cjwbw/wuerstchen

Efficient Pretraining of Text-to-Image Models

Clip-Guided Diffusion Model for Image Generation

Generates pokemon sprites from prompt

Real-ESRGAN super-resolution model from ruDALL-E

face alignment using stylegan-encoding

Image Manipulatinon with Diffusion Autoencoders

Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder
Global Tracking Transformers

Colorization using a Generative Color Prior for Natural Images

Language-Free Training of a Text-to-Image Generator with CLIP

Composable Diffusion

Decoding Micromotion in Low-dimensional Latent Spaces from StyleGAN

VQ-Diffusion for Text-to-Image Synthesis

text-to-image generation

Panoptic Scene Graph Generation

text-to-image with latent diffusion

Unsupervised Night Image Enhancement

Inpainting using Denoising Diffusion Probabilistic Models

stable-diffusion with negative prompts, more scheduler

Pose-Invariant Hairstyle Transfer

End-to-End Document Image Enhancement Transformer
Prediction
cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039IDp2zs35jbgkhq3z3467wejlmt4yStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- Astronaut in a jungle, cold color palette, muted colors, detailed, 8k
- negative_prompt
- low resolution, low detail, bad quality, blurry
- prior_guidance_scale
- 4
- num_images_per_prompt
- 2
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
- decoder_num_inference_steps
- 12
{ "width": 1024, "height": 1024, "prompt": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "negative_prompt": "low resolution, low detail, bad quality, blurry", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", { input: { width: 1024, height: 1024, prompt: "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", negative_prompt: "low resolution, low detail, bad quality, blurry", prior_guidance_scale: 4, num_images_per_prompt: 2, decoder_guidance_scale: 0, prior_num_inference_steps: 30, decoder_num_inference_steps: 12 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", input={ "width": 1024, "height": 1024, "prompt": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "negative_prompt": "low resolution, low detail, bad quality, blurry", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", "input": { "width": 1024, "height": 1024, "prompt": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "negative_prompt": "low resolution, low detail, bad quality, blurry", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-16T01:59:10.907950Z", "created_at": "2023-09-16T01:59:05.677833Z", "data_removed": false, "error": null, "id": "p2zs35jbgkhq3z3467wejlmt4y", "input": { "width": 1024, "height": 1024, "prompt": "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "negative_prompt": "low resolution, low detail, bad quality, blurry", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }, "logs": "Using seed: 27739\n 0%| | 0/29 [00:00<?, ?it/s]\n 7%|▋ | 2/29 [00:00<00:01, 15.35it/s]\n 14%|█▍ | 4/29 [00:00<00:01, 17.11it/s]\n 21%|██ | 6/29 [00:00<00:01, 17.90it/s]\n 28%|██▊ | 