henn0124 / watch-swtch
- Public
- 42 runs
-
H100
Prediction
henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8eIDzws3ptz9zxrm20cjagn8eytbkwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- image in style of SWTCH. watchface with chameleon Pokemon figure.
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "image in style of SWTCH. watchface with chameleon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", { input: { model: "dev", prompt: "image in style of SWTCH. watchface with chameleon Pokemon figure. ", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", input={ "model": "dev", "prompt": "image in style of SWTCH. watchface with chameleon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", "input": { "model": "dev", "prompt": "image in style of SWTCH. watchface with chameleon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T20:57:21.021053Z", "created_at": "2024-10-03T20:55:51.551000Z", "data_removed": false, "error": null, "id": "zws3ptz9zxrm20cjagn8eytbkw", "input": { "model": "dev", "prompt": "image in style of SWTCH. watchface with chameleon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 8717\nPrompt: image in style of SWTCH. watchface with chameleon Pokemon figure.\n[!] txt2img mode\nUsing dev model\nfree=7280660455424\nDownloading weights\n2024-10-03T20:57:06Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpkx8jtdbk/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\n2024-10-03T20:57:10Z | INFO | [ Complete ] dest=/tmp/tmpkx8jtdbk/weights size=\"172 MB\" total_elapsed=3.632s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\nDownloaded weights in 3.66s\nLoaded LoRAs in 4.25s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 14.245333146, "total_time": 89.470053 }, "output": [ "https://replicate.delivery/yhqm/GUREVJNZVtoee0qeo8nOoY88NGrKRRS4Fry82UkeIqBEztMOB/out-0.webp" ], "started_at": "2024-10-03T20:57:06.775720Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zws3ptz9zxrm20cjagn8eytbkw", "cancel": "https://api.replicate.com/v1/predictions/zws3ptz9zxrm20cjagn8eytbkw/cancel" }, "version": "56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e" }
Generated inUsing seed: 8717 Prompt: image in style of SWTCH. watchface with chameleon Pokemon figure. [!] txt2img mode Using dev model free=7280660455424 Downloading weights 2024-10-03T20:57:06Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpkx8jtdbk/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar 2024-10-03T20:57:10Z | INFO | [ Complete ] dest=/tmp/tmpkx8jtdbk/weights size="172 MB" total_elapsed=3.632s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar Downloaded weights in 3.66s Loaded LoRAs in 4.25s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8eIDv4xabjrgpxrm20cjagpsg63r4mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- image in style of SWTCH. watchface with dragon Pokemon figure.
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "image in style of SWTCH. watchface with dragon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", { input: { model: "dev", prompt: "image in style of SWTCH. watchface with dragon Pokemon figure. ", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", input={ "model": "dev", "prompt": "image in style of SWTCH. watchface with dragon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", "input": { "model": "dev", "prompt": "image in style of SWTCH. watchface with dragon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T20:58:52.950199Z", "created_at": "2024-10-03T20:58:12.535000Z", "data_removed": false, "error": null, "id": "v4xabjrgpxrm20cjagpsg63r4m", "input": { "model": "dev", "prompt": "image in style of SWTCH. watchface with dragon Pokemon figure. ", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 4962\nPrompt: image in style of SWTCH. watchface with dragon Pokemon figure.\n[!] txt2img mode\nUsing dev model\nfree=8723002978304\nDownloading weights\n2024-10-03T20:58:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp9qk4mmxf/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\n2024-10-03T20:58:42Z | INFO | [ Complete ] dest=/tmp/tmp9qk4mmxf/weights size=\"172 MB\" total_elapsed=1.466s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\nDownloaded weights in 1.50s\nLoaded LoRAs in 2.24s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.87it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.88it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 12.250877113, "total_time": 40.415199 }, "output": [ "https://replicate.delivery/yhqm/0Kw5M3MBwr6RNFplfxPeVPBOSkwI2AXGMOzYLj42JafY8WGnA/out-0.webp" ], "started_at": "2024-10-03T20:58:40.699322Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/v4xabjrgpxrm20cjagpsg63r4m", "cancel": "https://api.replicate.com/v1/predictions/v4xabjrgpxrm20cjagpsg63r4m/cancel" }, "version": "56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e" }
