Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
cloneofsimo /hotshot-xl-lora-controlnet:75e26ffd
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/hotshot-xl-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/hotshot-xl-lora-controlnet:75e26ffd033a59a78954a3d675632f47f7f8470402aec51c255b9f9b7b62568b",
{
input: {
gif: "https://replicate.delivery/pbxt/JeGg0LkufHuNpTwb8fVpXPAW7M6B6GYB1WfFIuy8LuJWwBNp/tmp2.gif",
steps: 30,
width: 672,
height: 384,
prompt: "SHRMI dog dancing in space, colorful galaxies on background",
control_type: "depth",
target_width: 512,
video_length: 8,
target_height: 512,
original_width: 1920,
video_duration: 1000,
negative_prompt: "",
original_height: 1080,
control_guidance_end: 1,
replicate_weights_url: "https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar?",
control_guidance_start: 0,
controlnet_conditioning_scale: 1
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/hotshot-xl-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/hotshot-xl-lora-controlnet:75e26ffd033a59a78954a3d675632f47f7f8470402aec51c255b9f9b7b62568b",
input={
"gif": "https://replicate.delivery/pbxt/JeGg0LkufHuNpTwb8fVpXPAW7M6B6GYB1WfFIuy8LuJWwBNp/tmp2.gif",
"steps": 30,
"width": 672,
"height": 384,
"prompt": "SHRMI dog dancing in space, colorful galaxies on background",
"control_type": "depth",
"target_width": 512,
"video_length": 8,
"target_height": 512,
"original_width": 1920,
"video_duration": 1000,
"negative_prompt": "",
"original_height": 1080,
"control_guidance_end": 1,
"replicate_weights_url": "https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar?",
"control_guidance_start": 0,
"controlnet_conditioning_scale": 1
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/hotshot-xl-lora-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cloneofsimo/hotshot-xl-lora-controlnet:75e26ffd033a59a78954a3d675632f47f7f8470402aec51c255b9f9b7b62568b",
"input": {
"gif": "https://replicate.delivery/pbxt/JeGg0LkufHuNpTwb8fVpXPAW7M6B6GYB1WfFIuy8LuJWwBNp/tmp2.gif",
"steps": 30,
"width": 672,
"height": 384,
"prompt": "SHRMI dog dancing in space, colorful galaxies on background",
"control_type": "depth",
"target_width": 512,
"video_length": 8,
"target_height": 512,
"original_width": 1920,
"video_duration": 1000,
"negative_prompt": "",
"original_height": 1080,
"control_guidance_end": 1,
"replicate_weights_url": "https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar?",
"control_guidance_start": 0,
"controlnet_conditioning_scale": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-06T02:32:59.788561Z",
"created_at": "2023-10-06T02:32:22.723245Z",
"data_removed": false,
"error": null,
"id": "vhiozkdbpzryxt3fkq63oakgia",
"input": {
"gif": "https://replicate.delivery/pbxt/JeGg0LkufHuNpTwb8fVpXPAW7M6B6GYB1WfFIuy8LuJWwBNp/tmp2.gif",
"steps": 30,
"width": 672,
"height": 384,
"prompt": "SHRMI dog dancing in space, colorful galaxies on background",
"control_type": "depth",
"target_width": 512,
"video_length": 8,
"target_height": 512,
"original_width": 1920,
"video_duration": 1000,
"negative_prompt": "",
"original_height": 1080,
"control_guidance_end": 1,
"replicate_weights_url": "https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar?",
"control_guidance_start": 0,
"controlnet_conditioning_scale": 1
},
"logs": "Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 14%|█▍ | 1/7 [00:02<00:15, 2.63s/it]\nLoading pipeline components...: 71%|███████▏ | 5/7 [00:03<00:01, 1.87it/s]\nLoading pipeline components...: 86%|████████▌ | 6/7 [00:03<00:00, 2.27it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:03<00:00, 2.59it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:03<00:00, 1.91it/s]\nLoading Unet LoRA\nYou have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`.