8/29 [00:00<00:01, 18.53it/s]\n 34%|███▍ | 10/29 [00:00<00:01, 18.90it/s]\n 41%|████▏ | 12/29 [00:00<00:00, 19.12it/s]\n 48%|████▊ | 14/29 [00:00<00:00, 19.05it/s]\n 55%|█████▌ | 16/29 [00:00<00:00, 19.30it/s]\n 62%|██████▏ | 18/29 [00:00<00:00, 19.32it/s]\n 69%|██████▉ | 20/29 [00:01<00:00, 19.48it/s]\n 76%|███████▌ | 22/29 [00:01<00:00, 19.42it/s]\n 83%|████████▎ | 24/29 [00:01<00:00, 19.42it/s]\n 90%|████████▉ | 26/29 [00:01<00:00, 19.45it/s]\n 97%|█████████▋| 28/29 [00:01<00:00, 19.54it/s]\n100%|██████████| 29/29 [00:01<00:00, 19.06it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 8%|▊ | 1/12 [00:00<00:01, 7.49it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 9.98it/s]\n 42%|████▏ | 5/12 [00:00<00:00, 10.71it/s]\n 58%|█████▊ | 7/12 [00:00<00:00, 10.94it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 11.01it/s]\n 92%|█████████▏| 11/12 [00:01<00:00, 11.14it/s]\n100%|██████████| 12/12 [00:01<00:00, 10.85it/s]", "metrics": { "predict_time": 5.267431, "total_time": 5.230117 }, "output": [ "https://replicate.delivery/pbxt/KBNvWH9jPd59GlkGr3eBIrGK68JeM9KZW9LfTA89TKe2eeKZE/out-0.png", "https://replicate.delivery/pbxt/TpjNTOeoAh0JNihwGUuG4dLYgLhyZcpzIH2LA7Y5cRA37VyIA/out-1.png" ], "started_at": "2023-09-16T01:59:05.640519Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/p2zs35jbgkhq3z3467wejlmt4y", "cancel": "https://api.replicate.com/v1/predictions/p2zs35jbgkhq3z3467wejlmt4y/cancel" }, "version": "6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039" }
Generated inUsing seed: 27739 0%| | 0/29 [00:00<?, ?it/s] 7%|▋ | 2/29 [00:00<00:01, 15.35it/s] 14%|█▍ | 4/29 [00:00<00:01, 17.11it/s] 21%|██ | 6/29 [00:00<00:01, 17.90it/s] 28%|██▊ | 8/29 [00:00<00:01, 18.53it/s] 34%|███▍ | 10/29 [00:00<00:01, 18.90it/s] 41%|████▏ | 12/29 [00:00<00:00, 19.12it/s] 48%|████▊ | 14/29 [00:00<00:00, 19.05it/s] 55%|█████▌ | 16/29 [00:00<00:00, 19.30it/s] 62%|██████▏ | 18/29 [00:00<00:00, 19.32it/s] 69%|██████▉ | 20/29 [00:01<00:00, 19.48it/s] 76%|███████▌ | 22/29 [00:01<00:00, 19.42it/s] 83%|████████▎ | 24/29 [00:01<00:00, 19.42it/s] 90%|████████▉ | 26/29 [00:01<00:00, 19.45it/s] 97%|█████████▋| 28/29 [00:01<00:00, 19.54it/s] 100%|██████████| 29/29 [00:01<00:00, 19.06it/s] 0%| | 0/12 [00:00<?, ?it/s] 8%|▊ | 1/12 [00:00<00:01, 7.49it/s] 25%|██▌ | 3/12 [00:00<00:00, 9.98it/s] 42%|████▏ | 5/12 [00:00<00:00, 10.71it/s] 58%|█████▊ | 7/12 [00:00<00:00, 10.94it/s] 75%|███████▌ | 9/12 [00:00<00:00, 11.01it/s] 92%|█████████▏| 11/12 [00:01<00:00, 11.14it/s] 100%|██████████| 12/12 [00:01<00:00, 10.85it/s]
Prediction
cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039IDppsuuwbbi7ali2hb3ovd3xqj6eStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A wolf in a detective suit solving a mystery
- negative_prompt
- prior_guidance_scale
- 4
- num_images_per_prompt
- 2
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
- decoder_num_inference_steps
- 12
