jd7h / dreamcraft3d
DreamCraft3D is a text and image to 3D model. Dreamcraft3D uses DeepFloyd IF and Stable Zero123, non-commercial research-only models. Please make sure you read and abide to the relevant licenses before using it. (Updated 1 year, 3 months ago)
Prediction
jd7h/dreamcraft3d:cf19b73a3c605ffa94c29d95971cb89823a0faa5f2ba830a3e1579fa61577c30ID6zgbl6lbf3ftxjuaawjwu7ak4aStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- prompt
- A green leafy plant in a striped terracotta pot
- num_steps
- 800
- guidance_scale
- 5
- use_fast_configs
{ "image": "https://replicate.delivery/pbxt/KRr0hkRklSX0x5Uw8OFen0HWdAo7A4HMe2CYDt7isiDhw4jV/potted-plant.webp", "prompt": "A green leafy plant in a striped terracotta pot", "num_steps": 800, "guidance_scale": 5, "use_fast_configs": true }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run jd7h/dreamcraft3d using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "jd7h/dreamcraft3d:cf19b73a3c605ffa94c29d95971cb89823a0faa5f2ba830a3e1579fa61577c30", { input: { image: "https://replicate.delivery/pbxt/KRr0hkRklSX0x5Uw8OFen0HWdAo7A4HMe2CYDt7isiDhw4jV/potted-plant.webp", prompt: "A green leafy plant in a striped terracotta pot", num_steps: 800, guidance_scale: 5, use_fast_configs: true } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run jd7h/dreamcraft3d using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "jd7h/dreamcraft3d:cf19b73a3c605ffa94c29d95971cb89823a0faa5f2ba830a3e1579fa61577c30", input={ "image": "https://replicate.delivery/pbxt/KRr0hkRklSX0x5Uw8OFen0HWdAo7A4HMe2CYDt7isiDhw4jV/potted-plant.webp", "prompt": "A green leafy plant in a striped terracotta pot", "num_steps": 800, "guidance_scale": 5, "use_fast_configs": True } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run jd7h/dreamcraft3d using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "jd7h/dreamcraft3d:cf19b73a3c605ffa94c29d95971cb89823a0faa5f2ba830a3e1579fa61577c30", "input": { "image": "https://replicate.delivery/pbxt/KRr0hkRklSX0x5Uw8OFen0HWdAo7A4HMe2CYDt7isiDhw4jV/potted-plant.webp", "prompt": "A green leafy plant in a striped terracotta pot", "num_steps": 800, "guidance_scale": 5, "use_fast_configs": true } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-02-22T14:02:47.589665Z", "created_at": "2024-02-22T13:34:42.992767Z", "data_removed": false, "error": null, "id": "6zgbl6lbf3ftxjuaawjwu7ak4a", "input": { "image": "https://replicate.delivery/pbxt/KRr0hkRklSX0x5Uw8OFen0HWdAo7A4HMe2CYDt7isiDhw4jV/potted-plant.webp", "prompt": "A green leafy plant in a striped terracotta pot", "num_steps": 800, "guidance_scale": 5, "use_fast_configs": true }, "logs": "Using seed 3731177029\nSeed set to 3731177029\nPreprocessing image...\n[INFO] background removal...\n\u001b[1;31m2024-02-22 13:40:23.104407995 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1831, index: 1, mask: {1, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.104414275 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1830, index: 0, mask: {48, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.104502865 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1832, index: 2, mask: {49, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.104535295 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1833, index: 3, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.104613524 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1834, index: 4, mask: {50, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.107023935 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1841, index: 11, mask: {6, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.107094724 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1842, index: 12, mask: {54, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.107029744 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1908, index: 78, mask: {87, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.107404823 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1844, index: 14, mask: {55, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.119497582 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1843, index: 13, mask: {7, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.107393863 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1914, index: 84, mask: {90, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.123661054 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1911, index: 81, mask: {41, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.123722614 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1909, index: 79, mask: {40, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.123701134 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1910, index: 80, mask: {88, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.127291970 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1916, index: 86, mask: {91, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.127624198 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1915, index: 85, mask: {43, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.130148067 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1912, index: 82, mask: {89, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.131521142 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1835, index: 5, mask: {3, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135786034 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1902, index: 72, mask: {84, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.142269357 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1836, index: 6, mask: {51, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.147488775 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1919, index: 89, mask: {45, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.151492068 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1920, index: 90, mask: {93, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.151515108 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1845, index: 15, mask: {8, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.152578874 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1921, index: 91, mask: {46, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.155036124 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1922, index: 92, mask: {94, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.159492425 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1923, index: 93, mask: {47, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.159619344 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1847, index: 17, mask: {9, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.163491428 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1924, index: 94, mask: {95, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.167512541 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1848, index: 18, mask: {57, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.175204479 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1918, index: 88, mask: {92, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.175514908 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1849, index: 19, mask: {10, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.183547044 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1850, index: 20, mask: {58, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203673140 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1865, index: 35, mask: {18, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203714850 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1867, index: 37, mask: {19, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203730010 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1868, index: 38, mask: {67, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208804658 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1880, index: 50, mask: {73, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208933648 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1892, index: 62, mask: {79, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.211571717 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1896, index: 66, mask: {81, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.218757077 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1898, index: 68, mask: {82, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.219530623 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1899, index: 69, mask: {35, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.159503775 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1846, index: 16, mask: {56, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208690009 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1872, index: 42, mask: {69, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135794754 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1903, index: 73, mask: {37, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208878768 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1887, index: 57, mask: {29, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208739099 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1876, index: 46, mask: {71, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135799404 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1904, index: 74, mask: {85, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208820138 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1882, index: 52, mask: {74, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208661999 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1871, index: 41, mask: {21, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.211522277 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1894, index: 64, mask: {80, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.211549267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1895, index: 65, mask: {33, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208761849 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1877, index: 47, mask: {24, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135804604 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1905, index: 75, mask: {38, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203705640 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1866, index: 36, mask: {66, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.211499897 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1893, index: 63, mask: {32, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135809804 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1906, index: 76, mask: {86, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208906798 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1889, index: 59, mask: {30, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208719959 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1874, index: 44, mask: {70, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.135814794 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1907, index: 77, mask: {39, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.208775729 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1879, index: 49, mask: {25, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203510801 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1855, index: 25, mask: {13, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203596991 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1917, index: 87, mask: {44, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.191524490 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1854, index: 24, mask: {60, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.203625340 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1862, index: 32, mask: {64, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.255050885 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1856, index: 26, mask: {61, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.226268595 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1853, index: 23, mask: {12, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.226295085 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1883, index: 53, mask: {27, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231529973 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1869, index: 39, mask: {20, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.235482157 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1864, index: 34, mask: {65, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.239481860 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1897, index: 67, mask: {34, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.247489267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1913, index: 83, mask: {42, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231551533 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1878, index: 48, mask: {72, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.235490787 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1888, index: 58, mask: {77, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.235501267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1891, index: 61, mask: {31, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231560853 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1884, index: 54, mask: {75, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.235479747 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1885, index: 55, mask: {28, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.226300705 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1873, index: 43, mask: {22, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.226262175 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1863, index: 33, mask: {17, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231541763 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1875, index: 45, mask: {23, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231485533 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1886, index: 56, mask: {76, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.231574443 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1890, index: 60, mask: {78, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.226293125 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1870, index: 40, mask: {68, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.255088475 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1881, index: 51, mask: {26, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.255135895 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1837, index: 7, mask: {4, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.287495189 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1901, index: 71, mask: {36, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n\u001b[1;31m2024-02-22 13:40:23.295484056 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1900, index: 70, mask: {83, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set.