You're looking at a specific version of this model. Jump to the model overview.
jagilley /controlnet:8ebda4c7
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
image |
string
|
Input image
|
|
prompt |
string
|
Prompt for the model
|
|
model_type |
string
(enum)
|
canny
Options: canny, depth, hed, normal, mlsd, scribble, seg, openpose |
ControlNet model type to use
|
num_samples |
string
(enum)
|
1
Options: 1, 4 |
Number of samples (higher values may OOM)
|
image_resolution |
string
(enum)
|
512
Options: 256, 512, 768 |
Image resolution to be generated
|
ddim_steps |
integer
|
20
|
Steps
|
scale |
number
|
9
Min: 0.1 Max: 30 |
Scale for classifier-free guidance
|
seed |
integer
|
Seed
|
|
eta |
number
|
0
|
Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise
|
a_prompt |
string
|
best quality, extremely detailed
|
Additional text to be appended to prompt
|
n_prompt |
string
|
longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality
|
Negative Prompt
|
detect_resolution |
integer
|
512
Min: 128 Max: 1024 |
Resolution at which detection method will be applied)
|
low_threshold |
integer
|
100
Min: 1 Max: 255 |
Canny line detection low threshold (only applicable when model type is 'canny')
|
high_threshold |
integer
|
200
Min: 1 Max: 255 |
Canny line detection high threshold (only applicable when model type is 'canny')
|
bg_threshold |
number
|
0
Max: 1 |
Background Threshold (only applicable when model type is 'normal')
|
value_threshold |
number
|
0.1
Min: 0.01 Max: 2 |
Value Threshold (only applicable when model type is 'MLSD')
|
distance_threshold |
number
|
0.1
Min: 0.01 Max: 20 |
Distance Threshold (only applicable when model type is 'MLSD')
|
Output schema
The shape of the response you’ll get when you run this model with an API.
{'items': {'format': 'uri', 'type': 'string'},
'title': 'Output',
'type': 'array'}