You're looking at a specific version of this model. Jump to the model overview.
fofr /realvisxl-v3-multi-controlnet-lora:90a4a360
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/realvisxl-v3-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/realvisxl-v3-multi-controlnet-lora:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade",
{
input: {
width: 768,
height: 768,
prompt: "A detailed photo of an astronaut riding a unicorn through a field of flowers",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.8,
num_outputs: 1,
controlnet_1: "soft_edge_hed",
controlnet_2: "none",
controlnet_3: "none",
guidance_scale: 7.5,
apply_watermark: false,
negative_prompt: "",
prompt_strength: 0.8,
sizing_strategy: "width_height",
controlnet_1_end: 1,
controlnet_2_end: 1,
controlnet_3_end: 1,
controlnet_1_image: "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
controlnet_1_start: 0,
controlnet_2_start: 0,
controlnet_3_start: 0,
num_inference_steps: 30,
controlnet_1_conditioning_scale: 0.8,
controlnet_2_conditioning_scale: 0.8,
controlnet_3_conditioning_scale: 0.75
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/realvisxl-v3-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/realvisxl-v3-multi-controlnet-lora:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade",
input={
"width": 768,
"height": 768,
"prompt": "A detailed photo of an astronaut riding a unicorn through a field of flowers",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "none",
"controlnet_3": "none",
"guidance_scale": 7.5,
"apply_watermark": False,
"negative_prompt": "",
"prompt_strength": 0.8,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.8,
"controlnet_2_conditioning_scale": 0.8,
"controlnet_3_conditioning_scale": 0.75
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/realvisxl-v3-multi-controlnet-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade",
"input": {
"width": 768,
"height": 768,
"prompt": "A detailed photo of an astronaut riding a unicorn through a field of flowers",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "none",
"controlnet_3": "none",
"guidance_scale": 7.5,
"apply_watermark": false,
"negative_prompt": "",
"prompt_strength": 0.8,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.8,
"controlnet_2_conditioning_scale": 0.8,
"controlnet_3_conditioning_scale": 0.75
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/realvisxl-v3-multi-controlnet-lora@sha256:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade \
-i 'width=768' \
-i 'height=768' \
-i 'prompt="A detailed photo of an astronaut riding a unicorn through a field of flowers"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.8' \
-i 'num_outputs=1' \
-i 'controlnet_1="soft_edge_hed"' \
-i 'controlnet_2="none"' \
-i 'controlnet_3="none"' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'sizing_strategy="width_height"' \
-i 'controlnet_1_end=1' \
-i 'controlnet_2_end=1' \
-i 'controlnet_3_end=1' \
-i 'controlnet_1_image="https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png"' \
-i 'controlnet_1_start=0' \
-i 'controlnet_2_start=0' \
-i 'controlnet_3_start=0' \
-i 'num_inference_steps=30' \
-i 'controlnet_1_conditioning_scale=0.8' \
