You're looking at a specific version of this model. Jump to the model overview.
camenduru /renoise-inversion:c21e3ec4
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"camenduru/renoise-inversion:c21e3ec459dd25d07650fcadb8c4e5c2601e271abc0bbac4e4ce1016010403d2",
{
input: {
Labmda_AC: 20,
Source_Prompt: "A kitten is sitting in a basket on a branch",
Target_Prompt: "a lego kitten is sitting in a basket on a branch",
Labmda_Patch_KL: 0.065,
Inversion_Strength: 1,
Preform_Noise_Correction: true,
Number_of_ReNoise_Iterations: 9,
Preform_Estimation_Averaging: true,
Last_Estimation_in_Average_T_G: 10,
Last_Estimation_in_Average_T_L: 5,
First_Estimation_in_Average_T_G: 8,
First_Estimation_in_Average_T_L: 0,
Denoise_Classifier_Free_Guidence_Scale: 1
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"camenduru/renoise-inversion:c21e3ec459dd25d07650fcadb8c4e5c2601e271abc0bbac4e4ce1016010403d2",
input={
"Labmda_AC": 20,
"Source_Prompt": "A kitten is sitting in a basket on a branch",
"Target_Prompt": "a lego kitten is sitting in a basket on a branch",
"Labmda_Patch_KL": 0.065,
"Inversion_Strength": 1,
"Preform_Noise_Correction": True,
"Number_of_ReNoise_Iterations": 9,
"Preform_Estimation_Averaging": True,
"Last_Estimation_in_Average_T_G": 10,
"Last_Estimation_in_Average_T_L": 5,
"First_Estimation_in_Average_T_G": 8,
"First_Estimation_in_Average_T_L": 0,
"Denoise_Classifier_Free_Guidence_Scale": 1
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run camenduru/renoise-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "c21e3ec459dd25d07650fcadb8c4e5c2601e271abc0bbac4e4ce1016010403d2",
"input": {
"Labmda_AC": 20,
"Source_Prompt": "A kitten is sitting in a basket on a branch",
"Target_Prompt": "a lego kitten is sitting in a basket on a branch",
"Labmda_Patch_KL": 0.065,
"Inversion_Strength": 1,
"Preform_Noise_Correction": true,
"Number_of_ReNoise_Iterations": 9,
"Preform_Estimation_Averaging": true,
"Last_Estimation_in_Average_T_G": 10,
"Last_Estimation_in_Average_T_L": 5,
"First_Estimation_in_Average_T_G": 8,
"First_Estimation_in_Average_T_L": 0,
"Denoise_Classifier_Free_Guidence_Scale": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/camenduru/renoise-inversion@sha256:c21e3ec459dd25d07650fcadb8c4e5c2601e271abc0bbac4e4ce1016010403d2 \
-i 'Labmda_AC=20' \
-i 'Source_Prompt="A kitten is sitting in a basket on a branch"' \
-i 'Target_Prompt="a lego kitten is sitting in a basket on a branch"' \
-i 'Labmda_Patch_KL=0.065' \
-i 'Inversion_Strength=1' \
-i 'Preform_Noise_Correction=true' \
-i 'Number_of_ReNoise_Iterations=9' \
-i 'Preform_Estimation_Averaging=true' \
-i 'Last_Estimation_in_Average_T_G=10' \
-i 'Last_Estimation_in_Average_T_L=5' \
-i 'First_Estimation_in_Average_T_G=8' \
-i 'First_Estimation_in_Average_T_L=0' \
-i 'Denoise_Classifier_Free_Guidence_Scale=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/camenduru/renoise-inversion@sha256:c21e3ec459dd25d07650fcadb8c4e5c2601e271abc0bbac4e4ce1016010403d2
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "Labmda_AC": 20, "Source_Prompt": "A kitten is sitting in a basket on a branch", "Target_Prompt": "a lego kitten is sitting in a basket on a branch", "Labmda_Patch_KL": 0.065, "Inversion_Strength": 1, "Preform_Noise_Correction": true, "Number_of_ReNoise_Iterations": 9, "Preform_Estimation_Averaging": true, "Last_Estimation_in_Average_T_G": 10, "Last_Estimation_in_Average_T_L": 5, "First_Estimation_in_Average_T_G": 8, "First_Estimation_in_Average_T_L": 0, "Denoise_Classifier_Free_Guidence_Scale": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.