goodguy1963
/
sdxl-finetunes-img2img
- Public
- 36 runs
-
L40S
Prediction
goodguy1963/sdxl-finetunes-img2img:ad440b43e31f31a1f9cdee75a034e2db2c6c9c62b2c24c780f26405f61537f7aID1b195e4d3srmc0cnwbv844683gStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- cfg
- 2.47
- steps
- 50
- width
- 2048
- height
- 2048
- prompt
- squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field
- denoise
- 0.8
- scheduler
- sgm_uniform
- sampler_name
- ddim
- output_format
- webp
- safety_filter
- output_quality
- 95
- checkpoint_name
- realvisxlV50_v50Bakedvae.safetensors
- negative_prompt
- ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed
- ipadapter_end_at
- 1
- ipadapter_weight
- 0.9
- ipadapter_start_at
- 0
- controlnet_strength
- 1
- lora1_strength_clip
- 1
- lora2_strength_clip
- 0
- lora3_strength_clip
- 0
- lora1_strength_model
- 0.5
- lora2_strength_model
- 0
- lora3_strength_model
- 0
- controlnet_end_percent
- 0.5
- controlnet_start_percent
- 0
{ "cfg": 2.47, "steps": 50, "width": 2048, "height": 2048, "prompt": "squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field", "denoise": 0.8, "scheduler": "sgm_uniform", "input_image": "https://replicate.delivery/pbxt/MkFZUXh7QUtpvY81ENJOEH0tueIRKIyn0jETUY8Q15RO29xe/DALL%C2%B7E%202023-10-27%2017.55.26%20-%20Lifestyle%20product%20photo%20showcasing%20a%20glistening%20perfume%20bottle%20on%20a%20wooden%20table%2C%20catching%20the%20ambient%20light.%20In%20the%20soft-focus%20background%2C%20a%20Swedish%20.png", "sampler_name": "ddim", "output_format": "webp", "safety_filter": true, "output_quality": 95, "checkpoint_name": "realvisxlV50_v50Bakedvae.safetensors", "negative_prompt": "ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed", "ipadapter_end_at": 1, "ipadapter_weight": 0.9, "ipadapter_start_at": 0, "controlnet_strength": 1, "lora1_strength_clip": 1, "lora2_strength_clip": 0, "lora3_strength_clip": 0, "lora1_strength_model": 0.5, "lora2_strength_model": 0, "lora3_strength_model": 0, "controlnet_end_percent": 0.5, "controlnet_start_percent": 0 }
Install Replicateβs Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run goodguy1963/sdxl-finetunes-img2img using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "goodguy1963/sdxl-finetunes-img2img:ad440b43e31f31a1f9cdee75a034e2db2c6c9c62b2c24c780f26405f61537f7a", { input: { cfg: 2.47, steps: 50, width: 2048, height: 2048, prompt: "squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field", denoise: 0.8, scheduler: "sgm_uniform", input_image: "https://replicate.delivery/pbxt/MkFZUXh7QUtpvY81ENJOEH0tueIRKIyn0jETUY8Q15RO29xe/DALL%C2%B7E%202023-10-27%2017.55.26%20-%20Lifestyle%20product%20photo%20showcasing%20a%20glistening%20perfume%20bottle%20on%20a%20wooden%20table%2C%20catching%20the%20ambient%20light.%20In%20the%20soft-focus%20background%2C%20a%20Swedish%20.png", sampler_name: "ddim", output_format: "webp", safety_filter: true, output_quality: 95, checkpoint_name: "realvisxlV50_v50Bakedvae.safetensors", negative_prompt: "ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed", ipadapter_end_at: 1, ipadapter_weight: 0.9, ipadapter_start_at: 0, controlnet_strength: 1, lora1_strength_clip: 1, lora2_strength_clip: 0, lora3_strength_clip: 0, lora1_strength_model: 0.5, lora2_strength_model: 0, lora3_strength_model: 0, controlnet_end_percent: 0.5, controlnet_start_percent: 0 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicateβs Python client library:pip install replicate
Import the client:import replicate
Run goodguy1963/sdxl-finetunes-img2img using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "goodguy1963/sdxl-finetunes-img2img:ad440b43e31f31a1f9cdee75a034e2db2c6c9c62b2c24c780f26405f61537f7a", input={ "cfg": 2.47, "steps": 50, "width": 2048, "height": 2048, "prompt": "squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field", "denoise": 0.8, "scheduler": "sgm_uniform", "input_image": "https://replicate.delivery/pbxt/MkFZUXh7QUtpvY81ENJOEH0tueIRKIyn0jETUY8Q15RO29xe/DALL%C2%B7E%202023-10-27%2017.55.26%20-%20Lifestyle%20product%20photo%20showcasing%20a%20glistening%20perfume%20bottle%20on%20a%20wooden%20table%2C%20catching%20the%20ambient%20light.