\u001b[m\n[INFO] depth estimation...\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/timm/models/_factory.py:117: UserWarning: Mapping deprecated model name vit_base_resnet50_384 to current vit_base_r50_s16_384.orig_in21k_ft_in1k.\nmodel = create_fn(\n[INFO] normal estimation...\nRunning step 1: NeRF\n{'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800},\n'data': {'image_path': '/src/outputs/image_rgba.png', 'height': [64, 128], 'width': [64, 128], 'resolution_milestones': [3000], 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': True, 'requires_normal': False, 'random_camera': {'height': [64, 128], 'width': [64, 128], 'batch_size': [1, 1], 'resolution_milestones': [3000], 'eval_height': 128, 'eval_width': 128, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 200, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}},\n'data_type': 'dreamcraft3d-single-image-datamodule',\n'description': '',\n'exp_dir': 'outputs/dreamcraft3d-coarse-nerf',\n'exp_root_dir': 'outputs',\n'n_gpus': 1,\n'name': 'dreamcraft3d-coarse-nerf',\n'resume': None,\n'seed': 0,\n'system': {'stage': 'coarse', 'geometry_type': 'implicit-volume', 'geometry': {'radius': 2.0, 'normal_type': 'finite_difference', 'density_bias': 'blob_magic3d', 'density_activation': 'softplus', 'density_blob_scale': 10.0, 'density_blob_std': 0.5, 'pos_encoding_config': {'otype': 'ProgressiveBandHashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378, 'start_level': 8, 'start_step': 2000, 'update_steps': 500}}, 'material_type': 'no-material', 'material': {'requires_normal': True}, 'background_type': 'solid-color-background', 'renderer_type': 'nerf-volume-renderer', 'renderer': {'radius': 2.0, 'num_samples_per_ray': 512, 'return_normal_perturb': True, 'return_comp_normal': True}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': [0, 0.7, 0.2, 200], 'max_step_percent': [0, 0.85, 0.5, 200]}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': [0, 0.7, 0.2, 200], 'max_step_percent': [0, 0.85, 0.5, 200]}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': 0, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.05, 'lambda_normal': 0.0, 'lambda_normal_smooth': 1.0, 'lambda_3d_normal_smooth': [1000, 5.0, 1.0, 1001], 'lambda_orient': [1000, 1.0, 10.0, 1001], 'lambda_sparsity': [1000, 0.1, 10.0, 1001], 'lambda_opaque': [1000, 0.1, 10.0, 1001], 'lambda_clip': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'lr': 0.01, 'betas': [0.9, 0.99], 'eps': 1e-08}}},\n'system_type': 'dreamcraft3d-system',\n'tag': 'replicate_user',\n'timestamp': '@20240222-134035',\n'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': '16-mixed'},\n'trial_dir': 'outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035',\n'trial_name': 'replicate_user@20240222-134035',\n'use_timestamp': True}\nLoading Deep Floyd ...\nCouldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d74ed3-77c3833b6edb1358569cd2db;c0fe2e5f-e2c0-465b-af4c-23a1c171d42e)\nCannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0.\nRepo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it..\nWill try to load from local cache.\nLoading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s]\nLoading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 3.80it/s]\nLoading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 9.15it/s]\nLoading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 8.02it/s]\nLoaded Deep Floyd!\nLoading Stable Zero123 ...\nget obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion\nLatentDiffusion: Running in eps-prediction mode\nDiffusionWrapper has 859.53 M params.\nKeeping EMAs of 688.\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\n 0%| | 0.00/890M [00:00<?, ?iB/s]\n 1%|▍ | 11.0M/890M [00:00<00:07, 116MiB/s]\n 3%|█▏ | 26.0M/890M [00:00<00:06, 140MiB/s]\n 5%|█▊ | 42.3M/890M [00:00<00:05, 154MiB/s]\n 6%|██▍ | 57.0M/890M [00:00<00:06, 145MiB/s]\n 8%|███ | 70.9M/890M [00:00<00:06, 127MiB/s]\n 9%|███▌ | 83.3M/890M [00:00<00:12, 68.1MiB/s]\n 10%|███▉ | 92.5M/890M [00:01<00:13, 59.9MiB/s]\n 11%|████▍ | 100M/890M [00:01<00:23, 35.8MiB/s]\n 12%|████▋ | 106M/890M [00:02<00:40, 20.5MiB/s]\n 12%|████▊ | 110M/890M [00:02<00:40, 20.3MiB/s]\n 13%|████▉ | 113M/890M [00:02<00:41, 19.8MiB/s]\n 13%|█████ | 116M/890M [00:03<00:59, 13.7MiB/s]\n 13%|█████▏ | 118M/890M [00:03<00:56, 14.3MiB/s]\n 14%|█████▎ | 120M/890M [00:03<01:09, 11.7MiB/s]\n 14%|█████▎ | 122M/890M [00:04<01:06, 12.1MiB/s]\n 14%|█████▍ | 124M/890M [00:04<01:04, 12.4MiB/s]\n 14%|█████▍ | 125M/890M [00:04<01:11, 11.2MiB/s]\n 14%|█████▌ | 127M/890M [00:04<01:06, 12.1MiB/s]\n 14%|█████▌ | 128M/890M [00:04<01:10, 11.3MiB/s]\n 15%|█████▋ | 130M/890M [00:04<01:00, 13.2MiB/s]\n 15%|█████▊ | 131M/890M [00:04<01:01, 12.9MiB/s]\n 15%|█████▊ | 133M/890M [00:05<01:18, 10.1MiB/s]\n 15%|█████▉ | 135M/890M [00:05<00:59, 13.3MiB/s]\n 15%|██████ | 137M/890M [00:05<00:55, 14.3MiB/s]\n 16%|██████ | 139M/890M [00:05<01:00, 12.9MiB/s]\n 16%|██████▏ | 140M/890M [00:05<01:03, 12.4MiB/s]\n 16%|██████▏ | 142M/890M [00:05<00:59, 13.1MiB/s]\n 16%|██████▎ | 143M/890M [00:05<01:09, 11.3MiB/s]\n 16%|██████▎ | 144M/890M [00:06<01:10, 11.1MiB/s]\n 16%|██████▍ | 147M/890M [00:06<00:54, 14.2MiB/s]\n 17%|██████▌ | 150M/890M [00:06<00:38, 20.1MiB/s]\n 17%|██████▊ | 154M/890M [00:06<00:29, 25.9MiB/s]\n 18%|██████▉ | 157M/890M [00:06<00:31, 24.7MiB/s]\n 18%|██████▉ | 159M/890M [00:06<00:39, 19.4MiB/s]\n 18%|███████ | 161M/890M [00:06<00:52, 14.4MiB/s]\n 18%|███████▏ | 163M/890M [00:07<00:58, 13.1MiB/s]\n 19%|███████▏ | 165M/890M [00:07<00:55, 13.6MiB/s]\n 19%|███████▎ | 167M/890M [00:07<00:49, 15.2MiB/s]\n 19%|███████▍ | 168M/890M [00:07<00:52, 14.5MiB/s]\n 19%|███████▍ | 170M/890M [00:07<00:51, 14.6MiB/s]\n 19%|███████▌ | 171M/890M [00:07<00:50, 14.9MiB/s]\n 20%|███████▋ | 175M/890M [00:07<00:37, 20.0MiB/s]\n 20%|███████▊ | 178M/890M [00:07<00:30, 24.7MiB/s]\n 20%|███████▉ | 181M/890M [00:07<00:30, 24.1MiB/s]\n 21%|████████ | 183M/890M [00:08<00:30, 24.0MiB/s]\n 21%|████████▏ | 187M/890M [00:08<00:26, 28.0MiB/s]\n 21%|████████▎ | 190M/890M [00:08<00:29, 25.0MiB/s]\n 22%|████████▍ | 192M/890M [00:08<00:30, 23.6MiB/s]\n 22%|████████▌ | 195M/890M [00:08<00:29, 24.5MiB/s]\n 22%|████████▋ | 197M/890M [00:08<00:29, 24.5MiB/s]\n 22%|████████▊ | 200M/890M [00:08<00:29, 24.8MiB/s]\n 23%|████████▊ | 202M/890M [00:08<00:29, 24.5MiB/s]\n 23%|████████▉ | 204M/890M [00:08<00:29, 24.6MiB/s]\n 23%|█████████ | 207M/890M [00:09<00:28, 24.7MiB/s]\n 24%|█████████▏ | 210M/890M [00:09<00:25, 27.4MiB/s]\n 24%|█████████▍ | 216M/890M [00:09<00:19, 36.1MiB/s]\n 25%|█████████▌ | 219M/890M [00:09<00:21, 33.0MiB/s]\n 25%|█████████▊ | 223M/890M [00:09<00:20, 33.8MiB/s]\n 25%|█████████▉ | 226M/890M [00:09<00:22, 31.1MiB/s]\n 26%|██████████ | 230M/890M [00:09<00:20, 33.3MiB/s]\n 27%|██████████▎ | 236M/890M [00:09<00:16, 41.4MiB/s]\n 27%|██████████▌ | 241M/890M [00:09<00:14, 45.8MiB/s]\n 28%|██████████▊ | 247M/890M [00:10<00:13, 51.0MiB/s]\n 28%|███████████ | 252M/890M [00:10<00:15, 43.8MiB/s]\n 29%|███████████▎ | 257M/890M [00:10<00:14, 44.4MiB/s]\n 30%|███████████▌ | 264M/890M [00:10<00:12, 51.9MiB/s]\n 30%|███████████▉ | 271M/890M [00:10<00:11, 58.2MiB/s]\n 31%|████████████▏ | 279M/890M [00:10<00:09, 65.9MiB/s]\n 32%|████████████▌ | 287M/890M [00:10<00:08, 71.2MiB/s]\n 33%|████████████▉ | 295M/890M [00:10<00:08, 75.1MiB/s]\n 34%|█████████████▎ | 304M/890M [00:10<00:07, 78.0MiB/s]\n 35%|█████████████▋ | 312M/890M [00:11<00:07, 81.4MiB/s]\n 36%|██████████████ | 320M/890M [00:11<00:07, 79.5MiB/s]\n 37%|██████████████▍ | 328M/890M [00:11<00:07, 81.2MiB/s]\n 38%|██████████████▊ | 338M/890M [00:11<00:06, 85.5MiB/s]\n 39%|███████████████▏ | 346M/890M [00:11<00:06, 86.8MiB/s]\n 40%|███████████████▌ | 356M/890M [00:11<00:06, 91.1MiB/s]\n 41%|████████████████ | 366M/890M [00:11<00:05, 95.6MiB/s]\n 42%|████████████████▍ | 376M/890M [00:11<00:05, 98.3MiB/s]\n 43%|████████████████▉ | 385M/890M [00:11<00:05, 96.1MiB/s]\n 44%|█████████████████▎ | 395M/890M [00:11<00:05, 96.3MiB/s]\n 45%|█████████████████▋ | 405M/890M [00:12<00:05, 98.8MiB/s]\n 47%|██████████████████▏ | 414M/890M [00:12<00:05, 97.1MiB/s]\n 48%|███████████████████ | 425M/890M [00:12<00:04, 102MiB/s]\n 49%|███████████████████▌ | 435M/890M [00:12<00:04, 104MiB/s]\n 50%|████████████████████ | 446M/890M [00:12<00:04, 106MiB/s]\n 51%|████████████████████▌ | 456M/890M [00:12<00:04, 102MiB/s]\n 52%|████████████████████▍ | 466M/890M [00:12<00:05, 85.4MiB/s]\n 53%|████████████████████▊ | 475M/890M [00:12<00:05, 87.0MiB/s]\n 54%|█████████████████████▏ | 483M/890M [00:13<00:07, 55.9MiB/s]\n 55%|█████████████████████▍ | 490M/890M [00:13<00:07, 54.7MiB/s]\n 56%|█████████████████████▊ | 496M/890M [00:13<00:07, 57.2MiB/s]\n 57%|██████████████████████ | 503M/890M [00:13<00:07, 57.5MiB/s]\n 57%|██████████████████████▎ | 509M/890M [00:13<00:07, 53.4MiB/s]\n 58%|██████████████████████▌ | 514M/890M [00:13<00:08, 48.0MiB/s]\n 58%|██████████████████████▊ | 519M/890M [00:13<00:09, 41.7MiB/s]\n 59%|██████████████████████▉ | 524M/890M [00:14<00:09, 41.5MiB/s]\n 59%|███████████████████████▏ | 528M/890M [00:14<00:10, 37.8MiB/s]\n 60%|███████████████████████▎ | 532M/890M [00:14<00:10, 35.2MiB/s]\n 60%|███████████████████████▍ | 535M/890M [00:14<00:11, 33.6MiB/s]\n 61%|███████████████████████▋ | 540M/890M [00:14<00:09, 36.8MiB/s]\n 61%|███████████████████████▊ | 543M/890M [00:14<00:10, 35.8MiB/s]\n 61%|███████████████████████▉ | 547M/890M [00:14<00:10, 34.0MiB/s]\n 62%|████████████████████████ | 550M/890M [00:14<00:10, 34.0MiB/s]\n 62%|████████████████████████▎ | 554M/890M [00:15<00:09, 36.2MiB/s]\n 63%|████████████████████████▌ | 559M/890M [00:15<00:08, 41.7MiB/s]\n 64%|████████████████████████▊ | 567M/890M [00:15<00:06, 53.1MiB/s]\n 64%|█████████████████████████ | 572M/890M [00:15<00:06, 51.1MiB/s]\n 65%|█████████████████████████▎ | 577M/890M [00:15<00:06, 48.7MiB/s]\n 65%|█████████████████████████▌ | 582M/890M [00:15<00:06, 49.0MiB/s]\n 66%|█████████████████████████▉ | 591M/890M [00:15<00:05, 61.3MiB/s]\n 67%|██████████████████████████▏ | 598M/890M [00:15<00:04, 65.0MiB/s]\n 68%|██████████████████████████▌ | 605M/890M [00:15<00:04, 62.2MiB/s]\n 69%|██████████████████████████▊ | 611M/890M [00:16<00:05, 58.1MiB/s]\n 69%|███████████████████████████ | 617M/890M [00:16<00:04, 59.3MiB/s]\n 70%|███████████████████████████▎ | 623M/890M [00:16<00:04, 59.8MiB/s]\n 71%|███████████████████████████▌ | 628M/890M [00:16<00:05, 48.3MiB/s]\n 71%|███████████████████████████▊ | 634M/890M [00:16<00:05, 49.4MiB/s]\n 72%|████████████████████████████ | 639M/890M [00:16<00:05, 51.9MiB/s]\n 73%|████████████████████████████▎ | 645M/890M [00:16<00:04, 55.0MiB/s]\n 73%|████████████████████████████▌ | 652M/890M [00:16<00:04, 56.8MiB/s]\n 74%|████████████████████████████▊ | 657M/890M [00:16<00:04, 57.9MiB/s]\n 75%|█████████████████████████████▏ | 665M/890M [00:17<00:03, 63.7MiB/s]\n 76%|█████████████████████████████▌ | 675M/890M [00:17<00:03, 74.1MiB/s]\n 77%|█████████████████████████████▉ | 682M/890M [00:17<00:03, 70.3MiB/s]\n 77%|██████████████████████████████▏ | 689M/890M [00:17<00:03, 69.8MiB/s]\n 78%|██████████████████████████████▍ | 695M/890M [00:17<00:03, 63.9MiB/s]\n 79%|██████████████████████████████▊ | 702M/890M [00:17<00:03, 63.2MiB/s]\n 80%|███████████████████████████████ | 709M/890M [00:17<00:02, 66.7MiB/s]\n 80%|███████████████████████████████▍ | 716M/890M [00:17<00:02, 67.9MiB/s]\n 81%|███████████████████████████████▋ | 722M/890M [00:17<00:02, 64.0MiB/s]\n 82%|████████████████████████████████ | 731M/890M [00:18<00:02, 72.6MiB/s]\n 83%|████████████████████████████████▍ | 739M/890M [00:18<00:03, 50.1MiB/s]\n 84%|████████████████████████████████▋ | 744M/890M [00:18<00:03, 50.1MiB/s]\n 84%|████████████████████████████████▊ | 750M/890M [00:18<00:02, 51.1MiB/s]\n 85%|█████████████████████████████████ | 755M/890M [00:18<00:02, 52.7MiB/s]\n 86%|█████████████████████████████████▎ | 761M/890M [00:18<00:02, 52.1MiB/s]\n 86%|█████████████████████████████████▌ | 767M/890M [00:18<00:02, 55.3MiB/s]\n 87%|█████████████████████████████████▊ | 773M/890M [00:18<00:02, 55.0MiB/s]\n 88%|██████████████████████████████████▏ | 779M/890M [00:19<00:01, 59.5MiB/s]\n 88%|██████████████████████████████████▍ | 785M/890M [00:19<00:01, 60.8MiB/s]\n 89%|██████████████████████████████████▋ | 791M/890M [00:19<00:02, 51.3MiB/s]\n 90%|██████████████████████████████████▉ | 797M/890M [00:19<00:02, 48.5MiB/s]\n 90%|███████████████████████████████████▎ | 804M/890M [00:19<00:01, 56.5MiB/s]\n 92%|███████████████████████████████████▋ | 815M/890M [00:19<00:01, 71.6MiB/s]\n 93%|████████████████████████████████████▎ | 828M/890M [00:19<00:00, 88.1MiB/s]\n 94%|████████████████████████████████████▋ | 837M/890M [00:19<00:00, 91.4MiB/s]\n 95%|█████████████████████████████████████▏ | 847M/890M [00:19<00:00, 93.8MiB/s]\n 96%|█████████████████████████████████████▌ | 856M/890M [00:20<00:00, 93.1MiB/s]\n 98%|███████████████████████████████████████ | 868M/890M [00:20<00:00, 102MiB/s]\n 99%|██████████████████████████████████████▍| 878M/890M [00:20<00:00, 94.3MiB/s]\n100%|██████████████████████████████████████▉| 888M/890M [00:20<00:00, 98.6MiB/s]\n100%|███████████████████████████████████████| 890M/890M [00:20<00:00, 45.8MiB/s]\nLoaded Stable Zero123!