charlesmccarthy
/
tileimages
Make seamless textures that can be tiled
- Public
- 18 runs
Run charlesmccarthy/tileimages with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
|
Input prompt
|
width |
integer
(enum)
|
512
Options: 128, 256, 512, 768, 1024 |
Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
|
height |
integer
(enum)
|
512
Options: 128, 256, 512, 768, 1024 |
Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits
|
init_image |
string
|
Inital image to generate variations of. Will be resized to the specified width and height
|
|
mask |
string
|
Black and white image to use as mask for inpainting over init_image. Black pixels are inpainted and white pixels are preserved. Experimental feature, tends to work better with prompt strength of 0.5-0.7
|
|
prompt_strength |
number
|
0.8
|
Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image
|
num_outputs |
integer
(enum)
|
1
Options: 1, 4 |
Number of images to output
|
num_inference_steps |
integer
|
50
Min: 1 Max: 500 |
Number of denoising steps
|
guidance_scale |
number
|
7.5
Min: 1 Max: 20 |
Scale for classifier-free guidance
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
{
"type": "object",
"title": "Input",
"properties": {
"mask": {
"type": "string",
"title": "Mask",
"format": "uri",
"x-order": 4,
"description": "Black and white image to use as mask for inpainting over init_image. Black pixels are inpainted and white pixels are preserved. Experimental feature, tends to work better with prompt strength of 0.5-0.7"
},
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 9,
"description": "Random seed. Leave blank to randomize the seed"
},
"width": {
"enum": [
128,
256,
512,
768,
1024
],
"type": "integer",
"title": "width",
"description": "Width of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
"default": 512,
"x-order": 1
},
"height": {
"enum": [
128,
256,
512,
768,
1024
],
"type": "integer",
"title": "height",
"description": "Height of output image. Maximum size is 1024x768 or 768x1024 because of memory limits",
"default": 512,
"x-order": 2
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "",
"x-order": 0,
"description": "Input prompt"
},
"init_image": {
"type": "string",
"title": "Init Image",
"format": "uri",
"x-order": 3,
"description": "Inital image to generate variations of. Will be resized to the specified width and height"
},
"num_outputs": {
"enum": [
1,
4
],
"type": "integer",
"title": "num_outputs",
"description": "Number of images to output",
"default": 1,
"x-order": 6
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 7.5,
"maximum": 20,
"minimum": 1,
"x-order": 8,
"description": "Scale for classifier-free guidance"
},
"prompt_strength": {
"type": "number",
"title": "Prompt Strength",
"default": 0.8,
"x-order": 5,
"description": "Prompt strength when using init image. 1.0 corresponds to full destruction of information in init image"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 50,
"maximum": 500,
"minimum": 1,
"x-order": 7,
"description": "Number of denoising steps"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}