%20In%20the%20soft-focus%20background%2C%20a%20Swedish%20.png", "sampler_name": "ddim", "output_format": "webp", "safety_filter": True, "output_quality": 95, "checkpoint_name": "realvisxlV50_v50Bakedvae.safetensors", "negative_prompt": "ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed", "ipadapter_end_at": 1, "ipadapter_weight": 0.9, "ipadapter_start_at": 0, "controlnet_strength": 1, "lora1_strength_clip": 1, "lora2_strength_clip": 0, "lora3_strength_clip": 0, "lora1_strength_model": 0.5, "lora2_strength_model": 0, "lora3_strength_model": 0, "controlnet_end_percent": 0.5, "controlnet_start_percent": 0 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run goodguy1963/sdxl-finetunes-img2img using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ad440b43e31f31a1f9cdee75a034e2db2c6c9c62b2c24c780f26405f61537f7a", "input": { "cfg": 2.47, "steps": 50, "width": 2048, "height": 2048, "prompt": "squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field", "denoise": 0.8, "scheduler": "sgm_uniform", "input_image": "https://replicate.delivery/pbxt/MkFZUXh7QUtpvY81ENJOEH0tueIRKIyn0jETUY8Q15RO29xe/DALL%C2%B7E%202023-10-27%2017.55.26%20-%20Lifestyle%20product%20photo%20showcasing%20a%20glistening%20perfume%20bottle%20on%20a%20wooden%20table%2C%20catching%20the%20ambient%20light.%20In%20the%20soft-focus%20background%2C%20a%20Swedish%20.png", "sampler_name": "ddim", "output_format": "webp", "safety_filter": true, "output_quality": 95, "checkpoint_name": "realvisxlV50_v50Bakedvae.safetensors", "negative_prompt": "ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed", "ipadapter_end_at": 1, "ipadapter_weight": 0.9, "ipadapter_start_at": 0, "controlnet_strength": 1, "lora1_strength_clip": 1, "lora2_strength_clip": 0, "lora3_strength_clip": 0, "lora1_strength_model": 0.5, "lora2_strength_model": 0, "lora3_strength_model": 0, "controlnet_end_percent": 0.5, "controlnet_start_percent": 0 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
Output
{ "completed_at": "2025-03-29T17:33:02.027990Z", "created_at": "2025-03-29T17:32:43.678000Z", "data_removed": false, "error": null, "id": "1b195e4d3srmc0cnwbv844683g", "input": { "cfg": 2.47, "steps": 50, "width": 2048, "height": 2048, "prompt": "squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field", "denoise": 0.8, "scheduler": "sgm_uniform", "input_image": "https://replicate.delivery/pbxt/MkFZUXh7QUtpvY81ENJOEH0tueIRKIyn0jETUY8Q15RO29xe/DALL%C2%B7E%202023-10-27%2017.55.26%20-%20Lifestyle%20product%20photo%20showcasing%20a%20glistening%20perfume%20bottle%20on%20a%20wooden%20table%2C%20catching%20the%20ambient%20light.%20In%20the%20soft-focus%20background%2C%20a%20Swedish%20.png", "sampler_name": "ddim", "output_format": "webp", "safety_filter": true, "output_quality": 95, "checkpoint_name": "realvisxlV50_v50Bakedvae.safetensors", "negative_prompt": "ugly, deformed, soft, ext, watermark, abstract, big hands, fake, fake hands, distorted, drawing, painting, crayon, sketch, impressionist, worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed", "ipadapter_end_at": 1, "ipadapter_weight": 0.9, "ipadapter_start_at": 0, "controlnet_strength": 1, "lora1_strength_clip": 1, "lora2_strength_clip": 0, "lora3_strength_clip": 0, "lora1_strength_model": 0.5, "lora2_strength_model": 0, "lora3_strength_model": 0, "controlnet_end_percent": 0.5, "controlnet_start_percent": 0 }, "logs": "Random seed set to: 4118742531\nModel realvisxlV50_v50Bakedvae.safetensors already exists, skipping download\nModel lora_product_marketing_photo.safetensors already exists, skipping download\nModel OpenPoseXL2.safetensors already exists, skipping download\nModel ip-adapter-plus_sdxl_vit-h.safetensors already exists, skipping download\nModel ip-adapter-plus_sdxl_vit-h_image_encoder.safetensors already exists, skipping download\nModel CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors already exists, skipping download\nDownloaded models for this run: realvisxlV50_v50Bakedvae.safetensors, lora_product_marketing_photo.safetensors, OpenPoseXL2.safetensors, ip-adapter-plus_sdxl_vit-h.safetensors, ip-adapter-plus_sdxl_vit-h_image_encoder.safetensors, CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors\nRunning workflow\n[ComfyUI] got prompt\nExecuting node 325, title: Load Image, class type: LoadImage\nExecuting node 422, title: AIO Aux Preprocessor, class type: AIO_Preprocessor\nExecuting node 259, title: Preview Image, class type: PreviewImage\nExecuting node 208, title: VAE Encode, class type: VAEEncode\nExecuting node 522, title: Apply ControlNet, class type: ControlNetApplyAdvanced\nExecuting node 398, title: Prep Image For ClipVision, class type: PrepImageForClipVision\nExecuting node 399, title: IPAdapter Advanced, class type: IPAdapterAdvanced\nExecuting node 204, title: KSampler, class type: KSampler\n[ComfyUI] Requested to load SDXL\n[ComfyUI] model_path is /src/ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose/yolox_l.onnx\n[ComfyUI] model_path is /src/ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt\n[ComfyUI]\n[ComfyUI] DWPose: Using yolox_l.onnx for bbox detection and dw-ll_ucoco_384_bs5.torchscript.pt for pose estimation\n[ComfyUI]\n[ComfyUI] DWPose: Bbox 11.63ms\n[ComfyUI] DWPose: Pose 11.46ms on 1 people\n[ComfyUI]\n[ComfyUI] 0%| | 0/50 [00:00<?, ?it/s]\n[ComfyUI] 2%|β | 1/50 [00:00<00:08, 5.75it/s]\n[ComfyUI] 4%|β | 2/50 [00:00<00:08, 5.59it/s]\n[ComfyUI] 6%|β | 3/50 [00:00<00:08, 5.52it/s]\n[ComfyUI] 8%|β | 4/50 [00:00<00:08, 5.49it/s]\n[ComfyUI] 10%|β | 5/50 [00:00<00:08, 5.48it/s]\n[ComfyUI] 12%|ββ | 6/50 [00:01<00:08, 5.48it/s]\n[ComfyUI] 14%|ββ | 7/50 [00:01<00:07, 5.48it/s]\n[ComfyUI] 16%|ββ | 8/50 [00:01<00:07, 5.47it/s]\n[ComfyUI] 18%|ββ | 9/50 [00:01<00:07, 5.46it/s]\n[ComfyUI] 20%|ββ | 10/50 [00:01<00:07, 5.45it/s]\n[ComfyUI] 22%|βββ | 11/50 [00:02<00:07, 5.45it/s]\n[ComfyUI] 24%|βββ | 12/50 [00:02<00:06, 5.45it/s]\n[ComfyUI] 26%|βββ | 13/50 [00:02<00:06, 5.45it/s]\n[ComfyUI] 28%|βββ | 14/50 [00:02<00:06, 5.45it/s]\n[ComfyUI] 30%|βββ | 15/50 [00:02<00:06, 5.45it/s]\n[ComfyUI] 32%|ββββ | 16/50 [00:02<00:06, 5.45it/s]\n[ComfyUI] 34%|ββββ | 17/50 [00:03<00:06, 5.45it/s]\n[ComfyUI] 36%|ββββ | 18/50 [00:03<00:05, 5.45it/s]\n[ComfyUI] 38%|ββββ | 19/50 [00:03<00:05, 5.45it/s]\n[ComfyUI] 40%|ββββ | 20/50 [00:03<00:05, 5.44it/s]\n[ComfyUI] 42%|βββββ | 21/50 [00:03<00:04, 5.97it/s]\n[ComfyUI] 44%|βββββ | 22/50 [00:03<00:04, 6.42it/s]\n[ComfyUI] 46%|βββββ | 23/50 [00:04<00:03, 6.78it/s]\n[ComfyUI] 48%|βββββ | 24/50 [00:04<00:03, 7.04it/s]\n[ComfyUI] 50%|βββββ | 25/50 [00:04<00:03, 7.25it/s]\n[ComfyUI] 52%|ββββββ | 26/50 [00:04<00:03, 7.39it/s]\n[ComfyUI] 54%|ββββββ | 27/50 [00:04<00:03, 7.51it/s]\n[ComfyUI] 56%|ββββββ | 28/50 [00:04<00:02, 7.57it/s]\n[ComfyUI] 58%|ββββββ | 29/50 [00:04<00:02, 7.64it/s]\n[ComfyUI] 60%|ββββββ | 30/50 [00:04<00:02, 7.69it/s]\n[ComfyUI] 62%|βββββββ | 31/50 [00:05<00:02, 7.72it/s]\n[ComfyUI] 64%|βββββββ | 32/50 [00:05<00:02, 7.76it/s]\n[ComfyUI] 66%|βββββββ | 33/50 [00:05<00:02, 7.75it/s]\n[ComfyUI] 68%|βββββββ | 34/50 [00:05<00:02, 7.76it/s]\n[ComfyUI] 70%|βββββββ | 35/50 [00:05<00:01, 7.76it/s]\n[ComfyUI] 72%|ββββββββ | 36/50 [00:05<00:01, 7.76it/s]\n[ComfyUI] 74%|ββββββββ | 37/50 [00:05<00:01, 7.75it/s]\n[ComfyUI] 76%|ββββββββ | 38/50 [00:05<00:01, 7.75it/s]\n[ComfyUI] 78%|ββββββββ | 39/50 [00:06<00:01, 7.77it/s]\n[ComfyUI] 80%|ββββββββ | 40/50 [00:06<00:01, 7.77it/s]\n[ComfyUI] 82%|βββββββββ | 41/50 [00:06<00:01, 7.13it/s]\n[ComfyUI] 84%|βββββββββ | 42/50 [00:06<00:01, 7.31it/s]\n[ComfyUI] 86%|βββββββββ | 43/50 [00:06<00:00, 7.44it/s]\n[ComfyUI] 88%|βββββββββ | 44/50 [00:06<00:00, 7.53it/s]\n[ComfyUI] 90%|βββββββββ | 45/50 [00:06<00:00, 7.59it/s]\n[ComfyUI] 92%|ββββββββββ| 46/50 [00:07<00:00, 7.64it/s]\n[ComfyUI] 94%|ββββββββββ| 47/50 [00:07<00:00, 7.67it/s]\n[ComfyUI] 96%|ββββββββββ| 48/50 [00:07<00:00, 7.70it/s]\n[ComfyUI] 98%|ββββββββββ| 49/50 [00:07<00:00, 7.71it/s]\n[ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 7.74it/s]\nExecuting node 534, title: Upscale Latent, class type: LatentUpscale\nExecuting node 535, title: KSampler, class type: KSampler\n[ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 6.61it/s]\n[ComfyUI]\n[ComfyUI] 0%| | 0/50 [00:00<?, ?it/s]\n[ComfyUI] 2%|β | 1/50 [00:00<00:08, 5.63it/s]\n[ComfyUI] 4%|β | 2/50 [00:00<00:08, 5.49it/s]\n[ComfyUI] 6%|β | 3/50 [00:00<00:08, 5.47it/s]\n[ComfyUI] 8%|β | 4/50 [00:00<00:08, 5.46it/s]\n[ComfyUI] 10%|β | 5/50 [00:00<00:08, 5.45it/s]\n[ComfyUI] 12%|ββ | 6/50 [00:01<00:08, 5.45it/s]\n[ComfyUI] 14%|ββ | 7/50 [00:01<00:07, 5.44it/s]\n[ComfyUI] 16%|ββ | 8/50 [00:01<00:07, 5.44it/s]\n[ComfyUI] 18%|ββ | 9/50 [00:01<00:07, 5.44it/s]\n[ComfyUI] 20%|ββ | 10/50 [00:01<00:07, 5.43it/s]\n[ComfyUI] 22%|βββ | 11/50 [00:02<00:07, 5.43it/s]\n[ComfyUI] 24%|βββ | 12/50 [00:02<00:07, 5.43it/s]\n[ComfyUI] 26%|βββ | 13/50 [00:02<00:06, 5.43it/s]\n[ComfyUI] 28%|βββ | 14/50 [00:02<00:06, 5.42it/s]\n[ComfyUI] 30%|βββ | 15/50 [00:02<00:06, 5.42it/s]\n[ComfyUI] 32%|ββββ | 16/50 [00:02<00:06, 5.42it/s]\n[ComfyUI] 34%|ββββ | 17/50 [00:03<00:06, 5.42it/s]\n[ComfyUI] 36%|ββββ | 18/50 [00:03<00:05, 5.42it/s]\n[ComfyUI] 38%|ββββ | 19/50 [00:03<00:05, 5.42it/s]\n[ComfyUI] 40%|ββββ | 20/50 [00:03<00:05, 5.43it/s]\n[ComfyUI] 42%|βββββ | 21/50 [00:03<00:04, 5.95it/s]\n[ComfyUI] 44%|βββββ | 22/50 [00:03<00:04, 6.40it/s]\n[ComfyUI] 46%|βββββ | 23/50 [00:04<00:04, 6.74it/s]\n[ComfyUI] 48%|βββββ | 24/50 [00:04<00:03, 7.01it/s]\n[ComfyUI] 50%|βββββ | 25/50 [00:04<00:03, 7.22it/s]\n[ComfyUI] 52%|ββββββ | 26/50 [00:04<00:03, 7.36it/s]\n[ComfyUI] 54%|ββββββ | 27/50 [00:04<00:03, 