\nUsing prompt [A green leafy plant in a striped terracotta pot] and negative prompt []\nUsing view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_5m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_11m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_384 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_512 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\nloaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth\nUsing 16bit Automatic Mixed Precision (AMP)\nGPU available: True (cuda), used: True\nTPU available: False, using: 0 TPU cores\nIPU available: False, using: 0 IPUs\nHPU available: False, using: 0 HPUs\nYou are using a CUDA device ('NVIDIA A40') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64])\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n| Name | Type | Params\n----------------------------------------------------\n0 | geometry | ImplicitVolume | 12.6 M\n1 | material | NoMaterial | 0\n2 | background | SolidColorBackground | 0\n3 | renderer | NeRFVolumeRenderer | 0\n----------------------------------------------------\n12.6 M Trainable params\n0 Non-trainable params\n12.6 M Total params\n50.417 Total estimated model params size (MB)\nValidation results will be saved to outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/save\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\nTraining: | | 0/? [00:00<?, ?it/s]\nTraining: | | 0/? [00:00<?, ?it/s]\nEpoch 0: | | 0/? [00:00<?, ?it/s] \nEpoch 0: | | 1/? [00:00<00:00, 5.54it/s]\nEpoch 0: | | 1/? [00:00<00:00, 5.51it/s, train/loss=58.90]\nEpoch 0: | | 2/? [00:00<00:00, 2.90it/s, train/loss=58.90]\nEpoch 0: | | 2/? [00:00<00:00, 2.90it/s, train/loss=40.50]\nEpoch 0: | | 3/? [00:00<00:00, 3.98it/s, train/loss=40.50]\nEpoch 0: | | 3/? [00:00<00:00, 3.97it/s, train/loss=58.60]\nEpoch 0: | | 4/? [00:01<00:00, 3.74it/s, train/loss=58.60]\nEpoch 0: | | 4/? [00:01<00:00, 3.74it/s, train/loss=69.90]\nEpoch 0: | | 5/? [00:01<00:00, 4.38it/s, train/loss=69.90]\nEpoch 0: | | 5/? [00:01<00:00, 4.38it/s, train/loss=57.90]\nEpoch 0: | | 6/? [00:01<00:00, 4.11it/s, train/loss=57.90]\nEpoch 0: | | 6/? [00:01<00:00, 4.11it/s, train/loss=73.10]\nEpoch 0: | | 7/? [00:01<00:00, 4.59it/s, train/loss=73.10]\nEpoch 0: | | 7/? [00:01<00:00, 4.59it/s, train/loss=56.60]\nEpoch 0: | | 8/? [00:01<00:00, 4.34it/s, train/loss=56.60]\nEpoch 0: | | 8/? [00:01<00:00, 4.34it/s, train/loss=41.30]\nEpoch 0: | | 9/? [00:01<00:00, 4.72it/s, train/loss=41.30]\nEpoch 0: | | 9/? [00:01<00:00, 4.71it/s, train/loss=54.50]\nEpoch 0: | | 10/? [00:02<00:00, 4.49it/s, train/loss=54.50]\nEpoch 0: | | 10/? [00:02<00:00, 4.49it/s, train/loss=80.40]\nEpoch 0: | | 11/? [00:02<00:00, 4.80it/s, train/loss=80.40]\nEpoch 0: | | 11/? [00:02<00:00, 4.80it/s, train/loss=51.40]\nEpoch 0: | | 12/? [00:02<00:00, 4.61it/s, train/loss=51.40]\nEpoch 0: | | 12/? [00:02<00:00, 4.60it/s, train/loss=108.0]\nEpoch 0: | | 13/? [00:02<00:00, 4.87it/s, train/loss=108.0]\nEpoch 0: | | 13/? [00:02<00:00, 4.87it/s, train/loss=47.50]\nEpoch 0: | | 14/? [00:02<00:00, 4.69it/s, train/loss=47.50]\nEpoch 0: | | 14/? [00:02<00:00, 4.69it/s, train/loss=52.10]\nEpoch 0: | | 15/? [00:03<00:00, 4.92it/s, train/loss=52.10]\nEpoch 0: | | 15/? [00:03<00:00, 4.92it/s, train/loss=42.80]\nEpoch 0: | | 16/? [00:03<00:00, 4.74it/s, train/loss=42.80]\nEpoch 0: | | 16/? [00:03<00:00, 4.74it/s, train/loss=76.90]\nEpoch 0: | | 17/? [00:03<00:00, 4.94it/s, train/loss=76.90]\nEpoch 0: | | 17/? [00:03<00:00, 4.94it/s, train/loss=37.60]\nEpoch 0: | | 18/? [00:03<00:00, 4.79it/s, train/loss=37.60]\nEpoch 0: | | 18/? [00:03<00:00, 4.79it/s, train/loss=123.0]\nEpoch 0: | | 19/? [00:03<00:00, 4.98it/s, train/loss=123.0]\nEpoch 0: | | 19/? [00:03<00:00, 4.97it/s, train/loss=32.60]\nEpoch 0: | | 20/? [00:04<00:00, 4.84it/s, train/loss=32.60]\nEpoch 0: | | 20/? [00:04<00:00, 4.84it/s, train/loss=62.40]\nEpoch 0: | | 21/? [00:04<00:00, 5.01it/s, train/loss=62.40]\nEpoch 0: | | 21/? [00:04<00:00, 5.01it/s, train/loss=28.20]\nEpoch 0: | | 22/? [00:04<00:00, 4.88it/s, train/loss=28.20]\nEpoch 0: | | 22/? [00:04<00:00, 4.88it/s, train/loss=49.50]\nEpoch 0: | | 23/? [00:04<00:00, 5.03it/s, train/loss=49.50]\nEpoch 0: | | 23/? [00:04<00:00, 5.03it/s, train/loss=24.40]\nEpoch 0: | | 24/? [00:04<00:00, 4.92it/s, train/loss=24.40]\nEpoch 0: | | 24/? [00:04<00:00, 4.91it/s, train/loss=74.90]\nEpoch 0: | | 25/? [00:04<00:00, 5.06it/s, train/loss=74.90]\nEpoch 0: | | 25/? [00:04<00:00, 5.06it/s, train/loss=21.10]\nEpoch 0: | | 26/? [00:05<00:00, 4.95it/s, train/loss=21.10]\nEpoch 0: | | 26/? [00:05<00:00, 4.95it/s, train/loss=66.30]\nEpoch 0: | | 27/? [00:05<00:00, 5.09it/s, train/loss=66.30]\nEpoch 0: | | 27/? [00:05<00:00, 5.09it/s, train/loss=18.90]\nEpoch 0: | | 28/? [00:05<00:00, 4.99it/s, train/loss=18.90]\nEpoch 0: | | 28/? [00:05<00:00, 4.98it/s, train/loss=67.70]\nEpoch 0: | | 29/? [00:05<00:00, 5.11it/s, train/loss=67.70]\nEpoch 0: | | 29/? [00:05<00:00, 5.11it/s, train/loss=17.40]\nEpoch 0: | | 30/? [00:05<00:00, 5.02it/s, train/loss=17.40]\nEpoch 0: | | 30/? [00:05<00:00, 5.02it/s, train/loss=79.10]\nEpoch 0: | | 31/? [00:06<00:00, 5.14it/s, train/loss=79.10]\nEpoch 0: | | 31/? [00:06<00:00, 5.14it/s, train/loss=16.20]\nEpoch 0: | | 32/? [00:06<00:00, 5.05it/s, train/loss=16.20]\nEpoch 0: | | 32/? [00:06<00:00, 5.05it/s, train/loss=41.90]\nEpoch 0: | | 33/? [00:06<00:00, 5.17it/s, train/loss=41.90]\nEpoch 0: | | 33/? [00:06<00:00, 5.17it/s, train/loss=15.50]\nEpoch 0: | | 34/? [00:06<00:00, 5.08it/s, train/loss=15.50]\nEpoch 0: | | 34/? [00:06<00:00, 5.08it/s, train/loss=47.50]\nEpoch 0: | | 35/? [00:06<00:00, 5.19it/s, train/loss=47.50]\nEpoch 0: | | 35/? [00:06<00:00, 5.18it/s, train/loss=14.20]\nEpoch 0: | | 36/? [00:07<00:00, 5.08it/s, train/loss=14.20]\nEpoch 0: | | 36/? [00:07<00:00, 5.08it/s, train/loss=41.60]\nEpoch 0: | | 37/? [00:07<00:00, 5.19it/s, train/loss=41.60]\nEpoch 0: | | 37/? [00:07<00:00, 5.19it/s, train/loss=12.90]\nEpoch 0: | | 38/? [00:07<00:00, 5.11it/s, train/loss=12.90]\nEpoch 0: | | 38/? [00:07<00:00, 5.11it/s, train/loss=50.40]\nEpoch 0: | | 39/? [00:07<00:00, 5.21it/s, train/loss=50.40]\nEpoch 0: | | 39/? [00:07<00:00, 5.21it/s, train/loss=11.80]\nEpoch 0: | | 40/? [00:07<00:00, 5.13it/s, train/loss=11.80]\nEpoch 0: | | 40/? [00:07<00:00, 5.13it/s, train/loss=82.60]\nEpoch 0: | | 41/? [00:07<00:00, 5.23it/s, train/loss=82.60]\nEpoch 0: | | 41/? [00:07<00:00, 5.23it/s, train/loss=10.90]\nEpoch 0: | | 42/? [00:08<00:00, 5.15it/s, train/loss=10.90]\nEpoch 0: | | 42/? [00:08<00:00, 5.15it/s, train/loss=63.40]\nEpoch 0: | | 43/? [00:08<00:00, 5.24it/s, train/loss=63.40]\nEpoch 0: | | 43/? [00:08<00:00, 5.24it/s, train/loss=10.30]\nEpoch 0: | | 44/? [00:08<00:00, 5.17it/s, train/loss=10.30]\nEpoch 0: | | 44/? [00:08<00:00, 5.17it/s, train/loss=70.20]\nEpoch 0: | | 45/? [00:08<00:00, 5.26it/s, train/loss=70.20]\nEpoch 0: | | 45/? [00:08<00:00, 5.26it/s, train/loss=10.00]\nEpoch 0: | | 46/? [00:08<00:00, 5.19it/s, train/loss=10.00]\nEpoch 0: | | 46/? [00:08<00:00, 5.19it/s, train/loss=60.70]\nEpoch 0: | | 47/? [00:08<00:00, 5.28it/s, train/loss=60.70]\nEpoch 0: | | 47/? [00:08<00:00, 5.28it/s, train/loss=9.830]\nEpoch 0: | | 48/? [00:09<00:00, 5.21it/s, train/loss=9.830]\nEpoch 0: | | 48/? [00:09<00:00, 5.21it/s, train/loss=61.30]\nEpoch 0: | | 49/? [00:09<00:00, 5.29it/s, train/loss=61.30]\nEpoch 0: | | 49/? [00:09<00:00, 5.29it/s, train/loss=9.610]\nEpoch 0: | | 50/? [00:09<00:00, 5.23it/s, train/loss=9.610]\nEpoch 0: | | 50/? [00:09<00:00, 5.23it/s, train/loss=61.80]\nEpoch 0: | | 51/? [00:09<00:00, 5.30it/s, train/loss=61.80]\nEpoch 0: | | 51/? [00:09<00:00, 5.30it/s, train/loss=9.420]\nEpoch 0: | | 52/? [00:09<00:00, 5.24it/s, train/loss=9.420]\nEpoch 0: | | 52/? [00:09<00:00, 5.24it/s, train/loss=38.50]\nEpoch 0: | | 53/? [00:09<00:00, 5.32it/s, train/loss=38.50]\nEpoch 0: | | 53/? [00:09<00:00, 5.32it/s, train/loss=9.250]\nEpoch 0: | | 54/? [00:10<00:00, 5.26it/s, train/loss=9.250]\nEpoch 0: | | 54/? [00:10<00:00, 5.26it/s, train/loss=43.80]\nEpoch 0: | | 55/? [00:10<00:00, 5.33it/s, train/loss=43.80]\nEpoch 0: | | 55/? [00:10<00:00, 5.33it/s, train/loss=9.020]\nEpoch 0: | | 56/? [00:10<00:00, 5.27it/s, train/loss=9.020]\nEpoch 0: | | 56/? [00:10<00:00, 5.27it/s, train/loss=88.30]\nEpoch 0: | | 57/? [00:10<00:00, 5.34it/s, train/loss=88.30]\nEpoch 0: | | 57/? [00:10<00:00, 5.34it/s, train/loss=8.820]\nEpoch 0: | | 58/? [00:10<00:00, 5.29it/s, train/loss=8.820]\nEpoch 0: | | 58/? [00:10<00:00, 5.29it/s, train/loss=65.20]\nEpoch 0: | | 59/? [00:11<00:00, 5.35it/s, train/loss=65.20]\nEpoch 0: | | 59/? [00:11<00:00, 5.35it/s, train/loss=8.700]\nEpoch 0: | | 60/? [00:11<00:00, 5.30it/s, train/loss=8.700]\nEpoch 0: | | 60/? [00:11<00:00, 5.30it/s, train/loss=48.50]\nEpoch 0: | | 61/? [00:11<00:00, 5.36it/s, train/loss=48.50]\nEpoch 0: | | 61/? [00:11<00:00, 5.36it/s, train/loss=8.640]\nEpoch 0: | | 62/? [00:11<00:00, 5.31it/s, train/loss=8.640]\nEpoch 0: | | 62/? [00:11<00:00, 5.30it/s, train/loss=63.30]\nEpoch 0: | | 63/? [00:11<00:00, 5.37it/s, train/loss=63.30]\nEpoch 0: | | 63/? [00:11<00:00, 5.37it/s, train/loss=8.580]\nEpoch 0: | | 64/? [00:12<00:00, 5.32it/s, train/loss=8.580]\nEpoch 0: | | 64/? [00:12<00:00, 5.31it/s, train/loss=73.00]\nEpoch 0: | | 65/? [00:12<00:00, 5.37it/s, train/loss=73.00]\nEpoch 0: | | 65/? [00:12<00:00, 5.37it/s, train/loss=8.530]\nEpoch 0: | | 66/? [00:12<00:00, 5.32it/s, train/loss=8.530]\nEpoch 0: | | 66/? [00:12<00:00, 5.32it/s, train/loss=114.0]\nEpoch 0: | | 67/? [00:12<00:00, 5.38it/s, train/loss=114.0]\nEpoch 0: | | 67/? [00:12<00:00, 5.38it/s, train/loss=8.480]\nEpoch 0: | | 68/? [00:12<00:00, 5.28it/s, train/loss=8.480]\nEpoch 0: | | 68/? [00:12<00:00, 5.28it/s, train/loss=47.50]\nEpoch 0: | | 69/? [00:12<00:00, 5.34it/s, train/loss=47.50]\nEpoch 0: | | 69/? [00:12<00:00, 5.34it/s, train/loss=8.460]\nEpoch 0: | | 70/? [00:13<00:00, 5.30it/s, train/loss=8.460]\nEpoch 0: | | 70/? [00:13<00:00, 5.30it/s, train/loss=71.40]\nEpoch 0: | | 71/? [00:13<00:00, 5.36it/s, train/loss=71.40]\nEpoch 0: | | 71/? [00:13<00:00, 5.35it/s, train/loss=8.390]\nEpoch 0: | | 72/? [00:13<00:00, 5.31it/s, train/loss=8.390]\nEpoch 0: | | 72/? [00:13<00:00, 5.31it/s, train/loss=54.80]\nEpoch 0: | | 73/? [00:13<00:00, 5.37it/s, train/loss=54.80]\nEpoch 0: | | 73/? [00:13<00:00, 5.37it/s, train/loss=8.210]\nEpoch 0: | | 74/? [00:13<00:00, 5.33it/s, train/loss=8.210]\nEpoch 0: | | 74/? [00:13<00:00, 5.33it/s, train/loss=46.20]\nEpoch 0: | | 75/? [00:13<00:00, 5.38it/s, train/loss=46.20]\nEpoch 0: | | 75/? [00:13<00:00, 5.38it/s, train/loss=8.040]\nEpoch 0: | | 76/? [00:14<00:00, 5.34it/s, train/loss=8.040]\nEpoch 0: | | 76/? [00:14<00:00, 5.34it/s, train/loss=79.50]\nEpoch 0: | | 77/? [00:14<00:00, 5.39it/s, train/loss=79.50]\nEpoch 0: | | 77/? [00:14<00:00, 5.39it/s, train/loss=7.990]\nEpoch 0: | | 78/? [00:14<00:00, 5.35it/s, train/loss=7.990]\nEpoch 0: | | 78/? [00:14<00:00, 5.35it/s, train/loss=41.70]\nEpoch 0: | | 79/? [00:14<00:00, 5.40it/s, train/loss=41.70]\nEpoch 0: | | 79/? [00:14<00:00, 5.40it/s, train/loss=8.030]\nEpoch 0: | | 80/? [00:14<00:00, 5.36it/s, train/loss=8.030]\nEpoch 0: | | 80/? [00:14<00:00, 5.36it/s, train/loss=64.90]\nEpoch 0: | | 81/? [00:14<00:00, 5.41it/s, train/loss=64.90]\nEpoch 0: | | 81/? [00:14<00:00, 5.41it/s, train/loss=8.050]\nEpoch 0: | | 82/? [00:15<00:00, 5.37it/s, train/loss=8.050]\nEpoch 0: | | 82/? [00:15<00:00, 5.37it/s, train/loss=62.00]\nEpoch 0: | | 83/? [00:15<00:00, 5.42it/s, train/loss=62.00]\nEpoch 0: | | 83/? [00:15<00:00, 5.42it/s, train/loss=8.020]\nEpoch 0: | | 84/? [00:15<00:00, 5.38it/s, train/loss=8.020]\nEpoch 0: | | 84/? [00:15<00:00, 5.38it/s, train/loss=45.70]\nEpoch 0: | | 85/? [00:15<00:00, 5.43it/s, train/loss=45.70]\nEpoch 0: | | 85/? [00:15<00:00, 5.43it/s, train/loss=7.980]\nEpoch 0: | | 86/? [00:15<00:00, 5.39it/s, train/loss=7.980]\nEpoch 0: | | 86/? [00:15<00:00, 5.39it/s, train/loss=61.90]\nEpoch 0: | | 87/? [00:16<00:00, 5.44it/s, train/loss=61.90]\nEpoch 0: | | 87/? [00:16<00:00, 5.44it/s, train/loss=7.940]\nEpoch 0: | | 88/? [00:16<00:00, 5.40it/s, train/loss=7.940]\nEpoch 0: | | 88/? [00:16<00:00, 5.40it/s, train/loss=72.20]\nEpoch 0: | | 89/? [00:16<00:00, 5.45it/s, train/loss=72.20]\nEpoch 0: | | 89/? [00:16<00:00, 5.45it/s, train/loss=7.930]\nEpoch 0: | | 90/? [00:16<00:00, 5.41it/s, train/loss=7.930]\nEpoch 0: | | 90/? [00:16<00:00, 5.41it/s, train/loss=70.50]\nEpoch 0: | | 91/? [00:16<00:00, 5.45it/s, train/loss=70.50]\nEpoch 0: | | 91/? [00:16<00:00, 5.45it/s, train/loss=7.950]\nEpoch 0: | | 