Generated inUsing seed: 4962 Prompt: image in style of SWTCH. watchface with dragon Pokemon figure. [!] txt2img mode Using dev model free=8723002978304 Downloading weights 2024-10-03T20:58:40Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp9qk4mmxf/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar 2024-10-03T20:58:42Z | INFO | [ Complete ] dest=/tmp/tmp9qk4mmxf/weights size="172 MB" total_elapsed=1.466s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar Downloaded weights in 1.50s Loaded LoRAs in 2.24s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.87it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.94it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.92it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.89it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.88it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.88it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.88it/s] 50%|█████ | 14/28 [00:04<00:04, 2.88it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.88it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.88it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8eIDh5pkmb4pfxrm60cjagzvr0g374StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- image in style of SWTCH. a watch in rainbow colors
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "image in style of SWTCH. a watch in rainbow colors", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", { input: { model: "dev", prompt: "image in style of SWTCH. a watch in rainbow colors", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", input={ "model": "dev", "prompt": "image in style of SWTCH. a watch in rainbow colors", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", "input": { "model": "dev", "prompt": "image in style of SWTCH. a watch in rainbow colors", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T21:18:38.449131Z", "created_at": "2024-10-03T21:18:26.431000Z", "data_removed": false, "error": null, "id": "h5pkmb4pfxrm60cjagzvr0g374", "input": { "model": "dev", "prompt": "image in style of SWTCH. a watch in rainbow colors", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 20172\nPrompt: image in style of SWTCH. a watch in rainbow colors\n[!] txt2img mode\nUsing dev model\nLoaded LoRAs in 0.58s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.88it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.21it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.05it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.88it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.88it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.90it/s]", "metrics": { "predict_time": 10.554041633, "total_time": 12.018131 }, "output": [ "https://replicate.delivery/yhqm/db9OEQeVr6xe9kGLeYnXXRna0cBaUOR1f1i937WrRmfxFey4E/out-0.webp" ], "started_at": "2024-10-03T21:18:27.895089Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/h5pkmb4pfxrm60cjagzvr0g374", "cancel": "https://api.replicate.com/v1/predictions/h5pkmb4pfxrm60cjagzvr0g374/cancel" }, "version": "56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e" }
Generated inUsing seed: 20172 Prompt: image in style of SWTCH. a watch in rainbow colors [!] txt2img mode Using dev model Loaded LoRAs in 0.58s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.88it/s] 7%|▋ | 2/28 [00:00<00:08, 3.21it/s] 11%|█ | 3/28 [00:00<00:08, 3.05it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.98it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.91it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.90it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.89it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.89it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s] 61%|██████ | 17/28 [00:05<00:03, 2.88it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.88it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.88it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.88it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.88it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.88it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.88it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.88it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.88it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.88it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.88it/s] 100%|██████████| 28/28 [00:09<00:00, 2.90it/s]
Prediction
henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8eID5877zv1475rm60cjah79gtgzmgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- image in style of SWTCH. a watch with demonic theme