{ "width": 1024, "height": 1024, "prompt": "A wolf in a detective suit solving a mystery", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", { input: { width: 1024, height: 1024, prompt: "A wolf in a detective suit solving a mystery", negative_prompt: "", prior_guidance_scale: 4, num_images_per_prompt: 2, decoder_guidance_scale: 0, prior_num_inference_steps: 30, decoder_num_inference_steps: 12 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", input={ "width": 1024, "height": 1024, "prompt": "A wolf in a detective suit solving a mystery", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", "input": { "width": 1024, "height": 1024, "prompt": "A wolf in a detective suit solving a mystery", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-16T02:01:10.458859Z", "created_at": "2023-09-16T02:01:05.041319Z", "data_removed": false, "error": null, "id": "ppsuuwbbi7ali2hb3ovd3xqj6e", "input": { "width": 1024, "height": 1024, "prompt": "A wolf in a detective suit solving a mystery", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }, "logs": "Using seed: 21169\n 0%| | 0/29 [00:00<?, ?it/s]\n 7%|▋ | 2/29 [00:00<00:01, 17.64it/s]\n 14%|█▍ | 4/29 [00:00<00:01, 18.72it/s]\n 21%|██ | 6/29 [00:00<00:01, 18.88it/s]\n 28%|██▊ | 8/29 [00:00<00:01, 18.83it/s]\n 34%|███▍ | 10/29 [00:00<00:00, 19.11it/s]\n 41%|████▏ | 12/29 [00:00<00:00, 19.31it/s]\n 48%|████▊ | 14/29 [00:00<00:00, 19.32it/s]\n 55%|█████▌ | 16/29 [00:00<00:00, 19.46it/s]\n 62%|██████▏ | 18/29 [00:00<00:00, 19.44it/s]\n 69%|██████▉ | 20/29 [00:01<00:00, 19.52it/s]\n 76%|███████▌ | 22/29 [00:01<00:00, 19.65it/s]\n 83%|████████▎ | 24/29 [00:01<00:00, 19.71it/s]\n 90%|████████▉ | 26/29 [00:01<00:00, 19.48it/s]\n 97%|█████████▋| 28/29 [00:01<00:00, 19.54it/s]\n100%|██████████| 29/29 [00:01<00:00, 19.35it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 17%|█▋ | 2/12 [00:00<00:00, 11.08it/s]\n 33%|███▎ | 4/12 [00:00<00:00, 11.32it/s]\n 50%|█████ | 6/12 [00:00<00:00, 11.38it/s]\n 67%|██████▋ | 8/12 [00:00<00:00, 11.43it/s]\n 83%|████████▎ | 10/12 [00:00<00:00, 11.39it/s]\n100%|██████████| 12/12 [00:01<00:00, 11.37it/s]\n100%|██████████| 12/12 [00:01<00:00, 11.36it/s]", "metrics": { "predict_time": 5.454779, "total_time": 5.41754 }, "output": [ "https://replicate.delivery/pbxt/aUmDitb07rL0Ddzz9eALw81ZaUT5YOjrEexIee7WLf8gMfKZE/out-0.png", "https://replicate.delivery/pbxt/zNGGDLVw4EoxP99tmFF9wKdYVOe5py3jXeFOKdeG0D8KzXJjA/out-1.png" ], "started_at": "2023-09-16T02:01:05.004080Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ppsuuwbbi7ali2hb3ovd3xqj6e", "cancel": "https://api.replicate.com/v1/predictions/ppsuuwbbi7ali2hb3ovd3xqj6e/cancel" }, "version": "6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039" }
