████| 4/4 [00:04<00:00, 1.11s/it] 100%|██████████| 4/4 [00:04<00:00, 1.15s/it] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 14.37it/s] 100%|██████████| 4/4 [00:00<00:00, 14.44it/s] 100%|██████████| 4/4 [00:00<00:00, 14.42it/s] Popping cache
Prediction
camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25aID6top3ftbacev7tfft7yk4no4zaStatusSucceededSourceWebHardwareA40Total durationCreatedInput
- Labmda_AC
- 20
- Source_Prompt
- a lion is sitting in the grass at sunset
- Target_Prompt
- a tiger is sitting in the grass at sunset
- Labmda_Patch_KL
- 0.065
- Inversion_Strength
- 1
- Preform_Noise_Correction
- Number_of_ReNoise_Iterations
- 1
- Preform_Estimation_Averaging
- Last_Estimation_in_Average_T_G
- 10
- Last_Estimation_in_Average_T_L
- 5
- First_Estimation_in_Average_T_G
- 8
- First_Estimation_in_Average_T_L
- 0
- Denoise_Classifier_Free_Guidence_Scale
- 1
{ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", { input: { Labmda_AC: 20, Input_Image: "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", Source_Prompt: "a lion is sitting in the grass at sunset", Target_Prompt: "a tiger is sitting in the grass at sunset", Labmda_Patch_KL: 0.065, Inversion_Strength: 1, Preform_Noise_Correction: true, Number_of_ReNoise_Iterations: 1, Preform_Estimation_Averaging: true, Last_Estimation_in_Average_T_G: 10, Last_Estimation_in_Average_T_L: 5, First_Estimation_in_Average_T_G: 8, First_Estimation_in_Average_T_L: 0, Denoise_Classifier_Free_Guidence_Scale: 1 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", input={ "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": True, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": True, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "camenduru/renoise-inversion:bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-03-22T12:05:52.085820Z", "created_at": "2024-03-22T12:05:49.704437Z", "data_removed": false, "error": null, "id": "6top3ftbacev7tfft7yk4no4za", "input": { "Labmda_AC": 20, "Input_Image": "https://replicate.delivery/pbxt/Kc7rZoVxahwLtPT4ukxIuYPfUNjiLS5x1JGpcZtGoQvqojcW/lion.jpg", "Source_Prompt": "a lion is sitting in the grass at sunset", "Target_Prompt": "a tiger is sitting in the grass at sunset", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 1, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 }, "logs": "Inverting...\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 1.91it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.96it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 3.54it/s]\n100%|██████████| 4/4 [00:01<00:00, 3.96it/s]\n100%|██████████| 4/4 [00:01<00:00, 3.46it/s]\nGenerating...\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 14.75it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.89it/s]\n100%|██████████| 4/4 [00:00<00:00, 14.86it/s]\nPopping cache", "metrics": { "predict_time": 2.37286, "total_time": 2.381383 }, "output": "https://replicate.delivery/pbxt/wkAyCeprZLxxcq0zjSvJyDCnObdJbGkPlYKDnmtxLypPMZRJA/image.png", "started_at": "2024-03-22T12:05:49.712960Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6top3ftbacev7tfft7yk4no4za", "cancel": "https://api.replicate.com/v1/predictions/6top3ftbacev7tfft7yk4no4za/cancel" }, "version": "bcd108aa40903c0fd1a6f1788c3d9364658a700499d44622d86d561e6581a25a" }
Generated inInverting... 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 1.91it/s] 50%|█████ | 2/4 [00:00<00:00, 2.96it/s] 75%|███████▌ | 3/4 [00:00<00:00, 3.54it/s] 100%|██████████| 4/4 [00:01<00:00, 3.96it/s] 100%|██████████| 4/4 [00:01<00:00, 3.46it/s] Generating... 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 14.75it/s] 100%|██████████| 4/4 [00:00<00:00, 14.89it/s] 100%|██████████| 4/4 [00:00<00:00, 14.86it/s] Popping cache
Want to make some of these yourself?
Run this model