7.47it/s]\n[ComfyUI] 56%|ββββββ | 28/50 [00:04<00:02, 7.54it/s]\n[ComfyUI] 58%|ββββββ | 29/50 [00:04<00:02, 7.58it/s]\n[ComfyUI] 60%|ββββββ | 30/50 [00:04<00:02, 7.63it/s]\n[ComfyUI] 62%|βββββββ | 31/50 [00:05<00:02, 7.66it/s]\n[ComfyUI] 64%|βββββββ | 32/50 [00:05<00:02, 7.69it/s]\n[ComfyUI] 66%|βββββββ | 33/50 [00:05<00:02, 7.70it/s]\n[ComfyUI] 68%|βββββββ | 34/50 [00:05<00:02, 7.70it/s]\n[ComfyUI] 70%|βββββββ | 35/50 [00:05<00:01, 7.71it/s]\n[ComfyUI] 72%|ββββββββ | 36/50 [00:05<00:01, 7.70it/s]\n[ComfyUI] 74%|ββββββββ | 37/50 [00:05<00:01, 7.71it/s]\n[ComfyUI] 76%|ββββββββ | 38/50 [00:06<00:01, 7.71it/s]\n[ComfyUI] 78%|ββββββββ | 39/50 [00:06<00:01, 7.73it/s]\n[ComfyUI] 80%|ββββββββ | 40/50 [00:06<00:01, 7.72it/s]\n[ComfyUI] 82%|βββββββββ | 41/50 [00:06<00:01, 7.71it/s]\n[ComfyUI] 84%|βββββββββ | 42/50 [00:06<00:01, 7.71it/s]\n[ComfyUI] 86%|βββββββββ | 43/50 [00:06<00:00, 7.71it/s]\n[ComfyUI] 88%|βββββββββ | 44/50 [00:06<00:00, 7.68it/s]\n[ComfyUI] 90%|βββββββββ | 45/50 [00:06<00:00, 7.69it/s]\n[ComfyUI] 92%|ββββββββββ| 46/50 [00:07<00:00, 7.69it/s]\n[ComfyUI] 94%|ββββββββββ| 47/50 [00:07<00:00, 7.71it/s]\n[ComfyUI] 96%|ββββββββββ| 48/50 [00:07<00:00, 7.70it/s]\n[ComfyUI] 98%|ββββββββββ| 49/50 [00:07<00:00, 7.71it/s]\n[ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 7.71it/s]\nExecuting node 538, title: VAE Decode, class type: VAEDecode\nExecuting node 536, title: Save Image, class type: SaveImage\n[ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 6.61it/s]\n[ComfyUI] Prompt executed in 17.41 seconds\noutputs: {'259': {'images': [{'filename': 'ComfyUI_temp_bpjxg_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '536': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '422': {'openpose_json': ['[\\n {\\n \"people\": [\\n {\\n \"pose_keypoints_2d\": [\\n 618.9802837744355,\\n 242.14840033650398,\\n 1.0,\\n 725.4969502054155,\\n 379.9580987133086,\\n 1.0,\\n 593.7051425874233,\\n 403.42787267267704,\\n 1.0,\\n 505.8439375087619,\\n 707.9331450685859,\\n 1.0,\\n 549.1727509722114,\\n 450.367420591414,\\n 1.0,\\n 857.2887578234076,\\n 356.4883247539401,\\n 1.0,\\n 875.3424300998449,\\n 676.6401131227612,\\n 1.0,\\n 668.3269879966974,\\n 781.3514123260975,\\n 1.0,\\n 631.0160652920604,\\n 871.6197737082839,\\n 1.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 822.3849914222956,\\n 871.6197737082839,\\n 1.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 593.7051425874233,\\n 209.65179023891687,\\n 1.0,\\n 663.5126753896475,\\n 197.61600872129202,\\n 1.0,\\n 575.651470310986,\\n 234.92693142592907,\\n 1.0,\\n 764.6132401376963,\\n 215.6696809977293,\\n 1.0\\n ],\\n \"face_keypoints_2d\": [\\n 576.8550484627485,\\n 212.05894654244184,\\n 1.0,\\n 576.8550484627485,\\n 234.92693142592907,\\n 1.0,\\n 579.2622047662735,\\n 256.5913381576538,\\n 1.0,\\n 585.2800955250859,\\n 277.05216673761606,\\n 1.0,\\n 593.7051425874233,\\n 296.30941716581583,\\n 1.0,\\n 603.3337678015232,\\n 314.3630894422531,\\n 1.0,\\n 617.776705622673,\\n 331.2131835669279,\\n 1.0,\\n 637.0339560508728,\\n 336.02749617397785,\\n 1.0,\\n 658.6983627825975,\\n 332.4167617186904,\\n 1.0,\\n 679.1591913625598,\\n 323.991714656353,\\n 1.0,\\n 698.4164417907596,\\n 311.95593313872814,\\n 1.0,\\n 715.2665359154344,\\n 297.5129953175783,\\n 1.0,\\n 729.7094737365842,\\n 280.6629011929035,\\n 1.0,\\n 738.1345207989216,\\n 260.20207261294127,\\n 1.0,\\n 741.745255254209,\\n 238.53766588121653,\\n 1.0,\\n 742.9488334059715,\\n 216.8732591494918,\\n 1.0,\\n 742.9488334059715,\\n 196.41243056952953,\\n 1.0,\\n 576.8550484627485,\\n 196.41243056952953,\\n 1.0,\\n 582.872939221561,\\n 190.3945398107171,\\n 1.0,\\n 590.0944081321359,\\n 187.98738350719213,\\n 1.0,\\n 597.3158770427108,\\n 186.78380535542965,\\n 1.0,\\n 605.7409241050482,\\n 185.58022720366716,\\n 1.0,\\n 635.8303778991103,\\n 177.15518014132977,\\n 1.0,\\n 649.0697375684977,\\n 172.34086753427982,\\n 1.0,\\n 663.5126753896475,\\n 168.73013307899237,\\n 1.0,\\n 679.1591913625598,\\n 168.73013307899237,\\n 1.0,\\n 693.6021291837096,\\n 173.5444456860423,\\n 1.0,\\n 620.183861926198,\\n 204.83747763186693,\\n 1.0,\\n 617.776705622673,\\n 218.07683730125427,\\n 1.0,\\n 616.5731274709105,\\n 232.5197751224041,\\n 1.0,\\n 614.1659711673856,\\n 245.75913479179144,\\n 1.0,\\n 606.9445022568107,\\n 261.40565076470375,\\n 1.0,\\n 614.1659711673856,\\n 263.8128070682287,\\n 1.0,\\n 621.3874400779605,\\n 263.8128070682287,\\n 1.0,\\n 632.2196434438229,\\n 261.40565076470375,\\n 1.0,\\n 643.0518468096852,\\n 258.9984944611788,\\n 1.0,\\n 582.872939221561,\\n 