-i 'controlnet_2_conditioning_scale=0.8' \
-i 'controlnet_3_conditioning_scale=0.75'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/realvisxl-v3-multi-controlnet-lora@sha256:90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 768, "height": 768, "prompt": "A detailed photo of an astronaut riding a unicorn through a field of flowers", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.8, "num_outputs": 1, "controlnet_1": "soft_edge_hed", "controlnet_2": "none", "controlnet_3": "none", "guidance_scale": 7.5, "apply_watermark": false, "negative_prompt": "", "prompt_strength": 0.8, "sizing_strategy": "width_height", "controlnet_1_end": 1, "controlnet_2_end": 1, "controlnet_3_end": 1, "controlnet_1_image": "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png", "controlnet_1_start": 0, "controlnet_2_start": 0, "controlnet_3_start": 0, "num_inference_steps": 30, "controlnet_1_conditioning_scale": 0.8, "controlnet_2_conditioning_scale": 0.8, "controlnet_3_conditioning_scale": 0.75 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.017. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-01-05T15:22:42.927298Z",
"created_at": "2024-01-05T15:22:33.560461Z",
"data_removed": false,
"error": null,
"id": "66toqj3bmu6zvqr4bj2hlmbsmu",
"input": {
"width": 768,
"height": 768,
"prompt": "A detailed photo of an astronaut riding a unicorn through a field of flowers",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.8,
"num_outputs": 1,
"controlnet_1": "soft_edge_hed",
"controlnet_2": "none",
"controlnet_3": "none",
"guidance_scale": 7.5,
"apply_watermark": false,
"negative_prompt": "",
"prompt_strength": 0.8,
"sizing_strategy": "width_height",
"controlnet_1_end": 1,
"controlnet_2_end": 1,
"controlnet_3_end": 1,
"controlnet_1_image": "https://replicate.delivery/pbxt/JsfCQE8k1lsCinW1yo76yKMQe6R5MRt9WLL3H5T5Ypc5wasq/020e656d-0c71-45c3-a7f5-1facf7d52d4f.png",
"controlnet_1_start": 0,
"controlnet_2_start": 0,
"controlnet_3_start": 0,
"num_inference_steps": 30,
"controlnet_1_conditioning_scale": 0.8,
"controlnet_2_conditioning_scale": 0.8,
"controlnet_3_conditioning_scale": 0.75
},
"logs": "Using seed: 19498\nUsing given dimensions\nresize took: 0.02s\nPrompt: A detailed photo of an astronaut riding a unicorn through a field of flowers\nProcessing image with soft_edge_hed\ncontrolnet preprocess took: 0.43s\nUsing txt2img + controlnet pipeline\nLoading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 15485.30it/s]\nYou have 1 ControlNets and you have passed 1 prompts. The conditionings will be fixed across the prompts.\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:06, 4.63it/s]\n 7%|▋ | 2/30 [00:00<00:06, 4.62it/s]\n 10%|█ | 3/30 [00:00<00:05, 4.62it/s]\n 13%|█▎ | 4/30 [00:00<00:05, 4.62it/s]\n 17%|█▋ | 5/30 [00:01<00:05, 4.63it/s]\n 20%|██ | 6/30 [00:01<00:05, 4.63it/s]\n 23%|██▎ | 7/30 [00:01<00:04, 4.62it/s]\n 27%|██▋ | 8/30 [00:01<00:04, 4.62it/s]\n 30%|███ | 9/30 [00:01<00:04, 4.63it/s]\n 33%|███▎ | 10/30 [00:02<00:04, 4.63it/s]\n 37%|███▋ | 11/30 [00:02<00:04, 4.62it/s]\n 40%|████ | 12/30 [00:02<00:03, 4.62it/s]\n 43%|████▎ | 13/30 [00:02<00:03, 4.62it/s]\n 47%|████▋ | 14/30 [00:03<00:03, 4.62it/s]\n 50%|█████ | 15/30 [00:03<00:03, 4.62it/s]\n 