Generated inUsing seed: 21169 0%| | 0/29 [00:00<?, ?it/s] 7%|▋ | 2/29 [00:00<00:01, 17.64it/s] 14%|█▍ | 4/29 [00:00<00:01, 18.72it/s] 21%|██ | 6/29 [00:00<00:01, 18.88it/s] 28%|██▊ | 8/29 [00:00<00:01, 18.83it/s] 34%|███▍ | 10/29 [00:00<00:00, 19.11it/s] 41%|████▏ | 12/29 [00:00<00:00, 19.31it/s] 48%|████▊ | 14/29 [00:00<00:00, 19.32it/s] 55%|█████▌ | 16/29 [00:00<00:00, 19.46it/s] 62%|██████▏ | 18/29 [00:00<00:00, 19.44it/s] 69%|██████▉ | 20/29 [00:01<00:00, 19.52it/s] 76%|███████▌ | 22/29 [00:01<00:00, 19.65it/s] 83%|████████▎ | 24/29 [00:01<00:00, 19.71it/s] 90%|████████▉ | 26/29 [00:01<00:00, 19.48it/s] 97%|█████████▋| 28/29 [00:01<00:00, 19.54it/s] 100%|██████████| 29/29 [00:01<00:00, 19.35it/s] 0%| | 0/12 [00:00<?, ?it/s] 17%|█▋ | 2/12 [00:00<00:00, 11.08it/s] 33%|███▎ | 4/12 [00:00<00:00, 11.32it/s] 50%|█████ | 6/12 [00:00<00:00, 11.38it/s] 67%|██████▋ | 8/12 [00:00<00:00, 11.43it/s] 83%|████████▎ | 10/12 [00:00<00:00, 11.39it/s] 100%|██████████| 12/12 [00:01<00:00, 11.37it/s] 100%|██████████| 12/12 [00:01<00:00, 11.36it/s]
Prediction
cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039IDlsu7r7bbpgptzr5fhoq5io4pw4StatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- width
- 1536
- height
- 1536
- prompt
- Anthropomorphic cat dressed as a firefighter
- negative_prompt
- prior_guidance_scale
- 4
- num_images_per_prompt
- 2
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
- decoder_num_inference_steps
- 12
{ "width": 1536, "height": 1536, "prompt": "Anthropomorphic cat dressed as a firefighter", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", { input: { width: 1536, height: 1536, prompt: "Anthropomorphic cat dressed as a firefighter", negative_prompt: "", prior_guidance_scale: 4, num_images_per_prompt: 2, decoder_guidance_scale: 0, prior_num_inference_steps: 30, decoder_num_inference_steps: 12 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", input={ "width": 1536, "height": 1536, "prompt": "Anthropomorphic cat dressed as a firefighter", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", "input": { "width": 1536, "height": 1536, "prompt": "Anthropomorphic cat dressed as a firefighter", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-16T02:02:55.991788Z", "created_at": "2023-09-16T02:02:45.457545Z", "data_removed": false, "error": null, "id": "lsu7r7bbpgptzr5fhoq5io4pw4", "input": { "width": 1536, "height": 1536, "prompt": "Anthropomorphic cat dressed as a firefighter", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 2, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30, "decoder_num_inference_steps": 12 }, "logs": "Using seed: 14945\n 0%| | 0/29 [00:00<?, ?it/s]\n 3%|▎ | 1/29 [00:00<00:03, 7.21it/s]\n 7%|▋ | 2/29 [00:00<00:03, 8.14it/s]\n 10%|█ | 3/29 [00:00<00:03, 8.62it/s]\n 14%|█▍ | 4/29 [00:00<00:02, 8.86it/s]\n 17%|█▋ | 5/29 [00:00<00:02, 8.99it/s]\n 21%|██ | 6/29 [00:00<00:02, 9.07it/s]\n 24%|██▍ | 7/29 [00:00<00:02, 9.10it/s]\n 28%|██▊ | 8/29 [00:00<00:02, 9.13it/s]\n 31%|███ | 9/29 [00:01<00:02, 9.16it/s]\n 34%|███▍ | 10/29 [00:01<00:02, 9.16it/s]\n 38%|███▊ | 11/29 [00:01<00:01, 9.16it/s]\n 41%|████▏ | 12/29 [00:01<00:01, 9.17it/s]\n 45%|████▍ | 13/29 [00:01<00:01, 9.18it/s]\n 48%|████▊ | 14/29 [00:01<00:01, 9.19it/s]\n 52%|█████▏ | 15/29 [00:01<00:01, 9.18it/s]\n 55%|█████▌ | 16/29 [00:01<00:01, 9.18it/s]\n 59%|█████▊ | 17/29 [00:01<00:01, 9.18it/s]\n 62%|██████▏ | 18/29 [00:01<00:01, 9.19it/s]\n 