213.26252469420433,\\n 1.0,\\n 588.8908299803734,\\n 203.63389948010445,\\n 1.0,\\n 600.9266114979982,\\n 203.63389948010445,\\n 1.0,\\n 609.3516585603356,\\n 210.85536839067936,\\n 1.0,\\n 600.9266114979982,\\n 215.6696809977293,\\n 1.0,\\n 591.2979862838984,\\n 216.8732591494918,\\n 1.0,\\n 646.6625812649727,\\n 203.63389948010445,\\n 1.0,\\n 655.0876283273101,\\n 191.5981179624796,\\n 1.0,\\n 669.5305661484599,\\n 189.19096165895462,\\n 1.0,\\n 682.7699258178473,\\n 195.20885241776705,\\n 1.0,\\n 671.9377224519849,\\n 202.43032132834196,\\n 1.0,\\n 659.90194093436,\\n 204.83747763186693,\\n 1.0,\\n 605.7409241050482,\\n 291.4951045587659,\\n 1.0,\\n 610.5552367120981,\\n 284.273635648191,\\n 1.0,\\n 616.5731274709105,\\n 280.6629011929035,\\n 1.0,\\n 622.591018229723,\\n 279.45932304114103,\\n 1.0,\\n 628.6089089885354,\\n 278.25574488937855,\\n 1.0,\\n 644.2554249614477,\\n 280.6629011929035,\\n 1.0,\\n 659.90194093436,\\n 284.273635648191,\\n 1.0,\\n 649.0697375684977,\\n 291.4951045587659,\\n 1.0,\\n 637.0339560508728,\\n 296.30941716581583,\\n 1.0,\\n 624.998174533248,\\n 298.7165734693408,\\n 1.0,\\n 617.776705622673,\\n 298.7165734693408,\\n 1.0,\\n 611.7588148638606,\\n 295.10583901405334,\\n 1.0,\\n 608.1480804085732,\\n 291.4951045587659,\\n 1.0,\\n 616.5731274709105,\\n 289.0879482552409,\\n 1.0,\\n 623.7945963814855,\\n 286.68079195171595,\\n 1.0,\\n 640.6446905061603,\\n 285.47721379995346,\\n 1.0,\\n 656.2912064790726,\\n 285.47721379995346,\\n 1.0,\\n 639.4411123543978,\\n 285.47721379995346,\\n 1.0,\\n 623.7945963814855,\\n 287.88437010347843,\\n 1.0,\\n 616.5731274709105,\\n 289.0879482552409,\\n 1.0,\\n 593.7051425874233,\\n 209.65179023891687,\\n 1.0,\\n 663.5126753896475,\\n 197.61600872129202,\\n 1.0\\n ],\\n \"hand_left_keypoints_2d\": [\\n 653.8840501755476,\\n 645.3470811769366,\\n 1.0,\\n 621.3874400779605,\\n 683.8615820333362,\\n 1.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 597.3158770427108,\\n 725.9868173450232,\\n 1.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0,\\n 0.0\\n ],\\n \"hand_right_keypoints_2d\": [\\n 570.8371577039361,\\n 434.72090461850166,\\n 1.0,\\n 591.2979862838984,\\n 399.8171382173896,\\n 1.0,\\n 611.7588148638606,\\n 376.94915333390236,\\n 1.0,\\n 623.7945963814855,\\n 351.67401214689016,\\n 1.0,\\n 641.8482686579227,\\n 334.82391802221537,\\n 1.0,\\n 592.5015644356608,\\n 328.80602726340294,\\n 1.0,\\n 618.9802837744355,\\n 319.17740204930305,\\n 1.0,\\n 640.6446905061603,\\n 339.6382306292653,\\n 1.0,\\n 656.2912064790726,\\n 361.30263736099005,\\n 1.0,\\n 585.2800955250859,\\n 327.60244911164045,\\n 1.0,\\n 617.776705622673,\\n 320.38098020106554,\\n 1.0,\\n 643.0518468096852,\\n 348.0632776916027,\\n 1.0,\\n 658.6983627825975,\\n 378.15273148566484,\\n 1.0,\\n 579.2622047662735,\\n 327.60244911164045,\\n 1.0,\\n 612.9623930156231,\\n 325.1952928081155,\\n 1.0,\\n 638.2375342026353,\\n 354.08116845041513,\\n 1.0,\\n 650.2733157202601,\\n 384.1706222444773,\\n 1.0,\\n 574.4478921592236,\\n 333.6203398704529,\\n 1.0,\\n 600.9266114979982,\\n 332.4167617186904,\\n 1.0,\\n 622.591018229723,\\n 348.0632776916027,\\n 1.0,\\n 632.2196434438229,\\n 373.3384188786149,\\n 1.0\\n ]\\n }\\n ],\\n \"canvas_height\": 1024,\\n \"canvas_width\": 1024\\n }\\n]']}, '206': {'text': ['product marketing photo, squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field']}}\n====================================\nComfyUI_00001_.png\nNSFW filter API error: {\"detail\":\"Failed to parse request body as JSON: invalid character '-' in numeric literal\",\"status\":400}", "metrics": { "predict_time": 18.341334868, "total_time": 18.34999 }, "output": [ "https://replicate.delivery/xezq/fEGUWx6rBj1iGin9NY6qsMHEk05COT1epdAuwr6JrnRODe6oA/ComfyUI_00001_.webp" ], "started_at": "2025-03-29T17:32:43.686655Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-p5u3whhipjsukwfgwjf4s5li6uf4t3u4hvmq7q3i7jacny6vm4rq", "get": "https://api.replicate.com/v1/predictions/1b195e4d3srmc0cnwbv844683g", "cancel": "https://api.replicate.com/v1/predictions/1b195e4d3srmc0cnwbv844683g/cancel" }, "version": "ad440b43e31f31a1f9cdee75a034e2db2c6c9c62b2c24c780f26405f61537f7a" }