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "image in style of SWTCH. a watch with demonic theme", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", { input: { model: "dev", prompt: "image in style of SWTCH. a watch with demonic theme", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", input={ "model": "dev", "prompt": "image in style of SWTCH. a watch with demonic theme", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run henn0124/watch-swtch using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "henn0124/watch-swtch:56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e", "input": { "model": "dev", "prompt": "image in style of SWTCH. a watch with demonic theme", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-03T21:35:15.691597Z", "created_at": "2024-10-03T21:34:20.217000Z", "data_removed": false, "error": null, "id": "5877zv1475rm60cjah79gtgzmg", "input": { "model": "dev", "prompt": "image in style of SWTCH. a watch with demonic theme", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 9945\nPrompt: image in style of SWTCH. a watch with demonic theme\n[!] txt2img mode\nUsing dev model\nfree=9113558466560\nDownloading weights\n2024-10-03T21:35:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprxh1m8kv/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\n2024-10-03T21:35:05Z | INFO | [ Complete ] dest=/tmp/tmprxh1m8kv/weights size=\"172 MB\" total_elapsed=1.737s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar\nDownloaded weights in 1.77s\nLoaded LoRAs in 2.51s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.89it/s]\n 7%|▋ | 2/28 [00:00<00:08, 3.22it/s]\n 11%|█ | 3/28 [00:00<00:08, 3.06it/s]\n 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s]\n 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s]\n 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s]\n 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s]\n 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s]\n 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s]\n 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s]\n 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s]\n 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s]\n 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s]\n 50%|█████ | 14/28 [00:04<00:04, 2.89it/s]\n 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s]\n 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s]\n 61%|██████ | 17/28 [00:05<00:03, 2.89it/s]\n 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s]\n 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s]\n 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s]\n 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s]\n 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s]\n 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s]\n 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s]\n 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s]\n 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s]\n 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.89it/s]\n100%|██████████| 28/28 [00:09<00:00, 2.91it/s]", "metrics": { "predict_time": 12.445829426, "total_time": 55.474597 }, "output": [ "https://replicate.delivery/yhqm/3dSUSFYp0g62AJCZv4MpdNAxbCch7uIqk9doSsmmkGyEAz4E/out-0.webp" ], "started_at": "2024-10-03T21:35:03.245767Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5877zv1475rm60cjah79gtgzmg", "cancel": "https://api.replicate.com/v1/predictions/5877zv1475rm60cjah79gtgzmg/cancel" }, "version": "56447041dd4be8963e37b28d541ba710a82d0e75a733d6361c223db254187c8e" }
Generated inUsing seed: 9945 Prompt: image in style of SWTCH. a watch with demonic theme [!] txt2img mode Using dev model free=9113558466560 Downloading weights 2024-10-03T21:35:03Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprxh1m8kv/weights url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar 2024-10-03T21:35:05Z | INFO | [ Complete ] dest=/tmp/tmprxh1m8kv/weights size="172 MB" total_elapsed=1.737s url=https://replicate.delivery/yhqm/XbiciGPMuvaKPNqsIXMSgaRRGGoGr9kTZ7gZkBXDOBcD0y4E/trained_model.tar Downloaded weights in 1.77s Loaded LoRAs in 2.51s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.89it/s] 7%|▋ | 2/28 [00:00<00:08, 3.22it/s] 11%|█ | 3/28 [00:00<00:08, 3.06it/s] 14%|█▍ | 4/28 [00:01<00:08, 2.99it/s] 18%|█▊ | 5/28 [00:01<00:07, 2.95it/s] 21%|██▏ | 6/28 [00:02<00:07, 2.93it/s] 25%|██▌ | 7/28 [00:02<00:07, 2.92it/s] 29%|██▊ | 8/28 [00:02<00:06, 2.91it/s] 32%|███▏ | 9/28 [00:03<00:06, 2.90it/s] 36%|███▌ | 10/28 [00:03<00:06, 2.90it/s] 39%|███▉ | 11/28 [00:03<00:05, 2.90it/s] 43%|████▎ | 12/28 [00:04<00:05, 2.89it/s] 46%|████▋ | 13/28 [00:04<00:05, 2.89it/s] 50%|█████ | 14/28 [00:04<00:04, 2.89it/s] 54%|█████▎ | 15/28 [00:05<00:04, 2.89it/s] 57%|█████▋ | 16/28 [00:05<00:04, 2.89it/s] 61%|██████ | 17/28 [00:05<00:03, 2.89it/s] 64%|██████▍ | 18/28 [00:06<00:03, 2.89it/s] 68%|██████▊ | 19/28 [00:06<00:03, 2.89it/s] 71%|███████▏ | 20/28 [00:06<00:02, 2.89it/s] 75%|███████▌ | 21/28 [00:07<00:02, 2.89it/s] 79%|███████▊ | 22/28 [00:07<00:02, 2.89it/s] 82%|████████▏ | 23/28 [00:07<00:01, 2.89it/s] 86%|████████▌ | 24/28 [00:08<00:01, 2.89it/s] 89%|████████▉ | 25/28 [00:08<00:01, 2.89it/s] 93%|█████████▎| 26/28 [00:08<00:00, 2.89it/s] 96%|█████████▋| 27/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.89it/s] 100%|██████████| 28/28 [00:09<00:00, 2.91it/s]
Want to make some of these yourself?
Run this model