92/? [00:16<00:00, 5.41it/s, train/loss=7.950]\nEpoch 0: | | 92/? [00:17<00:00, 5.41it/s, train/loss=55.00]\nEpoch 0: | | 93/? [00:17<00:00, 5.45it/s, train/loss=55.00]\nEpoch 0: | | 93/? [00:17<00:00, 5.45it/s, train/loss=7.930]\nEpoch 0: | | 94/? [00:17<00:00, 5.41it/s, train/loss=7.930]\nEpoch 0: | | 94/? [00:17<00:00, 5.41it/s, train/loss=47.60]\nEpoch 0: | | 95/? [00:17<00:00, 5.45it/s, train/loss=47.60]\nEpoch 0: | | 95/? [00:17<00:00, 5.45it/s, train/loss=7.880]\nEpoch 0: | | 96/? [00:17<00:00, 5.42it/s, train/loss=7.880]\nEpoch 0: | | 96/? [00:17<00:00, 5.42it/s, train/loss=53.40]\nEpoch 0: | | 97/? [00:17<00:00, 5.46it/s, train/loss=53.40]\nEpoch 0: | | 97/? [00:17<00:00, 5.46it/s, train/loss=7.830]\nEpoch 0: | | 98/? [00:18<00:00, 5.43it/s, train/loss=7.830]\nEpoch 0: | | 98/? [00:18<00:00, 5.43it/s, train/loss=52.20]\nEpoch 0: | | 99/? [00:18<00:00, 5.47it/s, train/loss=52.20]\nEpoch 0: | | 99/? [00:18<00:00, 5.47it/s, train/loss=7.710]\nEpoch 0: | | 100/? [00:18<00:00, 5.44it/s, train/loss=7.710]\nEpoch 0: | | 100/? [00:18<00:00, 5.44it/s, train/loss=46.20]\nEpoch 0: | | 101/? [00:18<00:00, 5.48it/s, train/loss=46.20]\nEpoch 0: | | 101/? [00:18<00:00, 5.48it/s, train/loss=7.540]\nEpoch 0: | | 102/? [00:18<00:00, 5.45it/s, train/loss=7.540]\nEpoch 0: | | 102/? [00:18<00:00, 5.45it/s, train/loss=63.90]\nEpoch 0: | | 103/? [00:18<00:00, 5.49it/s, train/loss=63.90]\nEpoch 0: | | 103/? [00:18<00:00, 5.49it/s, train/loss=7.310]\nEpoch 0: | | 104/? [00:19<00:00, 5.46it/s, train/loss=7.310]\nEpoch 0: | | 104/? [00:19<00:00, 5.46it/s, train/loss=70.90]\nEpoch 0: | | 105/? [00:19<00:00, 5.49it/s, train/loss=70.90]\nEpoch 0: | | 105/? [00:19<00:00, 5.49it/s, train/loss=7.160]\nEpoch 0: | | 106/? [00:19<00:00, 5.46it/s, train/loss=7.160]\nEpoch 0: | | 106/? [00:19<00:00, 5.46it/s, train/loss=59.10]\nEpoch 0: | | 107/? [00:19<00:00, 5.50it/s, train/loss=59.10]\nEpoch 0: | | 107/? [00:19<00:00, 5.50it/s, train/loss=7.080]\nEpoch 0: | | 108/? [00:19<00:00, 5.47it/s, train/loss=7.080]\nEpoch 0: | | 108/? [00:19<00:00, 5.47it/s, train/loss=57.80]\nEpoch 0: | | 109/? [00:19<00:00, 5.51it/s, train/loss=57.80]\nEpoch 0: | | 109/? [00:19<00:00, 5.51it/s, train/loss=7.080]\nEpoch 0: | | 110/? [00:20<00:00, 5.47it/s, train/loss=7.080]\nEpoch 0: | | 110/? [00:20<00:00, 5.47it/s, train/loss=41.90]\nEpoch 0: | | 111/? [00:20<00:00, 5.51it/s, train/loss=41.90]\nEpoch 0: | | 111/? [00:20<00:00, 5.51it/s, train/loss=7.140]\nEpoch 0: | | 112/? [00:20<00:00, 5.48it/s, train/loss=7.140]\nEpoch 0: | | 112/? [00:20<00:00, 5.48it/s, train/loss=56.10]\nEpoch 0: | | 113/? [00:20<00:00, 5.52it/s, train/loss=56.10]\nEpoch 0: | | 113/? [00:20<00:00, 5.52it/s, train/loss=7.250]\nEpoch 0: | | 114/? [00:20<00:00, 5.49it/s, train/loss=7.250]\nEpoch 0: | | 114/? [00:20<00:00, 5.49it/s, train/loss=48.80]\nEpoch 0: | | 115/? [00:20<00:00, 5.53it/s, train/loss=48.80]\nEpoch 0: | | 115/? [00:20<00:00, 5.53it/s, train/loss=7.310]\nEpoch 0: | | 116/? [00:21<00:00, 5.50it/s, train/loss=7.310]\nEpoch 0: | | 116/? [00:21<00:00, 5.50it/s, train/loss=51.80]\nEpoch 0: | | 117/? [00:21<00:00, 5.54it/s, train/loss=51.80]\nEpoch 0: | | 117/? [00:21<00:00, 5.54it/s, train/loss=7.300]\nEpoch 0: | | 118/? [00:21<00:00, 5.51it/s, train/loss=7.300]\nEpoch 0: | | 118/? [00:21<00:00, 5.51it/s, train/loss=47.40]\nEpoch 0: | | 119/? [00:21<00:00, 5.54it/s, train/loss=47.40]\nEpoch 0: | | 119/? [00:21<00:00, 5.54it/s, train/loss=7.190]\nEpoch 0: | | 120/? [00:21<00:00, 5.52it/s, train/loss=7.190]\nEpoch 0: | | 120/? [00:21<00:00, 5.52it/s, train/loss=49.40]\nEpoch 0: | | 121/? [00:21<00:00, 5.55it/s, train/loss=49.40]\nEpoch 0: | | 121/? [00:21<00:00, 5.55it/s, train/loss=7.070]\nEpoch 0: | | 122/? [00:22<00:00, 5.52it/s, train/loss=7.070]\nEpoch 0: | | 122/? [00:22<00:00, 5.52it/s, train/loss=48.40]\nEpoch 0: | | 123/? [00:22<00:00, 5.56it/s, train/loss=48.40]\nEpoch 0: | | 123/? [00:22<00:00, 5.56it/s, train/loss=6.940]\nEpoch 0: | | 124/? [00:22<00:00, 5.53it/s, train/loss=6.940]\nEpoch 0: | | 124/? [00:22<00:00, 5.53it/s, train/loss=98.00]\nEpoch 0: | | 125/? [00:22<00:00, 5.56it/s, train/loss=98.00]\nEpoch 0: | | 125/? [00:22<00:00, 5.56it/s, train/loss=6.790]\nEpoch 0: | | 126/? [00:22<00:00, 5.54it/s, train/loss=6.790]\nEpoch 0: | | 126/? [00:22<00:00, 5.54it/s, train/loss=34.70]\nEpoch 0: | | 127/? [00:22<00:00, 5.57it/s, train/loss=34.70]\nEpoch 0: | | 127/? [00:22<00:00, 5.57it/s, train/loss=6.770]\nEpoch 0: | | 128/? [00:23<00:00, 5.54it/s, train/loss=6.770]\nEpoch 0: | | 128/? [00:23<00:00, 5.54it/s, train/loss=24.60]\nEpoch 0: | | 129/? [00:23<00:00, 5.58it/s, train/loss=24.60]\nEpoch 0: | | 129/? [00:23<00:00, 5.58it/s, train/loss=6.750]\nEpoch 0: | | 130/? [00:23<00:00, 5.55it/s, train/loss=6.750]\nEpoch 0: | | 130/? [00:23<00:00, 5.55it/s, train/loss=42.10]\nEpoch 0: | | 131/? [00:23<00:00, 5.59it/s, train/loss=42.10]\nEpoch 0: | | 131/? [00:23<00:00, 5.59it/s, train/loss=6.640]\nEpoch 0: | | 132/? [00:23<00:00, 5.56it/s, train/loss=6.640]\nEpoch 0: | | 132/? [00:23<00:00, 5.56it/s, train/loss=64.70]\nEpoch 0: | | 133/? [00:23<00:00, 5.59it/s, train/loss=64.70]\nEpoch 0: | | 133/? [00:23<00:00, 5.59it/s, train/loss=6.450]\nEpoch 0: | | 134/? [00:24<00:00, 5.57it/s, train/loss=6.450]\nEpoch 0: | | 134/? [00:24<00:00, 5.57it/s, train/loss=47.10]\nEpoch 0: | | 135/? [00:24<00:00, 5.60it/s, train/loss=47.10]\nEpoch 0: | | 135/? [00:24<00:00, 5.60it/s, train/loss=6.330]\nEpoch 0: | | 136/? [00:24<00:00, 5.57it/s, train/loss=6.330]\nEpoch 0: | | 136/? [00:24<00:00, 5.57it/s, train/loss=42.00]\nEpoch 0: | | 137/? [00:24<00:00, 5.61it/s, train/loss=42.00]\nEpoch 0: | | 137/? [00:24<00:00, 5.61it/s, train/loss=6.280]\nEpoch 0: | | 138/? [00:24<00:00, 5.58it/s, train/loss=6.280]\nEpoch 0: | | 138/? [00:24<00:00, 5.58it/s, train/loss=46.60]\nEpoch 0: | | 139/? [00:24<00:00, 5.61it/s, train/loss=46.60]\nEpoch 0: | | 139/? [00:24<00:00, 5.61it/s, train/loss=6.390]\nEpoch 0: | | 140/? [00:25<00:00, 5.59it/s, train/loss=6.390]\nEpoch 0: | | 140/? [00:25<00:00, 5.59it/s, train/loss=33.50]\nEpoch 0: | | 141/? [00:25<00:00, 5.62it/s, train/loss=33.50]\nEpoch 0: | | 141/? [00:25<00:00, 5.62it/s, train/loss=6.580]\nEpoch 0: | | 142/? [00:25<00:00, 5.59it/s, train/loss=6.580]\nEpoch 0: | | 142/? [00:25<00:00, 5.59it/s, train/loss=30.50]\nEpoch 0: | | 143/? [00:25<00:00, 5.63it/s, train/loss=30.50]\nEpoch 0: | | 143/? [00:25<00:00, 5.63it/s, train/loss=6.660]\nEpoch 0: | | 144/? [00:25<00:00, 5.60it/s, train/loss=6.660]\nEpoch 0: | | 144/? [00:25<00:00, 5.60it/s, train/loss=38.60]\nEpoch 0: | | 145/? [00:25<00:00, 5.62it/s, train/loss=38.60]\nEpoch 0: | | 145/? [00:25<00:00, 5.62it/s, train/loss=6.590]\nEpoch 0: | | 146/? [00:26<00:00, 5.60it/s, train/loss=6.590]\nEpoch 0: | | 146/? [00:26<00:00, 5.60it/s, train/loss=34.10]\nEpoch 0: | | 147/? [00:26<00:00, 5.62it/s, train/loss=34.10]\nEpoch 0: | | 147/? [00:26<00:00, 5.62it/s, train/loss=6.380]\nEpoch 0: | | 148/? [00:26<00:00, 5.59it/s, train/loss=6.380]\nEpoch 0: | | 148/? [00:26<00:00, 5.59it/s, train/loss=64.90]\nEpoch 0: | | 149/? [00:26<00:00, 5.62it/s, train/loss=64.90]\nEpoch 0: | | 149/? [00:26<00:00, 5.62it/s, train/loss=6.170]\nEpoch 0: | | 150/? [00:26<00:00, 5.59it/s, train/loss=6.170]\nEpoch 0: | | 150/? [00:26<00:00, 5.59it/s, train/loss=38.60]\nEpoch 0: | | 151/? [00:26<00:00, 5.62it/s, train/loss=38.60]\nEpoch 0: | | 151/? [00:26<00:00, 5.62it/s, train/loss=6.060]\nEpoch 0: | | 152/? [00:27<00:00, 5.60it/s, train/loss=6.060]\nEpoch 0: | | 152/? [00:27<00:00, 5.60it/s, train/loss=45.40]\nEpoch 0: | | 153/? [00:27<00:00, 5.62it/s, train/loss=45.40]\nEpoch 0: | | 153/? [00:27<00:00, 5.62it/s, train/loss=5.980]\nEpoch 0: | | 154/? [00:27<00:00, 5.60it/s, train/loss=5.980]\nEpoch 0: | | 154/? [00:27<00:00, 5.60it/s, train/loss=33.70]\nEpoch 0: | | 155/? [00:27<00:00, 5.63it/s, train/loss=33.70]\nEpoch 0: | | 155/? [00:27<00:00, 5.63it/s, train/loss=5.930]\nEpoch 0: | | 156/? [00:27<00:00, 5.60it/s, train/loss=5.930]\nEpoch 0: | | 156/? [00:27<00:00, 5.60it/s, train/loss=35.70]\nEpoch 0: | | 157/? [00:27<00:00, 5.63it/s, train/loss=35.70]\nEpoch 0: | | 157/? [00:27<00:00, 5.63it/s, train/loss=5.870]\nEpoch 0: | | 158/? [00:28<00:00, 5.60it/s, train/loss=5.870]\nEpoch 0: | | 158/? [00:28<00:00, 5.60it/s, train/loss=26.40]\nEpoch 0: | | 159/? [00:28<00:00, 5.63it/s, train/loss=26.40]\nEpoch 0: | | 159/? [00:28<00:00, 5.63it/s, train/loss=5.840]\nEpoch 0: | | 160/? [00:28<00:00, 5.61it/s, train/loss=5.840]\nEpoch 0: | | 160/? [00:28<00:00, 5.61it/s, train/loss=49.70]\nEpoch 0: | | 161/? [00:28<00:00, 5.64it/s, train/loss=49.70]\nEpoch 0: | | 161/? [00:28<00:00, 5.64it/s, train/loss=5.760]\nEpoch 0: | | 162/? [00:28<00:00, 5.61it/s, train/loss=5.760]\nEpoch 0: | | 162/? [00:28<00:00, 5.61it/s, train/loss=51.80]\nEpoch 0: | | 163/? [00:28<00:00, 5.64it/s, train/loss=51.80]\nEpoch 0: | | 163/? [00:28<00:00, 5.64it/s, train/loss=5.590]\nEpoch 0: | | 164/? [00:29<00:00, 5.62it/s, train/loss=5.590]\nEpoch 0: | | 164/? [00:29<00:00, 5.62it/s, train/loss=25.90]\nEpoch 0: | | 165/? [00:29<00:00, 5.65it/s, train/loss=25.90]\nEpoch 0: | | 165/? [00:29<00:00, 5.65it/s, train/loss=5.480]\nEpoch 0: | | 166/? [00:29<00:00, 5.63it/s, train/loss=5.480]\nEpoch 0: | | 166/? [00:29<00:00, 5.62it/s, train/loss=44.60]\nEpoch 0: | | 167/? [00:29<00:00, 5.65it/s, train/loss=44.60]\nEpoch 0: | | 167/? [00:29<00:00, 5.65it/s, train/loss=5.450]\nEpoch 0: | | 168/? [00:29<00:00, 5.63it/s, train/loss=5.450]\nEpoch 0: | | 168/? [00:29<00:00, 5.63it/s, train/loss=28.10]\nEpoch 0: | | 169/? [00:29<00:00, 5.66it/s, train/loss=28.10]\nEpoch 0: | | 169/? [00:29<00:00, 5.66it/s, train/loss=5.520]\nEpoch 0: | | 170/? [00:30<00:00, 5.63it/s, train/loss=5.520]\nEpoch 0: | | 170/? [00:30<00:00, 5.63it/s, train/loss=40.30]\nEpoch 0: | | 171/? [00:30<00:00, 5.66it/s, train/loss=40.30]\nEpoch 0: | | 171/? [00:30<00:00, 5.66it/s, train/loss=5.610]\nEpoch 0: | | 172/? [00:30<00:00, 5.64it/s, train/loss=5.610]\nEpoch 0: | | 172/? [00:30<00:00, 5.64it/s, train/loss=31.20]\nEpoch 0: | | 173/? [00:30<00:00, 5.66it/s, train/loss=31.20]\nEpoch 0: | | 173/? [00:30<00:00, 5.66it/s, train/loss=5.690]\nEpoch 0: | | 174/? [00:30<00:00, 5.64it/s, train/loss=5.690]\nEpoch 0: | | 174/? [00:30<00:00, 5.64it/s, train/loss=22.80]\nEpoch 0: | | 175/? [00:30<00:00, 5.66it/s, train/loss=22.80]\nEpoch 0: | | 175/? [00:30<00:00, 5.66it/s, train/loss=5.640]\nEpoch 0: | | 176/? [00:31<00:00, 5.64it/s, train/loss=5.640]\nEpoch 0: | | 176/? [00:31<00:00, 5.64it/s, train/loss=38.40]\nEpoch 0: | | 177/? [00:31<00:00, 5.67it/s, train/loss=38.40]\nEpoch 0: | | 177/? [00:31<00:00, 5.66it/s, train/loss=5.450]\nEpoch 0: | | 178/? [00:31<00:00, 5.65it/s, train/loss=5.450]\nEpoch 0: | | 178/? [00:31<00:00, 5.64it/s, train/loss=25.80]\nEpoch 0: | | 179/? [00:31<00:00, 5.67it/s, train/loss=25.80]\nEpoch 0: | | 179/? [00:31<00:00, 5.67it/s, train/loss=5.300]\nEpoch 0: | | 180/? [00:31<00:00, 5.65it/s, train/loss=5.300]\nEpoch 0: | | 180/? [00:31<00:00, 5.65it/s, train/loss=46.20]\nEpoch 0: | | 181/? [00:31<00:00, 5.68it/s, train/loss=46.20]\nEpoch 0: | | 181/? [00:31<00:00, 5.68it/s, train/loss=5.170]\nEpoch 0: | | 182/? [00:32<00:00, 5.66it/s, train/loss=5.170]\nEpoch 0: | | 182/? [00:32<00:00, 5.66it/s, train/loss=28.60]\nEpoch 0: | | 183/? [00:32<00:00, 5.68it/s, train/loss=28.60]\nEpoch 0: | | 183/? [00:32<00:00, 5.68it/s, train/loss=5.060]\nEpoch 0: | | 184/? [00:32<00:00, 5.66it/s, train/loss=5.060]\nEpoch 0: | | 184/? [00:32<00:00, 5.66it/s, train/loss=25.50]\nEpoch 0: | | 185/? [00:32<00:00, 5.68it/s, train/loss=25.50]\nEpoch 0: | | 185/? [00:32<00:00, 5.68it/s, train/loss=5.020]\nEpoch 0: | | 186/? [00:32<00:00, 5.66it/s, train/loss=5.020]\nEpoch 0: | | 186/? [00:32<00:00, 5.66it/s, train/loss=20.50]\nEpoch 0: | | 187/? [00:32<00:00, 5.69it/s, train/loss=20.50]\nEpoch 0: | | 187/? [00:32<00:00, 5.69it/s, train/loss=4.970]\nEpoch 0: | | 188/? [00:33<00:00, 5.67it/s, train/loss=4.970]\nEpoch 0: | | 188/? [00:33<00:00, 5.67it/s, train/loss=21.20]\nEpoch 0: | | 189/? [00:33<00:00, 5.69it/s, train/loss=21.20]\nEpoch 0: | | 189/? [00:33<00:00, 5.69it/s, train/loss=4.920]\nEpoch 0: | | 190/? [00:33<00:00, 5.67it/s, train/loss=4.920]\nEpoch 0: | | 190/? [00:33<00:00, 5.67it/s, train/loss=31.50]\nEpoch 0: | | 191/? [00:33<00:00, 5.70it/s, train/loss=31.50]\nEpoch 0: | | 191/? [00:33<00:00, 5.70it/s, train/loss=4.870]\nEpoch 0: | | 192/? [00:33<00:00, 5.68it/s, train/loss=4.870]\nEpoch 0: | | 192/? [00:33<00:00, 5.68it/s, train/loss=65.00]\nEpoch 0: | | 193/? [00:33<00:00, 5.70it/s, train/loss=65.00]\nEpoch 0: | | 193/? [00:33<00:00, 5.70it/s, train/loss=4.860]\nEpoch 0: | | 194/? [00:34<00:00, 5.68it/s, train/loss=4.860]\nEpoch 0: | | 194/? [00:34<00:00, 5.68it/s, train/loss=19.90]\nEpoch 0: | | 195/? [00:34<00:00, 5.71it/s, train/loss=19.90]\nEpoch 0: | | 195/? [00:34<00:00, 5.71it/s, train/loss=4.850]\nEpoch 0: | | 196/? [00:34<00:00, 5.69it/s, train/loss=4.850]\nEpoch 0: | | 196/? [00:34<00:00, 5.69it/s, train/loss=25.90]\nEpoch 0: | | 197/? [00:34<00:00, 5.71it/s, train/loss=25.90]\nEpoch 0: | | 197/? [00:34<00:00, 5.71it/s, train/loss=4.860]\nEpoch 0: | | 198/? [00:34<00:00, 5.69it/s, train/loss=4.860]\nEpoch 0: | | 198/? [00:34<00:00, 5.69it/s, train/loss=41.40]\nEpoch 0: | | 199/? [00:34<00:00, 5.71it/s, train/loss=41.40]\nEpoch 0: | | 199/? [00:34<00:00, 5.71it/s, train/loss=4.860]\nEpoch 0: | | 200/? [00:35<00:00, 5.70it/s, train/loss=4.860]\nEpoch 0: | | 200/? [00:35<00:00, 5.70it/s, train/loss=22.20]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 53.35it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 