Generated inRandom seed set to: 4118742531 Model realvisxlV50_v50Bakedvae.safetensors already exists, skipping download Model lora_product_marketing_photo.safetensors already exists, skipping download Model OpenPoseXL2.safetensors already exists, skipping download Model ip-adapter-plus_sdxl_vit-h.safetensors already exists, skipping download Model ip-adapter-plus_sdxl_vit-h_image_encoder.safetensors already exists, skipping download Model CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors already exists, skipping download Downloaded models for this run: realvisxlV50_v50Bakedvae.safetensors, lora_product_marketing_photo.safetensors, OpenPoseXL2.safetensors, ip-adapter-plus_sdxl_vit-h.safetensors, ip-adapter-plus_sdxl_vit-h_image_encoder.safetensors, CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors Running workflow [ComfyUI] got prompt Executing node 325, title: Load Image, class type: LoadImage Executing node 422, title: AIO Aux Preprocessor, class type: AIO_Preprocessor Executing node 259, title: Preview Image, class type: PreviewImage Executing node 208, title: VAE Encode, class type: VAEEncode Executing node 522, title: Apply ControlNet, class type: ControlNetApplyAdvanced Executing node 398, title: Prep Image For ClipVision, class type: PrepImageForClipVision Executing node 399, title: IPAdapter Advanced, class type: IPAdapterAdvanced Executing node 204, title: KSampler, class type: KSampler [ComfyUI] Requested to load SDXL [ComfyUI] model_path is /src/ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts/yzd-v/DWPose/yolox_l.onnx [ComfyUI] model_path is /src/ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts/hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt [ComfyUI] [ComfyUI] DWPose: Using yolox_l.onnx for bbox detection and dw-ll_ucoco_384_bs5.torchscript.pt for pose estimation [ComfyUI] [ComfyUI] DWPose: Bbox 11.63ms [ComfyUI] DWPose: Pose 11.46ms on 1 people [ComfyUI] [ComfyUI] 0%| | 0/50 [00:00<?, ?it/s] [ComfyUI] 2%|β | 1/50 [00:00<00:08, 5.75it/s] [ComfyUI] 4%|β | 2/50 [00:00<00:08, 5.59it/s] [ComfyUI] 6%|β | 3/50 [00:00<00:08, 5.52it/s] [ComfyUI] 8%|β | 4/50 [00:00<00:08, 5.49it/s] [ComfyUI] 10%|β | 5/50 [00:00<00:08, 5.48it/s] [ComfyUI] 12%|ββ | 6/50 [00:01<00:08, 5.48it/s] [ComfyUI] 14%|ββ | 7/50 [00:01<00:07, 5.48it/s] [ComfyUI] 16%|ββ | 8/50 [00:01<00:07, 5.47it/s] [ComfyUI] 18%|ββ | 9/50 [00:01<00:07, 5.46it/s] [ComfyUI] 20%|ββ | 10/50 [00:01<00:07, 5.45it/s] [ComfyUI] 22%|βββ | 11/50 [00:02<00:07, 5.45it/s] [ComfyUI] 24%|βββ | 12/50 [00:02<00:06, 5.45it/s] [ComfyUI] 26%|βββ | 13/50 [00:02<00:06, 5.45it/s] [ComfyUI] 28%|βββ | 14/50 [00:02<00:06, 5.45it/s] [ComfyUI] 30%|βββ | 15/50 [00:02<00:06, 5.45it/s] [ComfyUI] 32%|ββββ | 16/50 [00:02<00:06, 5.45it/s] [ComfyUI] 34%|ββββ | 17/50 [00:03<00:06, 5.45it/s] [ComfyUI] 36%|ββββ | 18/50 [00:03<00:05, 5.45it/s] [ComfyUI] 38%|ββββ | 19/50 [00:03<00:05, 5.45it/s] [ComfyUI] 40%|ββββ | 20/50 [00:03<00:05, 5.44it/s] [ComfyUI] 42%|βββββ | 21/50 [00:03<00:04, 5.97it/s] [ComfyUI] 44%|βββββ | 22/50 [00:03<00:04, 6.42it/s] [ComfyUI] 46%|βββββ | 23/50 [00:04<00:03, 6.78it/s] [ComfyUI] 48%|βββββ | 24/50 [00:04<00:03, 7.04it/s] [ComfyUI] 50%|βββββ | 25/50 [00:04<00:03, 7.25it/s] [ComfyUI] 52%|ββββββ | 26/50 [00:04<00:03, 7.39it/s] [ComfyUI] 54%|ββββββ | 27/50 [00:04<00:03, 7.51it/s] [ComfyUI] 56%|ββββββ | 28/50 [00:04<00:02, 7.57it/s] [ComfyUI] 58%|ββββββ | 29/50 [00:04<00:02, 7.64it/s] [ComfyUI] 60%|ββββββ | 30/50 [00:04<00:02, 7.69it/s] [ComfyUI] 62%|βββββββ | 31/50 [00:05<00:02, 7.72it/s] [ComfyUI] 64%|βββββββ | 32/50 [00:05<00:02, 7.76it/s] [ComfyUI] 66%|βββββββ | 33/50 [00:05<00:02, 7.75it/s] [ComfyUI] 68%|βββββββ | 34/50 [00:05<00:02, 7.76it/s] [ComfyUI] 70%|βββββββ | 35/50 [00:05<00:01, 7.76it/s] [ComfyUI] 72%|ββββββββ | 36/50 [00:05<00:01, 7.76it/s] [ComfyUI] 74%|ββββββββ | 37/50 [00:05<00:01, 7.75it/s] [ComfyUI] 76%|ββββββββ | 38/50 [00:05<00:01, 7.75it/s] [ComfyUI] 78%|ββββββββ | 39/50 [00:06<00:01, 7.77it/s] [ComfyUI] 80%|ββββββββ | 40/50 [00:06<00:01, 7.77it/s] [ComfyUI] 82%|βββββββββ | 41/50 [00:06<00:01, 7.13it/s] [ComfyUI] 84%|βββββββββ | 42/50 [00:06<00:01, 7.31it/s] [ComfyUI] 86%|βββββββββ | 43/50 [00:06<00:00, 7.44it/s] [ComfyUI] 88%|βββββββββ | 44/50 [00:06<00:00, 7.53it/s] [ComfyUI] 90%|βββββββββ | 45/50 [00:06<00:00, 7.59it/s] [ComfyUI] 92%|ββββββββββ| 46/50 [00:07<00:00, 7.64it/s] [ComfyUI] 94%|ββββββββββ| 47/50 [00:07<00:00, 7.67it/s] [ComfyUI] 96%|ββββββββββ| 48/50 [00:07<00:00, 7.70it/s] [ComfyUI] 98%|ββββββββββ| 49/50 [00:07<00:00, 7.71it/s] [ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 7.74it/s] Executing node 534, title: Upscale Latent, class type: LatentUpscale Executing node 535, title: KSampler, class type: KSampler [ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 6.61it/s] [ComfyUI] [ComfyUI] 0%| | 0/50 [00:00<?, ?it/s] [ComfyUI] 2%|β | 1/50 [00:00<00:08, 5.63it/s] [ComfyUI] 4%|β | 2/50 [00:00<00:08, 5.49it/s] [ComfyUI] 6%|β | 3/50 [00:00<00:08, 5.47it/s] [ComfyUI] 8%|β | 4/50 [00:00<00:08, 5.46it/s] [ComfyUI] 10%|β | 5/50 [00:00<00:08, 5.45it/s] [ComfyUI] 12%|ββ | 6/50 [00:01<00:08, 5.45it/s] [ComfyUI] 14%|ββ | 7/50 [00:01<00:07, 5.44it/s] [ComfyUI] 16%|ββ | 8/50 [00:01<00:07, 5.44it/s] [ComfyUI] 18%|ββ | 9/50 [00:01<00:07, 5.44it/s] [ComfyUI] 20%|ββ | 10/50 [00:01<00:07, 5.43it/s] [ComfyUI] 22%|βββ | 11/50 [00:02<00:07, 5.43it/s] [ComfyUI] 24%|βββ | 12/50 [00:02<00:07, 5.43it/s] [ComfyUI] 26%|βββ | 13/50 [00:02<00:06, 5.43it/s] [ComfyUI] 28%|βββ | 14/50 [00:02<00:06, 5.42it/s] [ComfyUI] 30%|βββ | 15/50 [00:02<00:06, 5.42it/s] [ComfyUI] 32%|ββββ | 16/50 [00:02<00:06, 5.42it/s] [ComfyUI] 34%|ββββ | 17/50 [00:03<00:06, 5.42it/s] [ComfyUI] 36%|ββββ | 18/50 [00:03<00:05, 5.42it/s] [ComfyUI] 38%|ββββ | 19/50 [00:03<00:05, 5.42it/s] [ComfyUI] 40%|ββββ | 20/50 [00:03<00:05, 5.43it/s] [ComfyUI] 42%|βββββ | 21/50 [00:03<00:04, 5.95it/s] [ComfyUI] 44%|βββββ | 22/50 [00:03<00:04, 6.40it/s] [ComfyUI] 46%|βββββ | 23/50 [00:04<00:04, 6.74it/s] [ComfyUI] 48%|βββββ | 24/50 [00:04<00:03, 7.01it/s] [ComfyUI] 50%|βββββ | 25/50 [00:04<00:03, 7.22it/s] [ComfyUI] 52%|ββββββ | 26/50 [00:04<00:03, 7.36it/s] [ComfyUI] 54%|ββββββ | 27/50 [00:04<00:03, 7.47it/s] [ComfyUI] 56%|ββββββ | 28/50 [00:04<00:02, 7.54it/s] [ComfyUI] 58%|ββββββ | 29/50 [00:04<00:02, 7.58it/s] [ComfyUI] 60%|ββββββ | 30/50 [00:04<00:02, 7.63it/s] [ComfyUI] 62%|βββββββ | 31/50 [00:05<00:02, 7.66it/s] [ComfyUI] 64%|βββββββ | 32/50 [00:05<00:02, 7.69it/s] [ComfyUI] 66%|βββββββ | 33/50 [00:05<00:02, 7.70it/s] [ComfyUI] 68%|βββββββ | 34/50 [00:05<00:02, 7.70it/s] [ComfyUI] 70%|βββββββ | 35/50 [00:05<00:01, 7.71it/s] [ComfyUI] 72%|ββββββββ | 36/50 [00:05<00:01, 7.70it/s] [ComfyUI] 74%|ββββββββ | 37/50 [00:05<00:01, 7.71it/s] [ComfyUI] 76%|ββββββββ | 38/50 [00:06<00:01, 7.71it/s] [ComfyUI] 78%|ββββββββ | 39/50 [00:06<00:01, 7.73it/s] [ComfyUI] 80%|ββββββββ | 40/50 [00:06<00:01, 7.72it/s] [ComfyUI] 82%|βββββββββ | 41/50 [00:06<00:01, 7.71it/s] [ComfyUI] 84%|βββββββββ | 42/50 [00:06<00:01, 7.71it/s] [ComfyUI] 86%|βββββββββ | 43/50 [00:06<00:00, 7.71it/s] [ComfyUI] 88%|βββββββββ | 44/50 [00:06<00:00, 7.68it/s] [ComfyUI] 90%|βββββββββ | 45/50 [00:06<00:00, 7.69it/s] [ComfyUI] 92%|ββββββββββ| 46/50 [00:07<00:00, 7.69it/s] [ComfyUI] 94%|ββββββββββ| 47/50 [00:07<00:00, 7.71it/s] [ComfyUI] 96%|ββββββββββ| 48/50 [00:07<00:00, 7.70it/s] [ComfyUI] 98%|ββββββββββ| 49/50 [00:07<00:00, 7.71it/s] [ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 7.71it/s] Executing node 538, title: VAE Decode, class type: VAEDecode Executing node 536, title: Save Image, class type: SaveImage [ComfyUI] 100%|ββββββββββ| 50/50 [00:07<00:00, 6.61it/s] [ComfyUI] Prompt executed in 17.41 seconds outputs: {'259': {'images': [{'filename': 'ComfyUI_temp_bpjxg_00001_.png', 'subfolder': '', 'type': 'temp'}]}, '536': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}, '422': {'openpose_json': ['[\n {\n "people": [\n {\n "pose_keypoints_2d": [\n 618.9802837744355,\n 242.14840033650398,\n 1.0,\n 725.4969502054155,\n 379.9580987133086,\n 1.0,\n 593.7051425874233,\n 403.42787267267704,\n 1.0,\n 505.8439375087619,\n 707.9331450685859,\n 1.0,\n 549.1727509722114,\n 450.367420591414,\n 1.0,\n 857.2887578234076,\n 356.4883247539401,\n 1.0,\n 875.3424300998449,\n 676.6401131227612,\n 1.0,\n 668.3269879966974,\n 781.3514123260975,\n 1.0,\n 631.0160652920604,\n 871.6197737082839,\n 1.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 822.3849914222956,\n 871.6197737082839,\n 1.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 593.7051425874233,\n 209.65179023891687,\n 1.0,\n 663.5126753896475,\n 197.61600872129202,\n 1.0,\n 575.651470310986,\n 234.92693142592907,\n 1.0,\n 764.6132401376963,\n 215.6696809977293,\n 1.0\n ],\n "face_keypoints_2d": [\n 576.8550484627485,\n 212.05894654244184,\n 1.0,\n 576.8550484627485,\n 234.92693142592907,\n 1.0,\n 579.2622047662735,\n 256.5913381576538,\n 1.0,\n 585.2800955250859,\n 277.05216673761606,\n 1.0,\n 593.7051425874233,\n 296.30941716581583,\n 1.0,\n 603.3337678015232,\n 314.3630894422531,\n 1.0,\n 617.776705622673,\n 331.2131835669279,\n 1.0,\n 637.0339560508728,\n 336.02749617397785,\n 1.0,\n 658.6983627825975,\n 332.4167617186904,\n 1.0,\n 679.1591913625598,\n 323.991714656353,\n 1.0,\n 698.4164417907596,\n 311.95593313872814,\n 1.0,\n 715.2665359154344,\n 297.5129953175783,\n 1.0,\n 729.7094737365842,\n 280.6629011929035,\n 1.0,\n 738.1345207989216,\n 260.20207261294127,\n 1.0,\n 741.745255254209,\n 238.53766588121653,\n 1.0,\n 742.9488334059715,\n 216.8732591494918,\n 1.0,\n 742.9488334059715,\n 196.41243056952953,\n 