You're looking at a specific version of this model. Jump to the model overview.
fofr /sdxl-ghostbusters:17658fb1
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run fofr/sdxl-ghostbusters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"fofr/sdxl-ghostbusters:17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a",
{
input: {
width: 1024,
height: 1024,
prompt: "a TOK ghost in a film still from Ghostbusters",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.9,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 30
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run fofr/sdxl-ghostbusters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"fofr/sdxl-ghostbusters:17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a",
input={
"width": 1024,
"height": 1024,
"prompt": "a TOK ghost in a film still from Ghostbusters",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-ghostbusters using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a TOK ghost in a film still from Ghostbusters",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/sdxl-ghostbusters@sha256:17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a TOK ghost in a film still from Ghostbusters"' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.9' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/sdxl-ghostbusters@sha256:17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a TOK ghost in a film still from Ghostbusters", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-29T22:34:02.064174Z",
"created_at": "2023-10-29T22:33:52.916298Z",
"data_removed": false,
"error": null,
"id": "j7wshkdbnbb4z3qm55sa4ox5fy",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a TOK ghost in a film still from Ghostbusters",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.9,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 30
},
"logs": "Using seed: 2886\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a <s0><s1> ghost in a film still from Ghostbusters\ntxt2img mode\n 0%| | 0/21 [00:00<?, ?it/s]\n 5%|▍ | 1/21 [00:00<00:05, 3.64it/s]\n 10%|▉ | 2/21 [00:00<00:05, 3.64it/s]\n 14%|█▍ | 3/21 [00:00<00:04, 3.64it/s]\n 19%|█▉ | 4/21 [00:01<00:04, 3.64it/s]\n 24%|██▍ | 5/21 [00:01<00:04, 3.64it/s]\n 29%|██▊ | 6/21 [00:01<00:04, 3.64it/s]\n 33%|███▎ | 7/21 [00:01<00:03, 3.64it/s]\n 38%|███▊ | 8/21 [00:02<00:03, 3.64it/s]\n 43%|████▎ | 9/21 [00:02<00:03, 3.64it/s]\n 48%|████▊ | 10/21 [00:02<00:03, 3.64it/s]\n 52%|█████▏ | 11/21 [00:03<00:02, 3.63it/s]\n 57%|█████▋ | 12/21 [00:03<00:02, 3.63it/s]\n 62%|██████▏ | 13/21 [00:03<00:02, 3.63it/s]\n 67%|██████▋ | 14/21 [00:03<00:01, 3.63it/s]\n 71%|███████▏ | 15/21 [00:04<00:01, 3.63it/s]\n 76%|███████▌ | 16/21 [00:04<00:01, 3.63it/s]\n 81%|████████ | 17/21 [00:04<00:01, 3.63it/s]\n 86%|████████▌ | 18/21 [00:04<00:00, 3.63it/s]\n 90%|█████████ | 19/21 [00:05<00:00, 3.62it/s]\n 95%|█████████▌| 20/21 [00:05<00:00, 3.62it/s]\n100%|██████████| 21/21 [00:05<00:00, 3.62it/s]\n100%|██████████| 21/21 [00:05<00:00, 3.63it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.23it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.21it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.20it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.21it/s]",
"metrics": {
"predict_time": 8.685183,
"total_time": 9.147876
},
"output": [
"https://pbxt.replicate.delivery/EgN30uR0H85iL5pcw0OTih2J52TDO9xa7I0j4Fmudud2PycE/out-0.png"
],
"started_at": "2023-10-29T22:33:53.378991Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/j7wshkdbnbb4z3qm55sa4ox5fy",
"cancel": "https://api.replicate.com/v1/predictions/j7wshkdbnbb4z3qm55sa4ox5fy/cancel"
},
"version": "17658fb151a7dd2fe9a0043990c24913d7b97a6b35dcd953a27a366fedc4e20a"
}
Using seed: 2886
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a <s0><s1> ghost in a film still from Ghostbusters
txt2img mode
0%| | 0/21 [00:00<?, ?it/s]
5%|▍ | 1/21 [00:00<00:05, 3.64it/s]
10%|▉ | 2/21 [00:00<00:05, 3.64it/s]
14%|█▍ | 3/21 [00:00<00:04, 3.64it/s]
19%|█▉ | 4/21 [00:01<00:04, 3.64it/s]
24%|██▍ | 5/21 [00:01<00:04, 3.64it/s]
29%|██▊ | 6/21 [00:01<00:04, 3.64it/s]
33%|███▎ | 7/21 [00:01<00:03, 3.64it/s]
38%|███▊ | 8/21 [00:02<00:03, 3.64it/s]
43%|████▎ | 9/21 [00:02<00:03, 3.64it/s]
48%|████▊ | 10/21 [00:02<00:03, 3.64it/s]
52%|█████▏ | 11/21 [00:03<00:02, 3.63it/s]
57%|█████▋ | 12/21 [00:03<00:02, 3.63it/s]
62%|██████▏ | 13/21 [00:03<00:02, 3.63it/s]
67%|██████▋ | 14/21 [00:03<00:01, 3.63it/s]
71%|███████▏ | 15/21 [00:04<00:01, 3.63it/s]
76%|███████▌ | 16/21 [00:04<00:01, 3.63it/s]
81%|████████ | 17/21 [00:04<00:01, 3.63it/s]
86%|████████▌ | 18/21 [00:04<00:00, 3.63it/s]
90%|█████████ | 19/21 [00:05<00:00, 3.62it/s]
95%|█████████▌| 20/21 [00:05<00:00, 3.62it/s]
100%|██████████| 21/21 [00:05<00:00, 3.62it/s]
100%|██████████| 21/21 [00:05<00:00, 3.63it/s]
0%| | 0/3 [00:00<?, ?it/s]
33%|███▎ | 1/3 [00:00<00:00, 4.23it/s]
67%|██████▋ | 2/3 [00:00<00:00, 4.21it/s]
100%|██████████| 3/3 [00:00<00:00, 4.20it/s]
100%|██████████| 3/3 [00:00<00:00, 4.21it/s]