fofr / sdxl-lcm-video2video

  • Public
  • 146 runs

Run fofr/sdxl-lcm-video2video with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
prompt
string
An astronaut riding a rainbow unicorn
Input prompt
negative_prompt
string
Negative Prompt
video
string
Video to split into frames
fps
integer
8

Min: 1

Number of images per second of video, when not exporting all frames
extract_all_frames
boolean
False
Get every frame of the video. Ignores fps. Slow for large videos.
max_width
integer
512

Min: 1

Maximum width of the video. Maintains aspect ratio.
num_inference_steps
integer
4

Min: 1

Max: 30

Number of denoising steps
guidance_scale
number
1.1

Max: 5

Scale for classifier-free guidance
prompt_strength
number
0.5

Max: 1

Prompt strength. 1.0 corresponds to full destruction of information in image
seed
integer
Random seed. Leave blank to randomize the seed
lora_scale
number
0.6

Max: 1

LoRA additive scale. Only applicable on trained models.
lora_weights
string
Replicate LoRA weights to use. Leave blank to use the default weights.
controlnet_1
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose

Controlnet
controlnet_1_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_1_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_1_end
number
1

Max: 1

When controlnet conditioning ends
controlnet_2
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose

Controlnet
controlnet_2_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_2_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_2_end
number
1

Max: 1

When controlnet conditioning ends
controlnet_3
string (enum)
none

Options:

none, edge_canny, illusion, depth_leres, depth_midas, soft_edge_pidi, soft_edge_hed, lineart, lineart_anime, openpose

Controlnet
controlnet_3_conditioning_scale
number
0.75

Max: 4

How strong the controlnet conditioning is
controlnet_3_start
number
0

Max: 1

When controlnet conditioning starts
controlnet_3_end
number
1

Max: 1

When controlnet conditioning ends
return_frames
boolean
False
Return a tar file with all the frames alongside the video

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}