53%|█████▎ | 16/30 [00:03<00:03, 4.62it/s]\n 57%|█████▋ | 17/30 [00:03<00:02, 4.62it/s]\n 60%|██████ | 18/30 [00:03<00:02, 4.62it/s]\n 63%|██████▎ | 19/30 [00:04<00:02, 4.62it/s]\n 67%|██████▋ | 20/30 [00:04<00:02, 4.62it/s]\n 70%|███████ | 21/30 [00:04<00:01, 4.62it/s]\n 73%|███████▎ | 22/30 [00:04<00:01, 4.61it/s]\n 77%|███████▋ | 23/30 [00:04<00:01, 4.62it/s]\n 80%|████████ | 24/30 [00:05<00:01, 4.62it/s]\n 83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s]\n 87%|████████▋ | 26/30 [00:05<00:00, 4.62it/s]\n 90%|█████████ | 27/30 [00:05<00:00, 4.61it/s]\n 93%|█████████▎| 28/30 [00:06<00:00, 4.61it/s]\n 97%|█████████▋| 29/30 [00:06<00:00, 4.61it/s]\n100%|██████████| 30/30 [00:06<00:00, 4.61it/s]\n100%|██████████| 30/30 [00:06<00:00, 4.62it/s]\ninference took: 6.76s\nprediction took: 7.43s",
"metrics": {
"predict_time": 9.328726,
"total_time": 9.366837
},
"output": [
"https://replicate.delivery/pbxt/2hRD2xil2dq5IxJz0wC403uh1ckANw7srVhHxbPfn52ghuEJA/control-0.png",
"https://replicate.delivery/pbxt/mUtp8mKk8yI0EJ5olzsnpkeTbAcmy2OTEqnXXc8EFGLhhuEJA/out-0.png"
],
"started_at": "2024-01-05T15:22:33.598572Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/66toqj3bmu6zvqr4bj2hlmbsmu",
"cancel": "https://api.replicate.com/v1/predictions/66toqj3bmu6zvqr4bj2hlmbsmu/cancel"
},
"version": "90a4a3604cd637cb9f1a2bdae1cfa9ed869362ca028814cdce310a78e27daade"
}
Using seed: 19498
Using given dimensions
resize took: 0.02s
Prompt: A detailed photo of an astronaut riding a unicorn through a field of flowers
Processing image with soft_edge_hed
controlnet preprocess took: 0.43s
Using txt2img + controlnet pipeline
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:00<00:00, 15485.30it/s]
You have 1 ControlNets and you have passed 1 prompts. The conditionings will be fixed across the prompts.
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:06, 4.63it/s]
7%|▋ | 2/30 [00:00<00:06, 4.62it/s]
10%|█ | 3/30 [00:00<00:05, 4.62it/s]
13%|█▎ | 4/30 [00:00<00:05, 4.62it/s]
17%|█▋ | 5/30 [00:01<00:05, 4.63it/s]
20%|██ | 6/30 [00:01<00:05, 4.63it/s]
23%|██▎ | 7/30 [00:01<00:04, 4.62it/s]
27%|██▋ | 8/30 [00:01<00:04, 4.62it/s]
30%|███ | 9/30 [00:01<00:04, 4.63it/s]
33%|███▎ | 10/30 [00:02<00:04, 4.63it/s]
37%|███▋ | 11/30 [00:02<00:04, 4.62it/s]
40%|████ | 12/30 [00:02<00:03, 4.62it/s]
43%|████▎ | 13/30 [00:02<00:03, 4.62it/s]
47%|████▋ | 14/30 [00:03<00:03, 4.62it/s]
50%|█████ | 15/30 [00:03<00:03, 4.62it/s]
53%|█████▎ | 16/30 [00:03<00:03, 4.62it/s]
57%|█████▋ | 17/30 [00:03<00:02, 4.62it/s]
60%|██████ | 18/30 [00:03<00:02, 4.62it/s]
63%|██████▎ | 19/30 [00:04<00:02, 4.62it/s]
67%|██████▋ | 20/30 [00:04<00:02, 4.62it/s]
70%|███████ | 21/30 [00:04<00:01, 4.62it/s]
73%|███████▎ | 22/30 [00:04<00:01, 4.61it/s]
77%|███████▋ | 23/30 [00:04<00:01, 4.62it/s]
80%|████████ | 24/30 [00:05<00:01, 4.62it/s]
83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s]
87%|████████▋ | 26/30 [00:05<00:00, 4.62it/s]
90%|█████████ | 27/30 [00:05<00:00, 4.61it/s]
93%|█████████▎| 28/30 [00:06<00:00, 4.61it/s]
97%|█████████▋| 29/30 [00:06<00:00, 4.61it/s]
100%|██████████| 30/30 [00:06<00:00, 4.61it/s]
100%|██████████| 30/30 [00:06<00:00, 4.62it/s]
inference took: 6.76s
prediction took: 7.43s