You're looking at a specific version of this model. Jump to the model overview.
cjwbw /wavyfusion:3a38e179
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cjwbw/wavyfusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cjwbw/wavyfusion:3a38e1795ef77e3be3d6eb77fbafaeec79e67d13ee0025b36a93bb17e540efc9",
{
input: {
width: 512,
height: 512,
prompt: "blonde woman wa-vy style",
scheduler: "K_EULER",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cjwbw/wavyfusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cjwbw/wavyfusion:3a38e1795ef77e3be3d6eb77fbafaeec79e67d13ee0025b36a93bb17e540efc9",
input={
"width": 512,
"height": 512,
"prompt": "blonde woman wa-vy style",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cjwbw/wavyfusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3a38e1795ef77e3be3d6eb77fbafaeec79e67d13ee0025b36a93bb17e540efc9",
"input": {
"width": 512,
"height": 512,
"prompt": "blonde woman wa-vy style",
"scheduler": "K_EULER",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run cjwbw/wavyfusion using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/chenxwh/wavyfusion@sha256:3a38e1795ef77e3be3d6eb77fbafaeec79e67d13ee0025b36a93bb17e540efc9 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="blonde woman wa-vy style"' \
-i 'scheduler="K_EULER"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run cjwbw/wavyfusion using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/chenxwh/wavyfusion@sha256:3a38e1795ef77e3be3d6eb77fbafaeec79e67d13ee0025b36a93bb17e540efc9
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "blonde woman wa-vy style", "scheduler": "K_EULER", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.0057. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
No output yet! Press "Submit" to start a prediction.