1.0,\n 576.8550484627485,\n 196.41243056952953,\n 1.0,\n 582.872939221561,\n 190.3945398107171,\n 1.0,\n 590.0944081321359,\n 187.98738350719213,\n 1.0,\n 597.3158770427108,\n 186.78380535542965,\n 1.0,\n 605.7409241050482,\n 185.58022720366716,\n 1.0,\n 635.8303778991103,\n 177.15518014132977,\n 1.0,\n 649.0697375684977,\n 172.34086753427982,\n 1.0,\n 663.5126753896475,\n 168.73013307899237,\n 1.0,\n 679.1591913625598,\n 168.73013307899237,\n 1.0,\n 693.6021291837096,\n 173.5444456860423,\n 1.0,\n 620.183861926198,\n 204.83747763186693,\n 1.0,\n 617.776705622673,\n 218.07683730125427,\n 1.0,\n 616.5731274709105,\n 232.5197751224041,\n 1.0,\n 614.1659711673856,\n 245.75913479179144,\n 1.0,\n 606.9445022568107,\n 261.40565076470375,\n 1.0,\n 614.1659711673856,\n 263.8128070682287,\n 1.0,\n 621.3874400779605,\n 263.8128070682287,\n 1.0,\n 632.2196434438229,\n 261.40565076470375,\n 1.0,\n 643.0518468096852,\n 258.9984944611788,\n 1.0,\n 582.872939221561,\n 213.26252469420433,\n 1.0,\n 588.8908299803734,\n 203.63389948010445,\n 1.0,\n 600.9266114979982,\n 203.63389948010445,\n 1.0,\n 609.3516585603356,\n 210.85536839067936,\n 1.0,\n 600.9266114979982,\n 215.6696809977293,\n 1.0,\n 591.2979862838984,\n 216.8732591494918,\n 1.0,\n 646.6625812649727,\n 203.63389948010445,\n 1.0,\n 655.0876283273101,\n 191.5981179624796,\n 1.0,\n 669.5305661484599,\n 189.19096165895462,\n 1.0,\n 682.7699258178473,\n 195.20885241776705,\n 1.0,\n 671.9377224519849,\n 202.43032132834196,\n 1.0,\n 659.90194093436,\n 204.83747763186693,\n 1.0,\n 605.7409241050482,\n 291.4951045587659,\n 1.0,\n 610.5552367120981,\n 284.273635648191,\n 1.0,\n 616.5731274709105,\n 280.6629011929035,\n 1.0,\n 622.591018229723,\n 279.45932304114103,\n 1.0,\n 628.6089089885354,\n 278.25574488937855,\n 1.0,\n 644.2554249614477,\n 280.6629011929035,\n 1.0,\n 659.90194093436,\n 284.273635648191,\n 1.0,\n 649.0697375684977,\n 291.4951045587659,\n 1.0,\n 637.0339560508728,\n 296.30941716581583,\n 1.0,\n 624.998174533248,\n 298.7165734693408,\n 1.0,\n 617.776705622673,\n 298.7165734693408,\n 1.0,\n 611.7588148638606,\n 295.10583901405334,\n 1.0,\n 608.1480804085732,\n 291.4951045587659,\n 1.0,\n 616.5731274709105,\n 289.0879482552409,\n 1.0,\n 623.7945963814855,\n 286.68079195171595,\n 1.0,\n 640.6446905061603,\n 285.47721379995346,\n 1.0,\n 656.2912064790726,\n 285.47721379995346,\n 1.0,\n 639.4411123543978,\n 285.47721379995346,\n 1.0,\n 623.7945963814855,\n 287.88437010347843,\n 1.0,\n 616.5731274709105,\n 289.0879482552409,\n 1.0,\n 593.7051425874233,\n 209.65179023891687,\n 1.0,\n 663.5126753896475,\n 197.61600872129202,\n 1.0\n ],\n "hand_left_keypoints_2d": [\n 653.8840501755476,\n 645.3470811769366,\n 1.0,\n 621.3874400779605,\n 683.8615820333362,\n 1.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 597.3158770427108,\n 725.9868173450232,\n 1.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0,\n 0.0\n ],\n "hand_right_keypoints_2d": [\n 570.8371577039361,\n 434.72090461850166,\n 1.0,\n 591.2979862838984,\n 399.8171382173896,\n 1.0,\n 611.7588148638606,\n 376.94915333390236,\n 1.0,\n 623.7945963814855,\n 351.67401214689016,\n 1.0,\n 641.8482686579227,\n 334.82391802221537,\n 1.0,\n 592.5015644356608,\n 328.80602726340294,\n 1.0,\n 618.9802837744355,\n 319.17740204930305,\n 1.0,\n 640.6446905061603,\n 339.6382306292653,\n 1.0,\n 656.2912064790726,\n 361.30263736099005,\n 1.0,\n 585.2800955250859,\n 327.60244911164045,\n 1.0,\n 617.776705622673,\n 320.38098020106554,\n 1.0,\n 643.0518468096852,\n 348.0632776916027,\n 1.0,\n 658.6983627825975,\n 378.15273148566484,\n 1.0,\n 579.2622047662735,\n 327.60244911164045,\n 1.0,\n 612.9623930156231,\n 325.1952928081155,\n 1.0,\n 638.2375342026353,\n 354.08116845041513,\n 1.0,\n 650.2733157202601,\n 384.1706222444773,\n 1.0,\n 574.4478921592236,\n 333.6203398704529,\n 1.0,\n 600.9266114979982,\n 332.4167617186904,\n 1.0,\n 622.591018229723,\n 348.0632776916027,\n 1.0,\n 632.2196434438229,\n 373.3384188786149,\n 1.0\n ]\n }\n ],\n "canvas_height": 1024,\n "canvas_width": 1024\n }\n]']}, '206': {'text': ['product marketing photo, squirrel sitting on a table with a candle and a bottle of perfume, highly detailed scene, highly detailed composition, high quality, detailed, photorealistic, perfect eyes, bokeh, photo, perfect light, detailed style, depth of field']}} ==================================== ComfyUI_00001_.png NSFW filter API error: {"detail":"Failed to parse request body as JSON: invalid character '-' in numeric literal","status":400}
Want to make some of these yourself?
Run this model