54.05it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 54.08it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 54.15it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 54.23it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 54.34it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 54.29it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 54.34it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 54.38it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 54.49it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 54.56it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 54.56it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 54.60it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 54.60it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 54.60it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 54.59it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 53.41it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 53.67it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 53.89it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 54.02it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 54.18it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 54.30it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 54.46it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 54.60it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 54.73it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 54.86it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 54.97it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 55.03it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 54.81it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 54.89it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 54.48it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 54.12it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 53.75it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 53.80it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 53.90it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 54.01it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 54.00it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 53.98it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 53.96it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 53.95it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 200/? [00:36<00:00, 5.50it/s, train/loss=22.20]\nEpoch 0: | | 201/? [00:36<00:00, 5.49it/s, train/loss=22.20]\nEpoch 0: | | 201/? [00:36<00:00, 5.49it/s, train/loss=4.850]\nEpoch 0: | | 202/? [00:36<00:00, 5.47it/s, train/loss=4.850]\nEpoch 0: | | 202/? [00:36<00:00, 5.47it/s, train/loss=16.20]\nEpoch 0: | | 203/? [00:36<00:00, 5.49it/s, train/loss=16.20]\nEpoch 0: | | 203/? [00:36<00:00, 5.49it/s, train/loss=4.840]\nEpoch 0: | | 204/? [00:37<00:00, 5.48it/s, train/loss=4.840]\nEpoch 0: | | 204/? [00:37<00:00, 5.48it/s, train/loss=40.60]\nEpoch 0: | | 205/? [00:37<00:00, 5.50it/s, train/loss=40.60]\nEpoch 0: | | 205/? [00:37<00:00, 5.50it/s, train/loss=4.810]\nEpoch 0: | | 206/? [00:37<00:00, 5.48it/s, train/loss=4.810]\nEpoch 0: | | 206/? [00:37<00:00, 5.48it/s, train/loss=15.70]\nEpoch 0: | | 207/? [00:37<00:00, 5.51it/s, train/loss=15.70]\nEpoch 0: | | 207/? [00:37<00:00, 5.51it/s, train/loss=4.780]\nEpoch 0: | | 208/? [00:37<00:00, 5.49it/s, train/loss=4.780]\nEpoch 0: | | 208/? [00:37<00:00, 5.49it/s, train/loss=10.70]\nEpoch 0: | | 209/? [00:37<00:00, 5.51it/s, train/loss=10.70]\nEpoch 0: | | 209/? [00:37<00:00, 5.51it/s, train/loss=4.740]\nEpoch 0: | | 210/? [00:38<00:00, 5.50it/s, train/loss=4.740]\nEpoch 0: | | 210/? [00:38<00:00, 5.50it/s, train/loss=34.00]\nEpoch 0: | | 211/? [00:38<00:00, 5.51it/s, train/loss=34.00]\nEpoch 0: | | 211/? [00:38<00:00, 5.51it/s, train/loss=4.660]\nEpoch 0: | | 212/? [00:38<00:00, 5.50it/s, train/loss=4.660]\nEpoch 0: | | 212/? [00:38<00:00, 5.50it/s, train/loss=30.70]\nEpoch 0: | | 213/? [00:38<00:00, 5.52it/s, train/loss=30.70]\nEpoch 0: | | 213/? [00:38<00:00, 5.52it/s, train/loss=4.570]\nEpoch 0: | | 214/? [00:38<00:00, 5.50it/s, train/loss=4.570]\nEpoch 0: | | 214/? [00:38<00:00, 5.50it/s, train/loss=15.90]\nEpoch 0: | | 215/? [00:38<00:00, 5.52it/s, train/loss=15.90]\nEpoch 0: | | 215/? [00:38<00:00, 5.52it/s, train/loss=4.540]\nEpoch 0: | | 216/? [00:39<00:00, 5.50it/s, train/loss=4.540]\nEpoch 0: | | 216/? [00:39<00:00, 5.50it/s, train/loss=25.80]\nEpoch 0: | | 217/? [00:39<00:00, 5.52it/s, train/loss=25.80]\nEpoch 0: | | 217/? [00:39<00:00, 5.52it/s, train/loss=4.500]\nEpoch 0: | | 218/? [00:39<00:00, 5.50it/s, train/loss=4.500]\nEpoch 0: | | 218/? [00:39<00:00, 5.50it/s, train/loss=30.50]\nEpoch 0: | | 219/? [00:39<00:00, 5.52it/s, train/loss=30.50]\nEpoch 0: | | 219/? [00:39<00:00, 5.52it/s, train/loss=4.460]\nEpoch 0: | | 220/? [00:39<00:00, 5.50it/s, train/loss=4.460]\nEpoch 0: | | 220/? [00:39<00:00, 5.50it/s, train/loss=67.90]\nEpoch 0: | | 221/? [00:40<00:00, 5.52it/s, train/loss=67.90]\nEpoch 0: | | 221/? [00:40<00:00, 5.52it/s, train/loss=4.400]\nEpoch 0: | | 222/? [00:40<00:00, 5.50it/s, train/loss=4.400]\nEpoch 0: | | 222/? [00:40<00:00, 5.50it/s, train/loss=21.40]\nEpoch 0: | | 223/? [00:40<00:00, 5.52it/s, train/loss=21.40]\nEpoch 0: | | 223/? [00:40<00:00, 5.52it/s, train/loss=4.370]\nEpoch 0: | | 224/? [00:40<00:00, 5.50it/s, train/loss=4.370]\nEpoch 0: | | 224/? [00:40<00:00, 5.50it/s, train/loss=37.50]\nEpoch 0: | | 225/? [00:40<00:00, 5.52it/s, train/loss=37.50]\nEpoch 0: | | 225/? [00:40<00:00, 5.52it/s, train/loss=4.340]\nEpoch 0: | | 226/? [00:41<00:00, 5.50it/s, train/loss=4.340]\nEpoch 0: | | 226/? [00:41<00:00, 5.50it/s, train/loss=8.740]\nEpoch 0: | | 227/? [00:41<00:00, 5.52it/s, train/loss=8.740]\nEpoch 0: | | 227/? [00:41<00:00, 5.52it/s, train/loss=4.320]\nEpoch 0: | | 228/? [00:41<00:00, 5.50it/s, train/loss=4.320]\nEpoch 0: | | 228/? [00:41<00:00, 5.50it/s, train/loss=11.40]\nEpoch 0: | | 229/? [00:41<00:00, 5.52it/s, train/loss=11.40]\nEpoch 0: | | 229/? [00:41<00:00, 5.52it/s, train/loss=4.270]\nEpoch 0: | | 230/? [00:41<00:00, 5.50it/s, train/loss=4.270]\nEpoch 0: | | 230/? [00:41<00:00, 5.50it/s, train/loss=16.20]\nEpoch 0: | | 231/? [00:41<00:00, 5.52it/s, train/loss=16.20]\nEpoch 0: | | 231/? [00:41<00:00, 5.52it/s, train/loss=4.210]\nEpoch 0: | | 232/? [00:42<00:00, 5.51it/s, train/loss=4.210]\nEpoch 0: | | 232/? [00:42<00:00, 5.51it/s, train/loss=14.70]\nEpoch 0: | | 233/? [00:42<00:00, 5.52it/s, train/loss=14.70]\nEpoch 0: | | 233/? [00:42<00:00, 5.52it/s, train/loss=4.140]\nEpoch 0: | | 234/? [00:42<00:00, 5.51it/s, train/loss=4.140]\nEpoch 0: | | 234/? [00:42<00:00, 5.51it/s, train/loss=13.80]\nEpoch 0: | | 235/? [00:42<00:00, 5.52it/s, train/loss=13.80]\nEpoch 0: | | 235/? [00:42<00:00, 5.52it/s, train/loss=4.070]\nEpoch 0: | | 236/? [00:42<00:00, 5.51it/s, train/loss=4.070]\nEpoch 0: | | 236/? [00:42<00:00, 5.51it/s, train/loss=21.90]\nEpoch 0: | | 237/? [00:42<00:00, 5.52it/s, train/loss=21.90]\nEpoch 0: | | 237/? [00:42<00:00, 5.52it/s, train/loss=3.970]\nEpoch 0: | | 238/? [00:43<00:00, 5.51it/s, train/loss=3.970]\nEpoch 0: | | 238/? [00:43<00:00, 5.51it/s, train/loss=30.50]\nEpoch 0: | | 239/? [00:43<00:00, 5.53it/s, train/loss=30.50]\nEpoch 0: | | 239/? [00:43<00:00, 5.53it/s, train/loss=3.910]\nEpoch 0: | | 240/? [00:43<00:00, 5.51it/s, train/loss=3.910]\nEpoch 0: | | 240/? [00:43<00:00, 5.51it/s, train/loss=12.20]\nEpoch 0: | | 241/? [00:43<00:00, 5.53it/s, train/loss=12.20]\nEpoch 0: | | 241/? [00:43<00:00, 5.53it/s, train/loss=3.890]\nEpoch 0: | | 242/? [00:43<00:00, 5.51it/s, train/loss=3.890]\nEpoch 0: | | 242/? [00:43<00:00, 5.51it/s, train/loss=52.70]\nEpoch 0: | | 243/? [00:43<00:00, 5.53it/s, train/loss=52.70]\nEpoch 0: | | 243/? [00:43<00:00, 5.53it/s, train/loss=3.820]\nEpoch 0: | | 244/? [00:44<00:00, 5.51it/s, train/loss=3.820]\nEpoch 0: | | 244/? [00:44<00:00, 5.51it/s, train/loss=12.60]\nEpoch 0: | | 245/? [00:44<00:00, 5.53it/s, train/loss=12.60]\nEpoch 0: | | 245/? [00:44<00:00, 5.53it/s, train/loss=3.750]\nEpoch 0: | | 246/? [00:44<00:00, 5.52it/s, train/loss=3.750]\nEpoch 0: | | 246/? [00:44<00:00, 5.52it/s, train/loss=22.40]\nEpoch 0: | | 247/? [00:44<00:00, 5.53it/s, train/loss=22.40]\nEpoch 0: | | 247/? [00:44<00:00, 5.53it/s, train/loss=3.740]\nEpoch 0: | | 248/? [00:44<00:00, 5.52it/s, train/loss=3.740]\nEpoch 0: | | 248/? [00:44<00:00, 5.52it/s, train/loss=31.60]\nEpoch 0: | | 249/? [00:44<00:00, 5.54it/s, train/loss=31.60]\nEpoch 0: | | 249/? [00:44<00:00, 5.54it/s, train/loss=3.760]\nEpoch 0: | | 250/? [00:45<00:00, 5.53it/s, train/loss=3.760]\nEpoch 0: | | 250/? [00:45<00:00, 5.53it/s, train/loss=9.880]\nEpoch 0: | | 251/? [00:45<00:00, 5.54it/s, train/loss=9.880]\nEpoch 0: | | 251/? [00:45<00:00, 5.54it/s, train/loss=3.770]\nEpoch 0: | | 252/? [00:45<00:00, 5.53it/s, train/loss=3.770]\nEpoch 0: | | 252/? [00:45<00:00, 5.53it/s, train/loss=28.30]\nEpoch 0: | | 253/? [00:45<00:00, 5.55it/s, train/loss=28.30]\nEpoch 0: | | 253/? [00:45<00:00, 5.55it/s, train/loss=3.730]\nEpoch 0: | | 254/? [00:45<00:00, 5.54it/s, train/loss=3.730]\nEpoch 0: | | 254/? [00:45<00:00, 5.54it/s, train/loss=11.40]\nEpoch 0: | | 255/? [00:45<00:00, 5.55it/s, train/loss=11.40]\nEpoch 0: | | 255/? [00:45<00:00, 5.55it/s, train/loss=3.640]\nEpoch 0: | | 256/? [00:46<00:00, 5.54it/s, train/loss=3.640]\nEpoch 0: | | 256/? [00:46<00:00, 5.54it/s, train/loss=24.80]\nEpoch 0: | | 257/? [00:46<00:00, 5.56it/s, train/loss=24.80]\nEpoch 0: | | 257/? [00:46<00:00, 5.56it/s, train/loss=3.570]\nEpoch 0: | | 258/? [00:46<00:00, 5.54it/s, train/loss=3.570]\nEpoch 0: | | 258/? [00:46<00:00, 5.54it/s, train/loss=37.10]\nEpoch 0: | | 259/? [00:46<00:00, 5.56it/s, train/loss=37.10]\nEpoch 0: | | 259/? [00:46<00:00, 5.56it/s, train/loss=3.530]\nEpoch 0: | | 260/? [00:46<00:00, 5.55it/s, train/loss=3.530]\nEpoch 0: | | 260/? [00:46<00:00, 5.55it/s, train/loss=23.60]\nEpoch 0: | | 261/? [00:46<00:00, 5.56it/s, train/loss=23.60]\nEpoch 0: | | 261/? [00:46<00:00, 5.56it/s, train/loss=3.540]\nEpoch 0: | | 262/? [00:47<00:00, 5.55it/s, train/loss=3.540]\nEpoch 0: | | 262/? [00:47<00:00, 5.55it/s, train/loss=45.00]\nEpoch 0: | | 263/? [00:47<00:00, 5.57it/s, train/loss=45.00]\nEpoch 0: | | 263/? [00:47<00:00, 5.57it/s, train/loss=3.530]\nEpoch 0: | | 264/? [00:47<00:00, 5.55it/s, train/loss=3.530]\nEpoch 0: | | 264/? [00:47<00:00, 5.55it/s, train/loss=10.10]\nEpoch 0: | | 265/? [00:47<00:00, 5.57it/s, train/loss=10.10]\nEpoch 0: | | 265/? [00:47<00:00, 5.57it/s, train/loss=3.530]\nEpoch 0: | | 266/? [00:47<00:00, 5.56it/s, train/loss=3.530]\nEpoch 0: | | 266/? [00:47<00:00, 5.56it/s, train/loss=12.90]\nEpoch 0: | | 267/? [00:47<00:00, 5.57it/s, train/loss=12.90]\nEpoch 0: | | 267/? [00:47<00:00, 5.57it/s, train/loss=3.530]\nEpoch 0: | | 268/? [00:48<00:00, 5.56it/s, train/loss=3.530]\nEpoch 0: | | 268/? [00:48<00:00, 5.56it/s, train/loss=32.20]\nEpoch 0: | | 269/? [00:48<00:00, 5.58it/s, train/loss=32.20]\nEpoch 0: | | 269/? [00:48<00:00, 5.58it/s, train/loss=3.480]\nEpoch 0: | | 270/? [00:48<00:00, 5.57it/s, train/loss=3.480]\nEpoch 0: | | 270/? [00:48<00:00, 5.57it/s, train/loss=10.20]\nEpoch 0: | | 271/? [00:48<00:00, 5.58it/s, train/loss=10.20]\nEpoch 0: | | 271/? [00:48<00:00, 5.58it/s, train/loss=3.440]\nEpoch 0: | | 272/? [00:48<00:00, 5.57it/s, train/loss=3.440]\nEpoch 0: | | 272/? [00:48<00:00, 5.57it/s, train/loss=9.860]\nEpoch 0: | | 273/? [00:48<00:00, 5.59it/s, train/loss=9.860]\nEpoch 0: | | 273/? [00:48<00:00, 5.59it/s, train/loss=3.400]\nEpoch 0: | | 274/? [00:49<00:00, 5.57it/s, train/loss=3.400]\nEpoch 0: | | 274/? [00:49<00:00, 5.57it/s, train/loss=25.90]\nEpoch 0: | | 275/? [00:49<00:00, 5.59it/s, train/loss=25.90]\nEpoch 0: | | 275/? [00:49<00:00, 5.59it/s, train/loss=3.400]\nEpoch 0: | | 276/? [00:49<00:00, 5.58it/s, train/loss=3.400]\nEpoch 0: | | 276/? [00:49<00:00, 5.58it/s, train/loss=37.60]\nEpoch 0: | | 277/? [00:49<00:00, 5.59it/s, train/loss=37.60]\nEpoch 0: | | 277/? [00:49<00:00, 5.59it/s, train/loss=3.430]\nEpoch 0: | | 278/? [00:49<00:00, 5.58it/s, train/loss=3.430]\nEpoch 0: | | 278/? [00:49<00:00, 5.58it/s, train/loss=18.80]\nEpoch 0: | | 279/? [00:49<00:00, 5.60it/s, train/loss=18.80]\nEpoch 0: | | 279/? [00:49<00:00, 5.60it/s, train/loss=3.440]\nEpoch 0: | | 280/? [00:50<00:00, 5.58it/s, train/loss=3.440]\nEpoch 0: | | 280/? [00:50<00:00, 5.58it/s, train/loss=28.50]\nEpoch 0: | | 281/? [00:50<00:00, 5.60it/s, train/loss=28.50]\nEpoch 0: | | 281/? [00:50<00:00, 5.60it/s, train/loss=3.410]\nEpoch 0: | | 282/? [00:50<00:00, 5.59it/s, train/loss=3.410]\nEpoch 0: | | 282/? [00:50<00:00, 5.59it/s, train/loss=9.970]\nEpoch 0: | | 283/? [00:50<00:00, 5.60it/s, train/loss=9.970]\nEpoch 0: | | 283/? [00:50<00:00, 5.60it/s, train/loss=3.390]\nEpoch 0: | | 284/? [00:50<00:00, 5.59it/s, train/loss=3.390]\nEpoch 0: | | 284/? [00:50<00:00, 5.59it/s, train/loss=40.30]\nEpoch 0: | | 285/? [00:50<00:00, 5.60it/s, train/loss=40.30]\nEpoch 0: | | 285/? [00:50<00:00, 5.60it/s, train/loss=3.380]\nEpoch 0: | | 286/? [00:51<00:00, 5.59it/s, train/loss=3.380]\nEpoch 0: | | 286/? [00:51<00:00, 5.59it/s, train/loss=31.70]\nEpoch 0: | | 287/? [00:51<00:00, 5.61it/s, train/loss=31.70]\nEpoch 0: | | 287/? [00:51<00:00, 5.61it/s, train/loss=3.400]\nEpoch 0: | | 288/? [00:51<00:00, 5.60it/s, train/loss=3.400]\nEpoch 0: | | 288/? [00:51<00:00, 5.60it/s, train/loss=15.20]\nEpoch 0: | | 289/? [00:51<00:00, 5.61it/s, train/loss=15.20]\nEpoch 0: | | 289/? [00:51<00:00, 5.61it/s, train/loss=3.410]\nEpoch 0: | | 290/? [00:51<00:00, 5.60it/s, train/loss=3.410]\nEpoch 0: | | 290/? [00:51<00:00, 