66%|██████▌ | 19/29 [00:02<00:01, 9.20it/s]\n 69%|██████▉ | 20/29 [00:02<00:00, 9.18it/s]\n 72%|███████▏ | 21/29 [00:02<00:00, 9.17it/s]\n 76%|███████▌ | 22/29 [00:02<00:00, 9.18it/s]\n 79%|███████▉ | 23/29 [00:02<00:00, 9.18it/s]\n 83%|████████▎ | 24/29 [00:02<00:00, 9.19it/s]\n 86%|████████▌ | 25/29 [00:02<00:00, 8.93it/s]\n 90%|████████▉ | 26/29 [00:02<00:00, 9.00it/s]\n 93%|█████████▎| 27/29 [00:02<00:00, 9.06it/s]\n 97%|█████████▋| 28/29 [00:03<00:00, 9.10it/s]\n100%|██████████| 29/29 [00:03<00:00, 9.13it/s]\n100%|██████████| 29/29 [00:03<00:00, 9.07it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 8%|▊ | 1/12 [00:00<00:02, 4.71it/s]\n 17%|█▋ | 2/12 [00:00<00:02, 4.79it/s]\n 25%|██▌ | 3/12 [00:00<00:01, 4.81it/s]\n 33%|███▎ | 4/12 [00:00<00:01, 4.83it/s]\n 42%|████▏ | 5/12 [00:01<00:01, 4.83it/s]\n 50%|█████ | 6/12 [00:01<00:01, 4.84it/s]\n 58%|█████▊ | 7/12 [00:01<00:01, 4.84it/s]\n 67%|██████▋ | 8/12 [00:01<00:00, 4.84it/s]\n 75%|███████▌ | 9/12 [00:01<00:00, 4.83it/s]\n 83%|████████▎ | 10/12 [00:02<00:00, 4.83it/s]\n 92%|█████████▏| 11/12 [00:02<00:00, 4.83it/s]\n100%|██████████| 12/12 [00:02<00:00, 4.84it/s]\n100%|██████████| 12/12 [00:02<00:00, 4.83it/s]", "metrics": { "predict_time": 10.565402, "total_time": 10.534243 }, "output": [ "https://replicate.delivery/pbxt/oZfwnHbhc9SrIyb0GqPkeZ3lbnfYdxnzR0BTplDGOERd2XJjA/out-0.png", "https://replicate.delivery/pbxt/JYZEud12pT7FPFV2MtZaSTx6lEr2Z0XMpPb8JBUSYu0zeVyIA/out-1.png" ], "started_at": "2023-09-16T02:02:45.426386Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lsu7r7bbpgptzr5fhoq5io4pw4", "cancel": "https://api.replicate.com/v1/predictions/lsu7r7bbpgptzr5fhoq5io4pw4/cancel" }, "version": "6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039" }
Generated inUsing seed: 14945 0%| | 0/29 [00:00<?, ?it/s] 3%|▎ | 1/29 [00:00<00:03, 7.21it/s] 7%|▋ | 2/29 [00:00<00:03, 8.14it/s] 10%|█ | 3/29 [00:00<00:03, 8.62it/s] 14%|█▍ | 4/29 [00:00<00:02, 8.86it/s] 17%|█▋ | 5/29 [00:00<00:02, 8.99it/s] 21%|██ | 6/29 [00:00<00:02, 9.07it/s] 24%|██▍ | 7/29 [00:00<00:02, 9.10it/s] 28%|██▊ | 8/29 [00:00<00:02, 9.13it/s] 31%|███ | 9/29 [00:01<00:02, 9.16it/s] 34%|███▍ | 10/29 [00:01<00:02, 9.16it/s] 38%|███▊ | 11/29 [00:01<00:01, 9.16it/s] 41%|████▏ | 12/29 [00:01<00:01, 9.17it/s] 45%|████▍ | 13/29 [00:01<00:01, 9.18it/s] 48%|████▊ | 14/29 [00:01<00:01, 9.19it/s] 52%|█████▏ | 15/29 [00:01<00:01, 9.18it/s] 55%|█████▌ | 16/29 [00:01<00:01, 9.18it/s] 59%|█████▊ | 17/29 [00:01<00:01, 9.18it/s] 62%|██████▏ | 18/29 [00:01<00:01, 9.19it/s] 66%|██████▌ | 19/29 [00:02<00:01, 9.20it/s] 69%|██████▉ | 20/29 [00:02<00:00, 9.18it/s] 72%|███████▏ | 21/29 [00:02<00:00, 9.17it/s] 76%|███████▌ | 22/29 [00:02<00:00, 9.18it/s] 79%|███████▉ | 23/29 [00:02<00:00, 9.18it/s] 83%|████████▎ | 24/29 [00:02<00:00, 9.19it/s] 86%|████████▌ | 25/29 [00:02<00:00, 8.93it/s] 90%|████████▉ | 26/29 [00:02<00:00, 9.00it/s] 93%|█████████▎| 27/29 [00:02<00:00, 9.06it/s] 97%|█████████▋| 28/29 [00:03<00:00, 9.10it/s] 100%|██████████| 29/29 [00:03<00:00, 