fofr / sdxl-lcm-video2video

  • Public
  • 150 runs
  • L40S
Iterate in playground

Input

string
Shift + Return to add a new line

Input prompt

Default: "An astronaut riding a rainbow unicorn"

string
Shift + Return to add a new line

Negative Prompt

Default: ""

*file

Video to split into frames

integer
(minimum: 1)

Number of images per second of video, when not exporting all frames

Default: 8

boolean

Get every frame of the video. Ignores fps. Slow for large videos.

Default: false

integer
(minimum: 1)

Maximum width of the video. Maintains aspect ratio.

Default: 512

integer
(minimum: 1, maximum: 30)

Number of denoising steps

Default: 4

number
(minimum: 0, maximum: 5)

Scale for classifier-free guidance

Default: 1.1

number
(minimum: 0, maximum: 1)

Prompt strength. 1.0 corresponds to full destruction of information in image

Default: 0.5

integer

Random seed. Leave blank to randomize the seed

number
(minimum: 0, maximum: 1)

LoRA additive scale. Only applicable on trained models.

Default: 0.6

string
Shift + Return to add a new line

Replicate LoRA weights to use. Leave blank to use the default weights.

string

Controlnet

Default: "none"

number
(minimum: 0, maximum: 4)

How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)

When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)

When controlnet conditioning ends

Default: 1

string

Controlnet

Default: "none"

number
(minimum: 0, maximum: 4)

How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)

When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)

When controlnet conditioning ends

Default: 1

string

Controlnet

Default: "none"

number
(minimum: 0, maximum: 4)

How strong the controlnet conditioning is

Default: 0.75

number
(minimum: 0, maximum: 1)

When controlnet conditioning starts

Default: 0

number
(minimum: 0, maximum: 1)

When controlnet conditioning ends

Default: 1

boolean

Return a tar file with all the frames alongside the video

Default: false

Output

No output yet! Press "Submit" to start a prediction.

Run time and cost

This model costs approximately $0.11 to run on Replicate, or 9 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.

This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 112 seconds. The predict time for this model varies significantly based on the inputs.

Readme

This model doesn't have a readme.