5.60it/s, train/loss=14.10]\nEpoch 0: | | 291/? [00:51<00:00, 5.61it/s, train/loss=14.10]\nEpoch 0: | | 291/? [00:51<00:00, 5.61it/s, train/loss=3.420]\nEpoch 0: | | 292/? [00:52<00:00, 5.60it/s, train/loss=3.420]\nEpoch 0: | | 292/? [00:52<00:00, 5.60it/s, train/loss=19.10]\nEpoch 0: | | 293/? [00:52<00:00, 5.61it/s, train/loss=19.10]\nEpoch 0: | | 293/? [00:52<00:00, 5.61it/s, train/loss=3.400]\nEpoch 0: | | 294/? [00:52<00:00, 5.60it/s, train/loss=3.400]\nEpoch 0: | | 294/? [00:52<00:00, 5.60it/s, train/loss=24.80]\nEpoch 0: | | 295/? [00:52<00:00, 5.62it/s, train/loss=24.80]\nEpoch 0: | | 295/? [00:52<00:00, 5.62it/s, train/loss=3.340]\nEpoch 0: | | 296/? [00:52<00:00, 5.61it/s, train/loss=3.340]\nEpoch 0: | | 296/? [00:52<00:00, 5.60it/s, train/loss=39.10]\nEpoch 0: | | 297/? [00:52<00:00, 5.62it/s, train/loss=39.10]\nEpoch 0: | | 297/? [00:52<00:00, 5.62it/s, train/loss=3.290]\nEpoch 0: | | 298/? [00:53<00:00, 5.61it/s, train/loss=3.290]\nEpoch 0: | | 298/? [00:53<00:00, 5.61it/s, train/loss=8.320]\nEpoch 0: | | 299/? [00:53<00:00, 5.62it/s, train/loss=8.320]\nEpoch 0: | | 299/? [00:53<00:00, 5.62it/s, train/loss=3.340]\nEpoch 0: | | 300/? [00:53<00:00, 5.61it/s, train/loss=3.340]\nEpoch 0: | | 300/? [00:53<00:00, 5.61it/s, train/loss=19.60]\nEpoch 0: | | 301/? [00:53<00:00, 5.63it/s, train/loss=19.60]\nEpoch 0: | | 301/? [00:53<00:00, 5.63it/s, train/loss=3.370]\nEpoch 0: | | 302/? [00:53<00:00, 5.61it/s, train/loss=3.370]\nEpoch 0: | | 302/? [00:53<00:00, 5.61it/s, train/loss=28.90]\nEpoch 0: | | 303/? [00:53<00:00, 5.63it/s, train/loss=28.90]\nEpoch 0: | | 303/? [00:53<00:00, 5.63it/s, train/loss=3.270]\nEpoch 0: | | 304/? [00:54<00:00, 5.62it/s, train/loss=3.270]\nEpoch 0: | | 304/? [00:54<00:00, 5.62it/s, train/loss=24.00]\nEpoch 0: | | 305/? [00:54<00:00, 5.63it/s, train/loss=24.00]\nEpoch 0: | | 305/? [00:54<00:00, 5.63it/s, train/loss=3.110]\nEpoch 0: | | 306/? [00:54<00:00, 5.62it/s, train/loss=3.110]\nEpoch 0: | | 306/? [00:54<00:00, 5.62it/s, train/loss=18.70]\nEpoch 0: | | 307/? [00:54<00:00, 5.63it/s, train/loss=18.70]\nEpoch 0: | | 307/? [00:54<00:00, 5.63it/s, train/loss=3.060]\nEpoch 0: | | 308/? [00:54<00:00, 5.62it/s, train/loss=3.060]\nEpoch 0: | | 308/? [00:54<00:00, 5.62it/s, train/loss=24.10]\nEpoch 0: | | 309/? [00:54<00:00, 5.63it/s, train/loss=24.10]\nEpoch 0: | | 309/? [00:54<00:00, 5.63it/s, train/loss=3.140]\nEpoch 0: | | 310/? [00:55<00:00, 5.62it/s, train/loss=3.140]\nEpoch 0: | | 310/? [00:55<00:00, 5.62it/s, train/loss=24.70]\nEpoch 0: | | 311/? [00:55<00:00, 5.63it/s, train/loss=24.70]\nEpoch 0: | | 311/? [00:55<00:00, 5.63it/s, train/loss=3.210]\nEpoch 0: | | 312/? [00:55<00:00, 5.62it/s, train/loss=3.210]\nEpoch 0: | | 312/? [00:55<00:00, 5.62it/s, train/loss=15.20]\nEpoch 0: | | 313/? [00:55<00:00, 5.64it/s, train/loss=15.20]\nEpoch 0: | | 313/? [00:55<00:00, 5.64it/s, train/loss=3.240]\nEpoch 0: | | 314/? [00:55<00:00, 5.63it/s, train/loss=3.240]\nEpoch 0: | | 314/? [00:55<00:00, 5.63it/s, train/loss=31.30]\nEpoch 0: | | 315/? [00:55<00:00, 5.64it/s, train/loss=31.30]\nEpoch 0: | | 315/? [00:55<00:00, 5.64it/s, train/loss=3.230]\nEpoch 0: | | 316/? [00:56<00:00, 5.63it/s, train/loss=3.230]\nEpoch 0: | | 316/? [00:56<00:00, 5.63it/s, train/loss=16.70]\nEpoch 0: | | 317/? [00:56<00:00, 5.64it/s, train/loss=16.70]\nEpoch 0: | | 317/? [00:56<00:00, 5.64it/s, train/loss=3.200]\nEpoch 0: | | 318/? [00:56<00:00, 5.63it/s, train/loss=3.200]\nEpoch 0: | | 318/? [00:56<00:00, 5.63it/s, train/loss=18.80]\nEpoch 0: | | 319/? [00:56<00:00, 5.65it/s, train/loss=18.80]\nEpoch 0: | | 319/? [00:56<00:00, 5.65it/s, train/loss=3.190]\nEpoch 0: | | 320/? [00:56<00:00, 5.64it/s, train/loss=3.190]\nEpoch 0: | | 320/? [00:56<00:00, 5.64it/s, train/loss=37.10]\nEpoch 0: | | 321/? [00:56<00:00, 5.65it/s, train/loss=37.10]\nEpoch 0: | | 321/? [00:56<00:00, 5.65it/s, train/loss=3.160]\nEpoch 0: | | 322/? [00:57<00:00, 5.64it/s, train/loss=3.160]\nEpoch 0: | | 322/? [00:57<00:00, 5.64it/s, train/loss=29.70]\nEpoch 0: | | 323/? [00:57<00:00, 5.65it/s, train/loss=29.70]\nEpoch 0: | | 323/? [00:57<00:00, 5.65it/s, train/loss=3.120]\nEpoch 0: | | 324/? [00:57<00:00, 5.64it/s, train/loss=3.120]\nEpoch 0: | | 324/? [00:57<00:00, 5.64it/s, train/loss=22.20]\nEpoch 0: | | 325/? [00:57<00:00, 5.66it/s, train/loss=22.20]\nEpoch 0: | | 325/? [00:57<00:00, 5.66it/s, train/loss=3.130]\nEpoch 0: | | 326/? [00:57<00:00, 5.65it/s, train/loss=3.130]\nEpoch 0: | | 326/? [00:57<00:00, 5.65it/s, train/loss=23.50]\nEpoch 0: | | 327/? [00:57<00:00, 5.66it/s, train/loss=23.50]\nEpoch 0: | | 327/? [00:57<00:00, 5.66it/s, train/loss=3.110]\nEpoch 0: | | 328/? [00:58<00:00, 5.65it/s, train/loss=3.110]\nEpoch 0: | | 328/? [00:58<00:00, 5.65it/s, train/loss=37.80]\nEpoch 0: | | 329/? [00:58<00:00, 5.66it/s, train/loss=37.80]\nEpoch 0: | | 329/? [00:58<00:00, 5.66it/s, train/loss=3.010]\nEpoch 0: | | 330/? [00:58<00:00, 5.65it/s, train/loss=3.010]\nEpoch 0: | | 330/? [00:58<00:00, 5.65it/s, train/loss=30.40]\nEpoch 0: | | 331/? [00:58<00:00, 5.66it/s, train/loss=30.40]\nEpoch 0: | | 331/? [00:58<00:00, 5.66it/s, train/loss=2.920]\nEpoch 0: | | 332/? [00:58<00:00, 5.65it/s, train/loss=2.920]\nEpoch 0: | | 332/? [00:58<00:00, 5.65it/s, train/loss=20.70]\nEpoch 0: | | 333/? [00:58<00:00, 5.67it/s, train/loss=20.70]\nEpoch 0: | | 333/? [00:58<00:00, 5.67it/s, train/loss=2.860]\nEpoch 0: | | 334/? [00:59<00:00, 5.66it/s, train/loss=2.860]\nEpoch 0: | | 334/? [00:59<00:00, 5.66it/s, train/loss=10.10]\nEpoch 0: | | 335/? [00:59<00:00, 5.67it/s, train/loss=10.10]\nEpoch 0: | | 335/? [00:59<00:00, 5.67it/s, train/loss=2.800]\nEpoch 0: | | 336/? [00:59<00:00, 5.66it/s, train/loss=2.800]\nEpoch 0: | | 336/? [00:59<00:00, 5.66it/s, train/loss=38.50]\nEpoch 0: | | 337/? [00:59<00:00, 5.67it/s, train/loss=38.50]\nEpoch 0: | | 337/? [00:59<00:00, 5.67it/s, train/loss=2.760]\nEpoch 0: | | 338/? [00:59<00:00, 5.66it/s, train/loss=2.760]\nEpoch 0: | | 338/? [00:59<00:00, 5.66it/s, train/loss=17.30]\nEpoch 0: | | 339/? [00:59<00:00, 5.68it/s, train/loss=17.30]\nEpoch 0: | | 339/? [00:59<00:00, 5.68it/s, train/loss=2.760]\nEpoch 0: | | 340/? [01:00<00:00, 5.66it/s, train/loss=2.760]\nEpoch 0: | | 340/? [01:00<00:00, 5.66it/s, train/loss=30.30]\nEpoch 0: | | 341/? [01:00<00:00, 5.68it/s, train/loss=30.30]\nEpoch 0: | | 341/? [01:00<00:00, 5.68it/s, train/loss=2.770]\nEpoch 0: | | 342/? [01:00<00:00, 5.67it/s, train/loss=2.770]\nEpoch 0: | | 342/? [01:00<00:00, 5.67it/s, train/loss=40.10]\nEpoch 0: | | 343/? [01:00<00:00, 5.68it/s, train/loss=40.10]\nEpoch 0: | | 343/? [01:00<00:00, 5.68it/s, train/loss=2.790]\nEpoch 0: | | 344/? [01:00<00:00, 5.67it/s, train/loss=2.790]\nEpoch 0: | | 344/? [01:00<00:00, 5.67it/s, train/loss=7.000]\nEpoch 0: | | 345/? [01:00<00:00, 5.68it/s, train/loss=7.000]\nEpoch 0: | | 345/? [01:00<00:00, 5.68it/s, train/loss=2.850]\nEpoch 0: | | 346/? [01:00<00:00, 5.67it/s, train/loss=2.850]\nEpoch 0: | | 346/? [01:00<00:00, 5.67it/s, train/loss=23.60]\nEpoch 0: | | 347/? [01:01<00:00, 5.69it/s, train/loss=23.60]\nEpoch 0: | | 347/? [01:01<00:00, 5.69it/s, train/loss=2.880]\nEpoch 0: | | 348/? [01:01<00:00, 5.68it/s, train/loss=2.880]\nEpoch 0: | | 348/? [01:01<00:00, 5.68it/s, train/loss=57.60]\nEpoch 0: | | 349/? [01:01<00:00, 5.69it/s, train/loss=57.60]\nEpoch 0: | | 349/? [01:01<00:00, 5.69it/s, train/loss=2.860]\nEpoch 0: | | 350/? [01:01<00:00, 5.68it/s, train/loss=2.860]\nEpoch 0: | | 350/? [01:01<00:00, 5.68it/s, train/loss=14.50]\nEpoch 0: | | 351/? [01:01<00:00, 5.69it/s, train/loss=14.50]\nEpoch 0: | | 351/? [01:01<00:00, 5.69it/s, train/loss=2.870]\nEpoch 0: | | 352/? [01:01<00:00, 5.68it/s, train/loss=2.870]\nEpoch 0: | | 352/? [01:01<00:00, 5.68it/s, train/loss=11.60]\nEpoch 0: | | 353/? [01:01<00:00, 5.69it/s, train/loss=11.60]\nEpoch 0: | | 353/? [01:01<00:00, 5.69it/s, train/loss=2.890]\nEpoch 0: | | 354/? [01:02<00:00, 5.68it/s, train/loss=2.890]\nEpoch 0: | | 354/? [01:02<00:00, 5.68it/s, train/loss=49.20]\nEpoch 0: | | 355/? [01:02<00:00, 5.70it/s, train/loss=49.20]\nEpoch 0: | | 355/? [01:02<00:00, 5.70it/s, train/loss=2.900]\nEpoch 0: | | 356/? [01:02<00:00, 5.69it/s, train/loss=2.900]\nEpoch 0: | | 356/? [01:02<00:00, 5.69it/s, train/loss=7.090]\nEpoch 0: | | 357/? [01:02<00:00, 5.70it/s, train/loss=7.090]\nEpoch 0: | | 357/? [01:02<00:00, 5.70it/s, train/loss=2.930]\nEpoch 0: | | 358/? [01:02<00:00, 5.69it/s, train/loss=2.930]\nEpoch 0: | | 358/? [01:02<00:00, 5.69it/s, train/loss=68.30]\nEpoch 0: | | 359/? [01:02<00:00, 5.70it/s, train/loss=68.30]\nEpoch 0: | | 359/? [01:02<00:00, 5.70it/s, train/loss=3.030]\nEpoch 0: | | 360/? [01:03<00:00, 5.69it/s, train/loss=3.030]\nEpoch 0: | | 360/? [01:03<00:00, 5.69it/s, train/loss=14.50]\nEpoch 0: | | 361/? [01:03<00:00, 5.70it/s, train/loss=14.50]\nEpoch 0: | | 361/? [01:03<00:00, 5.70it/s, train/loss=3.160]\nEpoch 0: | | 362/? [01:03<00:00, 5.69it/s, train/loss=3.160]\nEpoch 0: | | 362/? [01:03<00:00, 5.69it/s, train/loss=9.390]\nEpoch 0: | | 363/? [01:03<00:00, 5.71it/s, train/loss=9.390]\nEpoch 0: | | 363/? [01:03<00:00, 5.71it/s, train/loss=3.190]\nEpoch 0: | | 364/? [01:03<00:00, 5.70it/s, train/loss=3.190]\nEpoch 0: | | 364/? [01:03<00:00, 5.70it/s, train/loss=34.60]\nEpoch 0: | | 365/? [01:03<00:00, 5.71it/s, train/loss=34.60]\nEpoch 0: | | 365/? [01:03<00:00, 5.71it/s, train/loss=3.110]\nEpoch 0: | | 366/? [01:04<00:00, 5.70it/s, train/loss=3.110]\nEpoch 0: | | 366/? [01:04<00:00, 5.70it/s, train/loss=13.80]\nEpoch 0: | | 367/? [01:04<00:00, 5.71it/s, train/loss=13.80]\nEpoch 0: | | 367/? [01:04<00:00, 5.71it/s, train/loss=2.990]\nEpoch 0: | | 368/? [01:04<00:00, 5.70it/s, train/loss=2.990]\nEpoch 0: | | 368/? [01:04<00:00, 5.70it/s, train/loss=24.20]\nEpoch 0: | | 369/? [01:04<00:00, 5.71it/s, train/loss=24.20]\nEpoch 0: | | 369/? [01:04<00:00, 5.71it/s, train/loss=2.900]\nEpoch 0: | | 370/? [01:04<00:00, 5.70it/s, train/loss=2.900]\nEpoch 0: | | 370/? [01:04<00:00, 5.70it/s, train/loss=19.60]\nEpoch 0: | | 371/? [01:04<00:00, 5.72it/s, train/loss=19.60]\nEpoch 0: | | 371/? [01:04<00:00, 5.72it/s, train/loss=2.840]\nEpoch 0: | | 372/? [01:05<00:00, 5.71it/s, train/loss=2.840]\nEpoch 0: | | 372/? [01:05<00:00, 5.71it/s, train/loss=24.40]\nEpoch 0: | | 373/? [01:05<00:00, 5.72it/s, train/loss=24.40]\nEpoch 0: | | 373/? [01:05<00:00, 5.72it/s, train/loss=2.810]\nEpoch 0: | | 374/? [01:05<00:00, 5.71it/s, train/loss=2.810]\nEpoch 0: | | 374/? [01:05<00:00, 5.71it/s, train/loss=10.40]\nEpoch 0: | | 375/? [01:05<00:00, 5.72it/s, train/loss=10.40]\nEpoch 0: | | 375/? [01:05<00:00, 5.72it/s, train/loss=2.780]\nEpoch 0: | | 376/? [01:05<00:00, 5.71it/s, train/loss=2.780]\nEpoch 0: | | 376/? [01:05<00:00, 5.71it/s, train/loss=34.00]\nEpoch 0: | | 377/? [01:05<00:00, 5.72it/s, train/loss=34.00]\nEpoch 0: | | 377/? [01:05<00:00, 5.72it/s, train/loss=2.710]\nEpoch 0: | | 378/? [01:06<00:00, 5.71it/s, train/loss=2.710]\nEpoch 0: | | 378/? [01:06<00:00, 5.71it/s, train/loss=24.10]\nEpoch 0: | | 379/? [01:06<00:00, 5.72it/s, train/loss=24.10]\nEpoch 0: | | 379/? [01:06<00:00, 5.72it/s, train/loss=2.650]\nEpoch 0: | | 380/? [01:06<00:00, 5.71it/s, train/loss=2.650]\nEpoch 0: | | 380/? [01:06<00:00, 5.71it/s, train/loss=17.60]\nEpoch 0: | | 381/? [01:06<00:00, 5.73it/s, train/loss=17.60]\nEpoch 0: | | 381/? [01:06<00:00, 5.73it/s, train/loss=2.650]\nEpoch 0: | | 382/? [01:06<00:00, 5.72it/s, train/loss=2.650]\nEpoch 0: | | 382/? [01:06<00:00, 5.72it/s, train/loss=31.10]\nEpoch 0: | | 383/? [01:06<00:00, 5.73it/s, train/loss=31.10]\nEpoch 0: | | 383/? [01:06<00:00, 5.73it/s, train/loss=2.690]\nEpoch 0: | | 384/? [01:07<00:00, 5.72it/s, train/loss=2.690]\nEpoch 0: | | 384/? [01:07<00:00, 5.72it/s, train/loss=27.60]\nEpoch 0: | | 385/? [01:07<00:00, 5.73it/s, train/loss=27.60]\nEpoch 0: | | 385/? [01:07<00:00, 5.73it/s, train/loss=2.720]\nEpoch 0: | | 386/? [01:07<00:00, 5.72it/s, train/loss=2.720]\nEpoch 0: | | 386/? [01:07<00:00, 5.72it/s, train/loss=19.10]\nEpoch 0: | | 387/? [01:07<00:00, 5.73it/s, train/loss=19.10]\nEpoch 0: | | 387/? [01:07<00:00, 5.73it/s, train/loss=2.690]\nEpoch 0: | | 388/? [01:07<00:00, 5.72it/s, train/loss=2.690]\nEpoch 0: | | 388/? [01:07<00:00, 5.72it/s, train/loss=9.580]\nEpoch 0: | | 389/? [01:07<00:00, 5.74it/s, train/loss=9.580]\nEpoch 0: | | 389/? [01:07<00:00, 5.74it/s, train/loss=2.640]\nEpoch 0: | | 390/? [01:08<00:00, 5.73it/s, train/loss=2.640]\nEpoch 0: | | 390/? [01:08<00:00, 5.73it/s, train/loss=16.10]\nEpoch 0: | | 391/? [01:08<00:00, 5.74it/s, train/loss=16.10]\nEpoch 0: | | 391/? [01:08<00:00, 5.74it/s, train/loss=2.580]\nEpoch 0: | | 392/? [01:08<00:00, 5.73it/s, train/loss=2.580]\nEpoch 0: | | 392/? [01:08<00:00, 5.73it/s, train/loss=37.50]\nEpoch 0: | | 393/? [01:08<00:00, 5.74it/s, train/loss=37.50]\nEpoch 0: | | 393/? [01:08<00:00, 5.74it/s, train/loss=2.530]\nEpoch 0: | | 394/? [01:08<00:00, 5.73it/s, train/loss=2.530]\nEpoch 0: | | 394/? [01:08<00:00, 5.73it/s, train/loss=15.50]\nEpoch 0: | | 395/? [01:08<00:00, 5.74it/s, train/loss=15.50]\nEpoch 0: | | 395/? [01:08<00:00, 5.74it/s, train/loss=2.500]\nEpoch 0: | | 396/? [01:09<00:00, 5.73it/s, train/loss=2.500]\nEpoch 0: | | 396/? [01:09<00:00, 5.73it/s, train/loss=19.40]\nEpoch 0: | | 397/? [01:09<00:00, 5.74it/s, train/loss=19.40]\nEpoch 0: | | 397/? [01:09<00:00, 5.74it/s, train/loss=2.490]\nEpoch 0: | | 398/? [01:09<00:00, 5.74it/s, train/loss=2.490]\nEpoch 0: | | 398/? [01:09<00:00, 5.73it/s, train/loss=19.80]\nEpoch 0: | | 399/? [01:09<00:00, 5.75it/s, train/loss=19.80]\nEpoch 0: | | 399/? [01:09<00:00, 5.75it/s, train/loss=2.490]\nEpoch 0: | | 400/? [01:09<00:00, 