9.13it/s] 100%|██████████| 29/29 [00:03<00:00, 9.07it/s] 0%| | 0/12 [00:00<?, ?it/s] 8%|▊ | 1/12 [00:00<00:02, 4.71it/s] 17%|█▋ | 2/12 [00:00<00:02, 4.79it/s] 25%|██▌ | 3/12 [00:00<00:01, 4.81it/s] 33%|███▎ | 4/12 [00:00<00:01, 4.83it/s] 42%|████▏ | 5/12 [00:01<00:01, 4.83it/s] 50%|█████ | 6/12 [00:01<00:01, 4.84it/s] 58%|█████▊ | 7/12 [00:01<00:01, 4.84it/s] 67%|██████▋ | 8/12 [00:01<00:00, 4.84it/s] 75%|███████▌ | 9/12 [00:01<00:00, 4.83it/s] 83%|████████▎ | 10/12 [00:02<00:00, 4.83it/s] 92%|█████████▏| 11/12 [00:02<00:00, 4.83it/s] 100%|██████████| 12/12 [00:02<00:00, 4.84it/s] 100%|██████████| 12/12 [00:02<00:00, 4.83it/s]
Prediction
cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039IDdyuleizbicn3jnusfnau72nafiStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- seed
- null
- width
- 1536
- height
- 1536
- prompt
- Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed
- negative_prompt
- prior_guidance_scale
- 4
- num_images_per_prompt
- 1
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 60
- decoder_num_inference_steps
- 12
{ "seed": null, "width": 1536, "height": 1536, "prompt": "Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 1, "decoder_guidance_scale": 0, "prior_num_inference_steps": 60, "decoder_num_inference_steps": 12 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", { input: { width: 1536, height: 1536, prompt: "Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed", negative_prompt: "", prior_guidance_scale: 4, num_images_per_prompt: 1, decoder_guidance_scale: 0, prior_num_inference_steps: 60, decoder_num_inference_steps: 12 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", input={ "width": 1536, "height": 1536, "prompt": "Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 1, "decoder_guidance_scale": 0, "prior_num_inference_steps": 60, "decoder_num_inference_steps": 12 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run cjwbw/wuerstchen using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "cjwbw/wuerstchen:6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039", "input": { "width": 1536, "height": 1536, "prompt": "Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 1, "decoder_guidance_scale": 0, "prior_num_inference_steps": 60, "decoder_num_inference_steps": 12 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-16T02:07:48.237927Z", "created_at": "2023-09-16T02:07:43.025434Z", "data_removed": false, "error": null, "id": "dyuleizbicn3jnusfnau72nafi", "input": { "seed": null, "width": 1536, "height": 1536, "prompt": "Astronaut in the mushroom forest, psychedelic mood, astral figures, morning light, clear sky, extremely detailed", "negative_prompt": "", "prior_guidance_scale": 4, "num_images_per_prompt": 1, "decoder_guidance_scale": 0, "prior_num_inference_steps": 60, "decoder_num_inference_steps": 12 }, "logs": "Using seed: 20903\n 0%| | 0/29 [00:00<?, ?it/s]\n 7%|▋ | 2/29 [00:00<00:02, 12.37it/s]\n 14%|█▍ | 4/29 [00:00<00:01, 14.70it/s]\n 21%|██ | 6/29 [00:00<00:01, 15.78it/s]\n 28%|██▊ | 8/29 [00:00<00:01, 16.35it/s]\n 34%|███▍ | 10/29 [00:00<00:01, 16.67it/s]\n 41%|████▏ | 12/29 [00:00<00:01, 16.87it/s]\n 48%|████▊ | 14/29 [00:00<00:00, 16.99it/s]\n 55%|█████▌ | 16/29 [00:00<00:00, 17.07it/s]\n 62%|██████▏ | 18/29 [00:01<00:00, 16.98it/s]\n 69%|██████▉ | 20/29 [00:01<00:00, 17.06it/s]\n 76%|███████▌ | 22/29 [00:01<00:00, 17.11it/s]\n 83%|████████▎ | 24/29 [00:01<00:00, 17.15it/s]\n 90%|████████▉ | 26/29 [00:01<00:00, 17.18it/s]\n 97%|█████████▋| 28/29 [00:01<00:00, 17.20it/s]\n100%|██████████| 29/29 [00:01<00:00, 16.74it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 8%|▊ | 1/12 [00:00<00:01, 9.64it/s]\n 17%|█▋ | 2/12 [00:00<00:01, 9.64it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 9.64it/s]\n 33%|███▎ | 4/12 [00:00<00:00, 9.65it/s]\n 42%|████▏ | 5/12 [00:00<00:00, 9.66it/s]\n 50%|█████ | 6/12 [00:00<00:00, 9.66it/s]\n 58%|█████▊ | 7/12 [00:00<00:00, 9.65it/s]\n 67%|██████▋ | 8/12 [00:00<00:00, 9.65it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 9.66it/s]\n 83%|████████▎ | 10/12 [00:01<00:00, 9.66it/s]\n 92%|█████████▏| 11/12 [00:01<00:00, 9.50it/s]\n100%|██████████| 12/12 [00:01<00:00, 8.45it/s]\n100%|██████████| 12/12 [00:01<00:00, 9.28it/s]", "metrics": { "predict_time": 5.243501, "total_time": 5.212493 }, "output": [ "https://replicate.delivery/pbxt/3P8SWv58bXI4E5qn7CCEZh5BteQIfwdMmc0R1qjR1aEzfXJjA/out-0.png" ], "started_at": "2023-09-16T02:07:42.994426Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dyuleizbicn3jnusfnau72nafi", "cancel": "https://api.replicate.com/v1/predictions/dyuleizbicn3jnusfnau72nafi/cancel" }, "version": "6a8baed32201ec714574e439aa57734acba760796731666bbd9470fefbd00039" }
Generated inUsing seed: 20903 0%| | 0/29 [00:00<?, ?it/s] 7%|▋ | 2/29 [00:00<00:02, 12.37it/s] 14%|█▍ | 4/29 [00:00<00:01, 14.70it/s] 21%|██ | 6/29 [00:00<00:01, 15.78it/s] 28%|██▊ | 8/29 [00:00<00:01, 16.35it/s] 34%|███▍ | 10/29 [00:00<00:01, 16.67it/s] 41%|████▏ | 12/29 [00:00<00:01, 16.87it/s] 48%|████▊ | 14/29 [00:00<00:00, 16.99it/s] 55%|█████▌ | 16/29 [00:00<00:00, 17.07it/s] 62%|██████▏ | 18/29 [00:01<00:00, 16.98it/s] 69%|██████▉ | 20/29 [00:01<00:00, 17.06it/s] 76%|███████▌ | 22/29 [00:01<00:00, 17.11it/s] 83%|████████▎ | 24/29 [00:01<00:00, 17.15it/s] 90%|████████▉ | 26/29 [00:01<00:00, 17.18it/s] 97%|█████████▋| 28/29 [00:01<00:00, 17.20it/s] 100%|██████████| 29/29 [00:01<00:00, 16.74it/s] 0%| | 0/12 [00:00<?, ?it/s] 8%|▊ | 1/12 [00:00<00:01, 9.64it/s] 17%|█▋ | 2/12 [00:00<00:01, 9.64it/s] 25%|██▌ | 3/12 [00:00<00:00, 9.64it/s] 33%|███▎ | 4/12 [00:00<00:00, 9.65it/s] 42%|████▏ | 5/12 [00:00<00:00, 9.66it/s] 50%|█████ | 6/12 [00:00<00:00, 9.66it/s] 58%|█████▊ | 7/12 [00:00<00:00, 9.65it/s] 67%|██████▋ | 8/12 [00:00<00:00, 9.65it/s] 75%|███████▌ | 9/12 [00:00<00:00, 9.66it/s] 83%|████████▎ | 10/12 [00:01<00:00, 9.66it/s] 92%|█████████▏| 11/12 [00:01<00:00, 9.50it/s] 100%|██████████| 12/12 [00:01<00:00, 8.45it/s] 100%|██████████| 12/12 [00:01<00:00, 9.28it/s]
Want to make some of these yourself?
Run this model