\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:22, 1.31it/s]\n 7%|▋ | 2/30 [00:01<00:24, 1.17it/s]\n 10%|█ | 3/30 [00:02<00:24, 1.12it/s]\n 13%|█▎ | 4/30 [00:03<00:23, 1.11it/s]\n 17%|█▋ | 5/30 [00:04<00:22, 1.10it/s]\n 20%|██ | 6/30 [00:05<00:22, 1.09it/s]\n 23%|██▎ | 7/30 [00:06<00:21, 1.09it/s]\n 27%|██▋ | 8/30 [00:07<00:20, 1.09it/s]\n 30%|███ | 9/30 [00:08<00:19, 1.08it/s]\n 33%|███▎ | 10/30 [00:09<00:18, 1.08it/s]\n 37%|███▋ | 11/30 [00:10<00:17, 1.08it/s]\n 40%|████ | 12/30 [00:10<00:16, 1.08it/s]\n 43%|████▎ | 13/30 [00:11<00:15, 1.08it/s]\n 47%|████▋ | 14/30 [00:12<00:14, 1.08it/s]\n 50%|█████ | 15/30 [00:13<00:13, 1.08it/s]\n 53%|█████▎ | 16/30 [00:14<00:12, 1.08it/s]\n 57%|█████▋ | 17/30 [00:15<00:12, 1.08it/s]\n 60%|██████ | 18/30 [00:16<00:11, 1.08it/s]\n 63%|██████▎ | 19/30 [00:17<00:10, 1.08it/s]\n 67%|██████▋ | 20/30 [00:18<00:09, 1.08it/s]\n 70%|███████ | 21/30 [00:19<00:08, 1.08it/s]\n 73%|███████▎ | 22/30 [00:20<00:07, 1.08it/s]\n 77%|███████▋ | 23/30 [00:21<00:06, 1.08it/s]\n 80%|████████ | 24/30 [00:22<00:05, 1.08it/s]\n 83%|████████▎ | 25/30 [00:22<00:04, 1.08it/s]\n 87%|████████▋ | 26/30 [00:23<00:03, 1.08it/s]\n 90%|█████████ | 27/30 [00:24<00:02, 1.08it/s]\n 93%|█████████▎| 28/30 [00:25<00:01, 1.08it/s]\n 97%|█████████▋| 29/30 [00:26<00:00, 1.08it/s]\n100%|██████████| 30/30 [00:27<00:00, 1.08it/s]\n100%|██████████| 30/30 [00:27<00:00, 1.09it/s]\n 0%| | 0/8 [00:00<?, ?it/s]\n 25%|██▌ | 2/8 [00:00<00:00, 13.40it/s]\n 50%|█████ | 4/8 [00:00<00:00, 14.77it/s]\n 75%|███████▌ | 6/8 [00:00<00:00, 14.81it/s]\n100%|██████████| 8/8 [00:00<00:00, 14.84it/s]\n100%|██████████| 8/8 [00:00<00:00, 14.70it/s]",
"metrics": {
"predict_time": 37.093352,
"total_time": 37.065316
},
"output": "https://pbxt.replicate.delivery/sGBhVb69oZYaA1qG5D5R2tOZUNwhgH7FdbeQjJn8n0GtHp1IA/tmp.gif",
"started_at": "2023-10-06T02:32:22.695209Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/vhiozkdbpzryxt3fkq63oakgia",
"cancel": "https://api.replicate.com/v1/predictions/vhiozkdbpzryxt3fkq63oakgia/cancel"
},
"version": "75e26ffd033a59a78954a3d675632f47f7f8470402aec51c255b9f9b7b62568b"
}
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 14%|█▍ | 1/7 [00:02<00:15, 2.63s/it]
Loading pipeline components...: 71%|███████▏ | 5/7 [00:03<00:01, 1.87it/s]
Loading pipeline components...: 86%|████████▌ | 6/7 [00:03<00:00, 2.27it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:03<00:00, 2.59it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:03<00:00, 1.91it/s]
Loading Unet LoRA
You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`.
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:22, 1.31it/s]
7%|▋ | 2/30 [00:01<00:24, 1.17it/s]
10%|█ | 3/30 [00:02<00:24, 1.12it/s]
13%|█▎ | 4/30 [00:03<00:23, 1.11it/s]
17%|█▋ | 5/30 [00:04<00:22, 1.10it/s]
20%|██ | 6/30 [00:05<00:22, 1.09it/s]
23%|██▎ | 7/30 [00:06<00:21, 1.09it/s]
27%|██▋ | 8/30 [00:07<00:20, 1.09it/s]
30%|███ | 9/30 [00:08<00:19, 1.08it/s]
33%|███▎ | 10/30 [00:09<00:18, 1.08it/s]
37%|███▋ | 11/30 [00:10<00:17, 1.08it/s]
40%|████ | 12/30 [00:10<00:16, 1.08it/s]
43%|████▎ | 13/30 [00:11<00:15, 1.08it/s]
47%|████▋ | 14/30 [00:12<00:14, 1.08it/s]
50%|█████ | 15/30 [00:13<00:13, 1.08it/s]
53%|█████▎ | 16/30 [00:14<00:12, 1.08it/s]
57%|█████▋ | 17/30 [00:15<00:12, 1.08it/s]
60%|██████ | 18/30 [00:16<00:11, 1.08it/s]
63%|██████▎ | 19/30 [00:17<00:10, 1.08it/s]
67%|██████▋ | 20/30 [00:18<00:09, 1.08it/s]
70%|███████ | 21/30 [00:19<00:08, 1.08it/s]
73%|███████▎ | 22/30 [00:20<00:07, 1.08it/s]
77%|███████▋ | 23/30 [00:21<00:06, 1.08it/s]
80%|████████ | 24/30 [00:22<00:05, 1.08it/s]
83%|████████▎ | 25/30 [00:22<00:04, 1.08it/s]
87%|████████▋ | 26/30 [00:23<00:03, 1.08it/s]
90%|█████████ | 27/30 [00:24<00:02, 1.08it/s]
93%|█████████▎| 28/30 [00:25<00:01, 1.08it/s]
97%|█████████▋| 29/30 [00:26<00:00, 1.08it/s]
100%|██████████| 30/30 [00:27<00:00, 1.08it/s]
100%|██████████| 30/30 [00:27<00:00, 1.09it/s]
0%| | 0/8 [00:00<?, ?it/s]
25%|██▌ | 2/8 [00:00<00:00, 13.40it/s]
50%|█████ | 4/8 [00:00<00:00, 14.77it/s]
75%|███████▌ | 6/8 [00:00<00:00, 14.81it/s]
100%|██████████| 8/8 [00:00<00:00, 14.84it/s]
100%|██████████| 8/8 [00:00<00:00, 14.70it/s]