5.74it/s, train/loss=2.490]\nEpoch 0: | | 400/? [01:09<00:00, 5.74it/s, train/loss=34.10]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 71.57it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 70.04it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 70.02it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 70.00it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 69.62it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 69.44it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 69.47it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 69.54it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 69.70it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 69.82it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 69.97it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 69.85it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 68.85it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 68.93it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 68.83it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 68.29it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 67.23it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 67.04it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 66.67it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 66.50it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 66.28it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 63.16it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 63.25it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 63.45it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 63.66it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 63.87it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 64.11it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 64.35it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 64.58it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 64.80it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 64.93it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 64.18it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 64.16it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 63.86it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 63.84it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 63.81it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 63.78it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 62.42it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 62.44it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 62.45it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 400/? [01:10<00:00, 5.65it/s, train/loss=34.10]\nEpoch 0: | | 401/? [01:11<00:00, 5.57it/s, train/loss=34.10]\nEpoch 0: | | 401/? [01:11<00:00, 5.57it/s, train/loss=2.480]\nEpoch 0: | | 402/? [01:12<00:00, 5.57it/s, train/loss=2.480]\nEpoch 0: | | 402/? [01:12<00:00, 5.57it/s, train/loss=15.00]\nEpoch 0: | | 403/? [01:12<00:00, 5.58it/s, train/loss=15.00]\nEpoch 0: | | 403/? [01:12<00:00, 5.58it/s, train/loss=2.480]\nEpoch 0: | | 404/? [01:12<00:00, 5.57it/s, train/loss=2.480]\nEpoch 0: | | 404/? [01:12<00:00, 5.57it/s, train/loss=23.00]\nEpoch 0: | | 405/? [01:12<00:00, 5.58it/s, train/loss=23.00]\nEpoch 0: | | 405/? [01:12<00:00, 5.58it/s, train/loss=2.470]\nEpoch 0: | | 406/? [01:12<00:00, 5.57it/s, train/loss=2.470]\nEpoch 0: | | 406/? [01:12<00:00, 5.57it/s, train/loss=9.820]\nEpoch 0: | | 407/? [01:12<00:00, 5.58it/s, train/loss=9.820]\nEpoch 0: | | 407/? [01:12<00:00, 5.58it/s, train/loss=2.460]\nEpoch 0: | | 408/? [01:13<00:00, 5.57it/s, train/loss=2.460]\nEpoch 0: | | 408/? [01:13<00:00, 5.57it/s, train/loss=18.50]\nEpoch 0: | | 409/? [01:13<00:00, 5.58it/s, train/loss=18.50]\nEpoch 0: | | 409/? [01:13<00:00, 5.58it/s, train/loss=2.450]\nEpoch 0: | | 410/? [01:13<00:00, 5.58it/s, train/loss=2.450]\nEpoch 0: | | 410/? [01:13<00:00, 5.58it/s, train/loss=21.70]\nEpoch 0: | | 411/? [01:13<00:00, 5.59it/s, train/loss=21.70]\nEpoch 0: | | 411/? [01:13<00:00, 5.59it/s, train/loss=2.470]\nEpoch 0: | | 412/? [01:13<00:00, 5.58it/s, train/loss=2.470]\nEpoch 0: | | 412/? [01:13<00:00, 5.58it/s, train/loss=25.70]\nEpoch 0: | | 413/? [01:13<00:00, 5.59it/s, train/loss=25.70]\nEpoch 0: | | 413/? [01:13<00:00, 5.59it/s, train/loss=2.480]\nEpoch 0: | | 414/? [01:14<00:00, 5.58it/s, train/loss=2.480]\nEpoch 0: | | 414/? [01:14<00:00, 5.58it/s, train/loss=49.00]\nEpoch 0: | | 415/? [01:14<00:00, 5.59it/s, train/loss=49.00]\nEpoch 0: | | 415/? [01:14<00:00, 5.59it/s, train/loss=2.460]\nEpoch 0: | | 416/? [01:14<00:00, 5.58it/s, train/loss=2.460]\nEpoch 0: | | 416/? [01:14<00:00, 5.58it/s, train/loss=14.30]\nEpoch 0: | | 417/? [01:14<00:00, 5.59it/s, train/loss=14.30]\nEpoch 0: | | 417/? [01:14<00:00, 5.59it/s, train/loss=2.490]\nEpoch 0: | | 418/? [01:14<00:00, 5.58it/s, train/loss=2.490]\nEpoch 0: | | 418/? [01:14<00:00, 5.58it/s, train/loss=12.00]\nEpoch 0: | | 419/? [01:14<00:00, 5.60it/s, train/loss=12.00]\nEpoch 0: | | 419/? [01:14<00:00, 5.60it/s, train/loss=2.520]\nEpoch 0: | | 420/? [01:15<00:00, 5.59it/s, train/loss=2.520]\nEpoch 0: | | 420/? [01:15<00:00, 5.59it/s, train/loss=10.10]\nEpoch 0: | | 421/? [01:15<00:00, 5.60it/s, train/loss=10.10]\nEpoch 0: | | 421/? [01:15<00:00, 5.60it/s, train/loss=2.520]\nEpoch 0: | | 422/? [01:15<00:00, 5.59it/s, train/loss=2.520]\nEpoch 0: | | 422/? [01:15<00:00, 5.59it/s, train/loss=27.00]\nEpoch 0: | | 423/? [01:15<00:00, 5.60it/s, train/loss=27.00]\nEpoch 0: | | 423/? [01:15<00:00, 5.60it/s, train/loss=2.470]\nEpoch 0: | | 424/? [01:15<00:00, 5.59it/s, train/loss=2.470]\nEpoch 0: | | 424/? [01:15<00:00, 5.59it/s, train/loss=22.70]\nEpoch 0: | | 425/? [01:15<00:00, 5.60it/s, train/loss=22.70]\nEpoch 0: | | 425/? [01:15<00:00, 5.60it/s, train/loss=2.420]\nEpoch 0: | | 426/? [01:16<00:00, 5.60it/s, train/loss=2.420]\nEpoch 0: | | 426/? [01:16<00:00, 5.60it/s, train/loss=9.020]\nEpoch 0: | | 427/? [01:16<00:00, 5.61it/s, train/loss=9.020]\nEpoch 0: | | 427/? [01:16<00:00, 5.61it/s, train/loss=2.360]\nEpoch 0: | | 428/? [01:16<00:00, 5.60it/s, train/loss=2.360]\nEpoch 0: | | 428/? [01:16<00:00, 5.60it/s, train/loss=41.80]\nEpoch 0: | | 429/? [01:16<00:00, 5.61it/s, train/loss=41.80]\nEpoch 0: | | 429/? [01:16<00:00, 5.61it/s, train/loss=2.330]\nEpoch 0: | | 430/? [01:16<00:00, 5.60it/s, train/loss=2.330]\nEpoch 0: | | 430/? [01:16<00:00, 5.60it/s, train/loss=36.30]\nEpoch 0: | | 431/? [01:16<00:00, 5.61it/s, train/loss=36.30]\nEpoch 0: | | 431/? [01:16<00:00, 5.61it/s, train/loss=2.320]\nEpoch 0: | | 432/? [01:17<00:00, 5.60it/s, train/loss=2.320]\nEpoch 0: | | 432/? [01:17<00:00, 5.60it/s, train/loss=16.50]\nEpoch 0: | | 433/? [01:17<00:00, 5.61it/s, train/loss=16.50]\nEpoch 0: | | 433/? [01:17<00:00, 5.61it/s, train/loss=2.340]\nEpoch 0: | | 434/? [01:17<00:00, 5.61it/s, train/loss=2.340]\nEpoch 0: | | 434/? [01:17<00:00, 5.61it/s, train/loss=23.30]\nEpoch 0: | | 435/? [01:17<00:00, 5.62it/s, train/loss=23.30]\nEpoch 0: | | 435/? [01:17<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 436/? [01:17<00:00, 5.61it/s, train/loss=2.350]\nEpoch 0: | | 436/? [01:17<00:00, 5.61it/s, train/loss=32.70]\nEpoch 0: | | 437/? [01:17<00:00, 5.62it/s, train/loss=32.70]\nEpoch 0: | | 437/? [01:17<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 438/? [01:18<00:00, 5.61it/s, train/loss=2.350]\nEpoch 0: | | 438/? [01:18<00:00, 5.61it/s, train/loss=33.70]\nEpoch 0: | | 439/? [01:18<00:00, 5.62it/s, train/loss=33.70]\nEpoch 0: | | 439/? [01:18<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 440/? [01:18<00:00, 5.61it/s, train/loss=2.350]\nEpoch 0: | | 440/? [01:18<00:00, 5.61it/s, train/loss=12.70]\nEpoch 0: | | 441/? [01:18<00:00, 5.62it/s, train/loss=12.70]\nEpoch 0: | | 441/? [01:18<00:00, 5.62it/s, train/loss=2.360]\nEpoch 0: | | 442/? [01:18<00:00, 5.62it/s, train/loss=2.360]\nEpoch 0: | | 442/? [01:18<00:00, 5.62it/s, train/loss=16.30]\nEpoch 0: | | 443/? [01:18<00:00, 5.63it/s, train/loss=16.30]\nEpoch 0: | | 443/? [01:18<00:00, 5.63it/s, train/loss=2.330]\nEpoch 0: | | 444/? [01:19<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 444/? [01:19<00:00, 5.62it/s, train/loss=21.40]\nEpoch 0: | | 445/? [01:19<00:00, 5.63it/s, train/loss=21.40]\nEpoch 0: | | 445/? [01:19<00:00, 5.63it/s, train/loss=2.320]\nEpoch 0: | | 446/? [01:19<00:00, 5.62it/s, train/loss=2.320]\nEpoch 0: | | 446/? [01:19<00:00, 5.62it/s, train/loss=19.00]\nEpoch 0: | | 447/? [01:19<00:00, 5.63it/s, train/loss=19.00]\nEpoch 0: | | 447/? [01:19<00:00, 5.63it/s, train/loss=2.330]\nEpoch 0: | | 448/? [01:19<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 448/? [01:19<00:00, 5.62it/s, train/loss=16.60]\nEpoch 0: | | 449/? [01:19<00:00, 5.63it/s, train/loss=16.60]\nEpoch 0: | | 449/? [01:19<00:00, 5.63it/s, train/loss=2.320]\nEpoch 0: | | 450/? [01:20<00:00, 5.62it/s, train/loss=2.320]\nEpoch 0: | | 450/? [01:20<00:00, 5.62it/s, train/loss=18.70]\nEpoch 0: | | 451/? [01:20<00:00, 5.63it/s, train/loss=18.70]\nEpoch 0: | | 451/? [01:20<00:00, 5.63it/s, train/loss=2.290]\nEpoch 0: | | 452/? [01:20<00:00, 5.62it/s, train/loss=2.290]\nEpoch 0: | | 452/? [01:20<00:00, 5.62it/s, train/loss=10.30]\nEpoch 0: | | 453/? [01:20<00:00, 5.63it/s, train/loss=10.30]\nEpoch 0: | | 453/? [01:20<00:00, 5.63it/s, train/loss=2.250]\nEpoch 0: | | 454/? [01:20<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 454/? [01:20<00:00, 5.62it/s, train/loss=25.40]\nEpoch 0: | | 455/? [01:20<00:00, 5.63it/s, train/loss=25.40]\nEpoch 0: | | 455/? [01:20<00:00, 5.63it/s, train/loss=2.210]\nEpoch 0: | | 456/? [01:21<00:00, 5.62it/s, train/loss=2.210]\nEpoch 0: | | 456/? [01:21<00:00, 5.62it/s, train/loss=8.850]\nEpoch 0: | | 457/? [01:21<00:00, 5.63it/s, train/loss=8.850]\nEpoch 0: | | 457/? [01:21<00:00, 5.63it/s, train/loss=2.160]\nEpoch 0: | | 458/? [01:21<00:00, 5.62it/s, train/loss=2.160]\nEpoch 0: | | 458/? [01:21<00:00, 5.62it/s, train/loss=13.90]\nEpoch 0: | | 459/? [01:21<00:00, 5.63it/s, train/loss=13.90]\nEpoch 0: | | 459/? [01:21<00:00, 5.63it/s, train/loss=2.120]\nEpoch 0: | | 460/? [01:21<00:00, 5.62it/s, train/loss=2.120]\nEpoch 0: | | 460/? [01:21<00:00, 5.62it/s, train/loss=32.80]\nEpoch 0: | | 461/? [01:21<00:00, 5.63it/s, train/loss=32.80]\nEpoch 0: | | 461/? [01:21<00:00, 5.63it/s, train/loss=2.120]\nEpoch 0: | | 462/? [01:22<00:00, 5.62it/s, train/loss=2.120]\nEpoch 0: | | 462/? [01:22<00:00, 5.62it/s, train/loss=12.30]\nEpoch 0: | | 463/? [01:22<00:00, 5.63it/s, train/loss=12.30]\nEpoch 0: | | 463/? [01:22<00:00, 5.63it/s, train/loss=2.140]\nEpoch 0: | | 464/? [01:22<00:00, 5.62it/s, train/loss=2.140]\nEpoch 0: | | 464/? [01:22<00:00, 5.62it/s, train/loss=24.00]\nEpoch 0: | | 465/? [01:22<00:00, 5.63it/s, train/loss=24.00]\nEpoch 0: | | 465/? [01:22<00:00, 5.63it/s, train/loss=2.120]\nEpoch 0: | | 466/? [01:22<00:00, 5.62it/s, train/loss=2.120]\nEpoch 0: | | 466/? [01:22<00:00, 5.62it/s, train/loss=28.10]\nEpoch 0: | | 467/? [01:22<00:00, 5.63it/s, train/loss=28.10]\nEpoch 0: | | 467/? [01:22<00:00, 5.63it/s, train/loss=2.070]\nEpoch 0: | | 468/? [01:23<00:00, 5.62it/s, train/loss=2.070]\nEpoch 0: | | 468/? [01:23<00:00, 5.62it/s, train/loss=12.20]\nEpoch 0: | | 469/? [01:23<00:00, 5.63it/s, train/loss=12.20]\nEpoch 0: | | 469/? [01:23<00:00, 5.63it/s, train/loss=2.060]\nEpoch 0: | | 470/? [01:23<00:00, 5.62it/s, train/loss=2.060]\nEpoch 0: | | 470/? [01:23<00:00, 5.62it/s, train/loss=20.10]\nEpoch 0: | | 471/? [01:23<00:00, 5.63it/s, train/loss=20.10]\nEpoch 0: | | 471/? [01:23<00:00, 5.63it/s, train/loss=2.090]\nEpoch 0: | | 472/? [01:24<00:00, 5.62it/s, train/loss=2.090]\nEpoch 0: | | 472/? [01:24<00:00, 5.62it/s, train/loss=16.70]\nEpoch 0: | | 473/? [01:24<00:00, 5.63it/s, train/loss=16.70]\nEpoch 0: | | 473/? [01:24<00:00, 5.63it/s, train/loss=2.170]\nEpoch 0: | | 474/? [01:24<00:00, 5.62it/s, train/loss=2.170]\nEpoch 0: | | 474/? [01:24<00:00, 5.62it/s, train/loss=36.50]\nEpoch 0: | | 475/? [01:24<00:00, 5.63it/s, train/loss=36.50]\nEpoch 0: | | 475/? [01:24<00:00, 5.63it/s, train/loss=2.250]\nEpoch 0: | | 476/? [01:24<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 476/? [01:24<00:00, 5.62it/s, train/loss=45.30]\nEpoch 0: | | 477/? [01:24<00:00, 5.63it/s, train/loss=45.30]\nEpoch 0: | | 477/? [01:24<00:00, 5.63it/s, train/loss=2.370]\nEpoch 0: | | 478/? [01:25<00:00, 5.62it/s, train/loss=2.370]\nEpoch 0: | | 478/? [01:25<00:00, 5.62it/s, train/loss=29.20]\nEpoch 0: | | 479/? [01:25<00:00, 5.63it/s, train/loss=29.20]\nEpoch 0: | | 479/? [01:25<00:00, 5.63it/s, train/loss=2.420]\nEpoch 0: | | 480/? [01:25<00:00, 5.62it/s, train/loss=2.420]\nEpoch 0: | | 480/? [01:25<00:00, 5.62it/s, train/loss=20.70]\nEpoch 0: | | 481/? [01:25<00:00, 5.63it/s, train/loss=20.70]\nEpoch 0: | | 481/? [01:25<00:00, 5.63it/s, train/loss=2.400]\nEpoch 0: | | 482/? [01:25<00:00, 5.62it/s, train/loss=2.400]\nEpoch 0: | | 482/? [01:25<00:00, 5.62it/s, train/loss=24.80]\nEpoch 0: | | 483/? [01:25<00:00, 5.62it/s, train/loss=24.80]\nEpoch 0: | | 483/? [01:25<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 484/? [01:26<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 484/? [01:26<00:00, 5.62it/s, train/loss=17.00]\nEpoch 0: | | 485/? [01:26<00:00, 5.62it/s, train/loss=17.00]\nEpoch 0: | | 485/? [01:26<00:00, 5.62it/s, train/loss=2.290]\nEpoch 0: | | 486/? [01:26<00:00, 5.62it/s, train/loss=2.290]\nEpoch 0: | | 486/? [01:26<00:00, 5.62it/s, train/loss=29.70]\nEpoch 0: | | 487/? [01:26<00:00, 5.62it/s, train/loss=29.70]\nEpoch 0: | | 487/? [01:26<00:00, 5.62it/s, train/loss=2.260]\nEpoch 0: | | 488/? [01:26<00:00, 5.62it/s, train/loss=2.260]\nEpoch 0: | | 488/? [01:26<00:00, 5.62it/s, train/loss=24.80]\nEpoch 0: | | 489/? [01:26<00:00, 5.62it/s, train/loss=24.80]\nEpoch 0: | | 489/? [01:26<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 490/? [01:27<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 490/? [01:27<00:00, 5.62it/s, train/loss=34.60]\nEpoch 0: | | 491/? [01:27<00:00, 5.62it/s, train/loss=34.60]\nEpoch 0: | | 491/? [01:27<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 492/? [01:27<00:00, 5.62it/s, train/loss=2.250]\nEpoch 0: | | 492/? [01:27<00:00, 5.62it/s, train/loss=27.40]\nEpoch 0: | | 493/? [01:27<00:00, 5.62it/s, train/loss=27.40]\nEpoch 0: | | 493/? [01:27<00:00, 5.62it/s, train/loss=2.270]\nEpoch 0: | | 494/? [01:27<00:00, 5.62it/s, train/loss=2.270]\nEpoch 0: | | 494/? [01:27<00:00, 5.62it/s, train/loss=17.20]\nEpoch 0: | | 495/? [01:28<00:00, 5.62it/s, train/loss=17.20]\nEpoch 0: | | 495/? [01:28<00:00, 5.62it/s, train/loss=2.320]\nEpoch 0: | | 496/? [01:28<00:00, 5.62it/s, train/loss=2.320]\nEpoch 0: | | 496/? [01:28<00:00, 5.62it/s, train/loss=31.80]\nEpoch 0: | | 497/? [01:28<00:00, 5.62it/s, train/loss=31.80]\nEpoch 0: | | 497/? [01:28<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 498/? [01:28<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 498/? [01:28<00:00, 5.62it/s, train/loss=33.30]\nEpoch 0: | | 499/? [01:28<00:00, 5.62it/s, train/loss=33.30]\nEpoch 0: | | 499/? [01:28<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 500/? [01:29<00:00, 5.62it/s, train/loss=2.350]\nEpoch 0: | | 500/? [01:29<00:00, 5.62it/s, train/loss=15.50]\nEpoch 0: | | 501/? [01:29<00:00, 5.62it/s, train/loss=15.50]\nEpoch 0: | | 501/? [01:29<00:00, 5.62it/s, train/loss=2.380]\nEpoch 0: | | 502/? [01:29<00:00, 5.62it/s, train/loss=2.380]\nEpoch 0: | | 502/? [01:29<00:00, 5.62it/s, train/loss=11.30]\nEpoch 0: | | 503/? [01:29<00:00, 5.62it/s, train/loss=11.30]\nEpoch 0: | | 503/? [01:29<00:00, 5.62it/s, train/loss=2.360]\nEpoch 0: | | 504/? [01:29<00:00, 5.62it/s, train/loss=2.360]\nEpoch 0: | | 504/? [01:29<00:00, 5.62it/s, train/loss=9.480]\nEpoch 0: | | 505/? [01:29<00:00, 5.62it/s, train/loss=9.480]\nEpoch 0: | | 505/? [01:29<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 506/? [01:30<00:00, 5.62it/s, train/loss=2.330]\nEpoch 0: | | 506/? [01:30<00:00, 5.62it/s, train/loss=15.00]\nEpoch 0: | | 507/? [01:30<00:00, 5.62it/s, train/loss=15.00]\nEpoch 0: | | 507/? [01:30<00:00, 5.62it/s, train/loss=2.290]\nEpoch 0: | | 508/? [01:30<00:00, 5.62it/s, train/loss=2.290]\nEpoch 0: | | 508/? [01:30<00:00, 5.62it/s, train/loss=9.350]\nEpoch 0: | | 509/? [01:30<00:00, 5.62it/s, train/loss=9.350]\nEpoch 0: | | 509/? [01:30<00:00, 5.62it/s, train/loss=2.240]\nEpoch 0: | | 510/? [01:30<00:00, 5.62it/s, train/loss=2.240]\nEpoch 0: | | 510/? [01:30<00:00, 5.62it/s, train/loss=21.50]\nEpoch 0: | | 511/? [01:30<00:00, 5.63it/s, train/loss=21.50]\nEpoch 0: | | 511/? [01:30<00:00, 5.63it/s, train/loss=2.190]\nEpoch 0: | | 512/? [01:31<00:00, 5.62it/s, train/loss=2.190]\nEpoch 0: | | 512/? [01:31<00:00, 5.62it/s, train/loss=24.70]\nEpoch 0: | | 513/? [01:31<00:00, 5.63it/s, train/loss=24.70]\nEpoch 0: | | 513/? [01:31<00:00, 5.63it/s, train/loss=2.150]\nEpoch 0: | | 514/? [01:31<00:00, 5.62it/s, train/loss=2.150]\nEpoch 0: | | 514/? [01:31<00:00, 5.62it/s, train/loss=27.40]\nEpoch 0: | | 515/? [01:31<00:00, 5.63it/s, train/loss=27.40]\nEpoch 0: | | 515/? [01:31<00:00, 5.63it/s, train/loss=2.130]\nEpoch 0: | | 516/? [01:31<00:00, 5.62it/s, train/loss=2.130]\nEpoch 0: | | 516/? [01:31<00:00, 5.62it/s, train/loss=33.50]\nEpoch 0: | | 517/? [01:31<00:00, 5.63it/s, train/loss=33.50]\nEpoch 0: | | 517/? [01:31<00:00, 5.63it/s, train/loss=2.140]\nEpoch 0: | | 518/? [01:32<00:00, 5.63it/s, train/loss=2.140]\nEpoch 0: | | 518/? [01:32<00:00, 5.62it/s, train/loss=14.40]\nEpoch 0: | | 519/? [01:32<00:00, 5.63it/s, train/loss=14.40]\nEpoch 0: | | 519/? [01:32<00:00, 5.63it/s, train/loss=2.180]\nEpoch 0: | | 520/? [01:32<00:00, 5.63it/s, train/loss=2.180]\nEpoch 0: | | 520/? [01:32<00:00, 5.63it/s, train/loss=60.00]\nEpoch 0: | | 521/? [01:32<00:00, 5.64it/s, train/loss=60.00]\nEpoch 0: | | 521/? [01:32<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 522/? [01:32<00:00, 5.63it/s, train/loss=2.210]\nEpoch 0: | | 522/? [01:32<00:00, 5.63it/s, train/loss=20.10]\nEpoch 0: | | 523/? [01:32<00:00, 5.64it/s, train/loss=20.10]\nEpoch 0: | | 523/? [01:32<00:00, 5.64it/s, train/loss=2.260]\nEpoch 0: | | 524/? [01:33<00:00, 5.63it/s, train/loss=2.260]\nEpoch 0: | | 524/? [01:33<00:00, 5.63it/s, train/loss=32.00]\nEpoch 0: | | 525/? [01:33<00:00, 5.64it/s, train/loss=32.00]\nEpoch 0: | | 525/? [01:33<00:00, 5.64it/s, train/loss=2.300]\nEpoch 0: | | 526/? [01:33<00:00, 5.63it/s, train/loss=2.300]\nEpoch 0: | | 526/? [01:33<00:00, 5.63it/s, train/loss=32.60]\nEpoch 0: | | 527/? [01:33<00:00, 5.64it/s, train/loss=32.60]\nEpoch 0: | | 527/? [01:33<00:00, 5.64it/s, train/loss=2.300]\nEpoch 0: | | 528/? [01:33<00:00, 5.63it/s, train/loss=2.300]\nEpoch 0: | | 528/? [01:33<00:00, 5.63it/s, train/loss=29.10]\nEpoch 0: | | 529/? [01:33<00:00, 5.64it/s, train/loss=29.10]\nEpoch 0: | | 529/? [01:33<00:00, 5.64it/s, train/loss=2.290]\nEpoch 0: | | 530/? [01:34<00:00, 5.63it/s, train/loss=2.290]\nEpoch 0: | | 530/? [01:34<00:00, 5.63it/s, train/loss=37.40]\nEpoch 0: | | 531/? [01:34<00:00, 5.64it/s, train/loss=37.40]\nEpoch 0: | | 531/? [01:34<00:00, 5.64it/s, train/loss=2.250]\nEpoch 0: | | 532/? [01:34<00:00, 5.64it/s, train/loss=2.250]\nEpoch 0: | | 532/? [01:34<00:00, 5.64it/s, train/loss=50.00]\nEpoch 0: | | 533/? [01:34<00:00, 5.64it/s, train/loss=50.00]\nEpoch 0: | | 533/? [01:34<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 534/? [01:34<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 534/? [01:34<00:00, 5.64it/s, train/loss=18.50]\nEpoch 0: | | 535/? [01:34<00:00, 5.65it/s, train/loss=18.50]\nEpoch 0: | | 535/? [01:34<00:00, 5.65it/s, train/loss=2.210]\nEpoch 0: | | 536/? [01:35<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 536/? [01:35<00:00, 5.64it/s, train/loss=15.60]\nEpoch 0: | | 537/? [01:35<00:00, 5.65it/s, train/loss=15.60]\nEpoch 0: | | 537/? [01:35<00:00, 5.65it/s, train/loss=2.220]\nEpoch 0: | | 538/? [01:35<00:00, 5.64it/s, train/loss=2.220]\nEpoch 0: | | 538/? [01:35<00:00, 5.64it/s, train/loss=10.90]\nEpoch 0: | | 539/? [01:35<00:00, 5.65it/s, train/loss=10.90]\nEpoch 0: | | 539/? [01:35<00:00, 5.65it/s, train/loss=2.210]\nEpoch 0: | | 540/? [01:35<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 540/? [01:35<00:00, 5.64it/s, train/loss=46.40]\nEpoch 0: | | 541/? [01:35<00:00, 5.65it/s, train/loss=46.40]\nEpoch 0: | | 541/? [01:35<00:00, 5.65it/s, train/loss=2.180]\nEpoch 0: | | 542/? [01:36<00:00, 5.64it/s, train/loss=2.180]\nEpoch 0: | | 542/? [01:36<00:00, 5.64it/s, train/loss=11.40]\nEpoch 0: | | 543/? [01:36<00:00, 5.65it/s, train/loss=11.40]\nEpoch 0: | | 543/? [01:36<00:00, 5.65it/s, train/loss=2.160]\nEpoch 0: | | 544/? [01:36<00:00, 5.65it/s, train/loss=2.160]\nEpoch 0: | | 544/? [01:36<00:00, 5.65it/s, train/loss=48.70]\nEpoch 0: | | 545/? [01:36<00:00, 5.65it/s, train/loss=48.70]\nEpoch 0: | | 545/? [01:36<00:00, 5.65it/s, train/loss=2.150]\nEpoch 0: | | 546/? [01:36<00:00, 5.65it/s, train/loss=2.150]\nEpoch 0: | | 546/? [01:36<00:00, 5.65it/s, train/loss=22.10]\nEpoch 0: | | 547/? [01:36<00:00, 5.66it/s, train/loss=22.10]\nEpoch 0: | | 547/? [01:36<00:00, 5.65it/s, train/loss=2.240]\nEpoch 0: | | 548/? [01:37<00:00, 5.65it/s, train/loss=2.240]\nEpoch 0: | | 548/? [01:37<00:00, 5.65it/s, train/loss=29.10]\nEpoch 0: | | 549/? [01:37<00:00, 5.66it/s, train/loss=29.10]\nEpoch 0: | | 549/? [01:37<00:00, 5.66it/s, train/loss=2.350]\nEpoch 0: | | 550/? [01:37<00:00, 5.65it/s, train/loss=2.350]\nEpoch 0: | | 550/? [01:37<00:00, 5.65it/s, train/loss=12.00]\nEpoch 0: | | 551/? [01:37<00:00, 5.66it/s, train/loss=12.00]\nEpoch 0: | | 551/? [01:37<00:00, 5.66it/s, train/loss=2.400]\nEpoch 0: | | 552/? [01:37<00:00, 5.65it/s, train/loss=2.400]\nEpoch 0: | | 552/? [01:37<00:00, 5.65it/s, train/loss=17.40]\nEpoch 0: | | 553/? [01:37<00:00, 5.66it/s, train/loss=17.40]\nEpoch 0: | | 553/? [01:37<00:00, 5.66it/s, train/loss=2.390]\nEpoch 0: | | 554/? [01:37<00:00, 5.65it/s, train/loss=2.390]\nEpoch 0: | | 554/? [01:37<00:00, 5.65it/s, train/loss=17.00]\nEpoch 0: | | 555/? [01:38<00:00, 5.66it/s, train/loss=17.00]\nEpoch 0: | | 555/? [01:38<00:00, 5.66it/s, train/loss=2.330]\nEpoch 0: | | 556/? [01:38<00:00, 5.66it/s, train/loss=2.330]\nEpoch 0: | | 556/? [01:38<00:00, 5.66it/s, train/loss=19.20]\nEpoch 0: | | 557/? [01:38<00:00, 5.66it/s, train/loss=19.20]\nEpoch 0: | | 557/? [01:38<00:00, 5.66it/s, train/loss=2.260]\nEpoch 0: | | 558/? [01:38<00:00, 5.66it/s, train/loss=2.260]\nEpoch 0: | | 558/? [01:38<00:00, 5.66it/s, train/loss=24.90]\nEpoch 0: | | 559/? [01:38<00:00, 5.66it/s, train/loss=24.90]\nEpoch 0: | | 559/? [01:38<00:00, 5.66it/s, train/loss=2.240]\nEpoch 0: | | 560/? [01:38<00:00, 5.66it/s, train/loss=2.240]\nEpoch 0: | | 560/? [01:38<00:00, 5.66it/s, train/loss=37.70]\nEpoch 0: | | 561/? [01:39<00:00, 5.67it/s, train/loss=37.70]\nEpoch 0: | | 561/? [01:39<00:00, 5.67it/s, train/loss=2.240]\nEpoch 0: | | 562/? [01:39<00:00, 5.66it/s, train/loss=2.240]\nEpoch 0: | | 562/? [01:39<00:00, 5.66it/s, train/loss=29.60]\nEpoch 0: | | 563/? [01:39<00:00, 5.67it/s, train/loss=29.60]\nEpoch 0: | | 563/? [01:39<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 564/? [01:39<00:00, 5.66it/s, train/loss=2.200]\nEpoch 0: | | 564/? [01:39<00:00, 5.66it/s, train/loss=13.10]\nEpoch 0: | | 565/? [01:39<00:00, 5.67it/s, train/loss=13.10]\nEpoch 0: | | 565/? [01:39<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 566/? [01:39<00:00, 5.66it/s, train/loss=2.180]\nEpoch 0: | | 566/? [01:39<00:00, 5.66it/s, train/loss=14.70]\nEpoch 0: | | 567/? [01:39<00:00, 5.67it/s, train/loss=14.70]\nEpoch 0: | | 567/? [01:39<00:00, 5.67it/s, train/loss=2.170]\nEpoch 0: | | 568/? [01:40<00:00, 5.66it/s, train/loss=2.170]\nEpoch 0: | | 568/? [01:40<00:00, 5.66it/s, train/loss=25.70]\nEpoch 0: | | 569/? [01:40<00:00, 5.67it/s, train/loss=25.70]\nEpoch 0: | | 569/? [01:40<00:00, 5.67it/s, train/loss=2.150]\nEpoch 0: | | 570/? [01:40<00:00, 5.67it/s, train/loss=2.150]\nEpoch 0: | | 570/? [01:40<00:00, 5.67it/s, train/loss=20.20]\nEpoch 0: | | 571/? [01:40<00:00, 5.67it/s, train/loss=20.20]\nEpoch 0: | | 571/? [01:40<00:00, 5.67it/s, train/loss=2.120]\nEpoch 0: | | 572/? [01:40<00:00, 5.66it/s, train/loss=2.120]\nEpoch 0: | | 572/? [01:40<00:00, 5.66it/s, train/loss=24.90]\nEpoch 0: | | 573/? [01:41<00:00, 5.67it/s, train/loss=24.90]\nEpoch 0: | | 573/? [01:41<00:00, 5.67it/s, train/loss=2.140]\nEpoch 0: | | 574/? [01:41<00:00, 5.67it/s, train/loss=2.140]\nEpoch 0: | | 574/? [01:41<00:00, 5.67it/s, train/loss=19.00]\nEpoch 0: | | 575/? [01:41<00:00, 5.67it/s, train/loss=19.00]\nEpoch 0: | | 575/? [01:41<00:00, 5.67it/s, train/loss=2.190]\nEpoch 0: | | 576/? [01:41<00:00, 5.67it/s, train/loss=2.190]\nEpoch 0: | | 576/? [01:41<00:00, 5.67it/s, train/loss=11.50]\nEpoch 0: | | 577/? [01:41<00:00, 5.67it/s, train/loss=11.50]\nEpoch 0: | | 577/? [01:41<00:00, 5.67it/s, train/loss=2.240]\nEpoch 0: | | 578/? [01:41<00:00, 5.67it/s, train/loss=2.240]\nEpoch 0: | | 578/? [01:41<00:00, 5.67it/s, train/loss=19.60]\nEpoch 0: | | 579/? [01:42<00:00, 5.68it/s, train/loss=19.60]\nEpoch 0: | | 579/? [01:42<00:00, 5.68it/s, train/loss=2.230]\nEpoch 0: | | 580/? [01:42<00:00, 5.67it/s, train/loss=2.230]\nEpoch 0: | | 580/? [01:42<00:00, 5.67it/s, train/loss=39.90]\nEpoch 0: | | 581/? [01:42<00:00, 5.68it/s, train/loss=39.90]\nEpoch 0: | | 581/? [01:42<00:00, 5.68it/s, train/loss=2.140]\nEpoch 0: | | 582/? [01:42<00:00, 5.67it/s, train/loss=2.140]\nEpoch 0: | | 582/? [01:42<00:00, 5.67it/s, train/loss=14.50]\nEpoch 0: | | 583/? [01:42<00:00, 5.68it/s, train/loss=14.50]\nEpoch 0: | | 583/? [01:42<00:00, 5.68it/s, train/loss=2.050]\nEpoch 0: | | 584/? [01:42<00:00, 5.67it/s, train/loss=2.050]\nEpoch 0: | | 584/? [01:42<00:00, 5.67it/s, train/loss=28.80]\nEpoch 0: | | 585/? [01:43<00:00, 5.68it/s, train/loss=28.80]\nEpoch 0: | | 585/? [01:43<00:00, 5.68it/s, train/loss=2.020]\nEpoch 0: | | 586/? [01:43<00:00, 5.67it/s, train/loss=2.020]\nEpoch 0: | | 586/? [01:43<00:00, 5.67it/s, train/loss=32.90]\nEpoch 0: | | 587/? [01:43<00:00, 5.68it/s, train/loss=32.90]\nEpoch 0: | | 587/? [01:43<00:00, 5.68it/s, train/loss=2.000]\nEpoch 0: | | 588/? [01:43<00:00, 5.67it/s, train/loss=2.000]\nEpoch 0: | | 588/? [01:43<00:00, 5.67it/s, train/loss=26.10]\nEpoch 0: | | 589/? [01:43<00:00, 5.68it/s, train/loss=26.10]\nEpoch 0: | | 589/? [01:43<00:00, 5.68it/s, train/loss=2.020]\nEpoch 0: | | 590/? [01:43<00:00, 5.68it/s, train/loss=2.020]\nEpoch 0: | | 590/? [01:43<00:00, 5.68it/s, train/loss=37.00]\nEpoch 0: | | 591/? [01:43<00:00, 5.68it/s, train/loss=37.00]\nEpoch 0: | | 591/? [01:43<00:00, 5.68it/s, train/loss=2.080]\nEpoch 0: | | 592/? [01:44<00:00, 5.68it/s, train/loss=2.080]\nEpoch 0: | | 592/? [01:44<00:00, 5.68it/s, train/loss=17.80]\nEpoch 0: | | 593/? [01:44<00:00, 5.68it/s, train/loss=17.80]\nEpoch 0: | | 593/? [01:44<00:00, 5.68it/s, train/loss=2.140]\nEpoch 0: | | 594/? [01:44<00:00, 5.68it/s, train/loss=2.140]\nEpoch 0: | | 594/? [01:44<00:00, 5.68it/s, train/loss=27.40]\nEpoch 0: | | 595/? [01:44<00:00, 5.69it/s, train/loss=27.40]\nEpoch 0: | | 595/? [01:44<00:00, 5.69it/s, train/loss=2.160]\nEpoch 0: | | 596/? [01:44<00:00, 5.68it/s, train/loss=2.160]\nEpoch 0: | | 596/? [01:44<00:00, 5.68it/s, train/loss=26.80]\nEpoch 0: | | 597/? [01:44<00:00, 5.69it/s, train/loss=26.80]\nEpoch 0: | | 597/? [01:44<00:00, 5.69it/s, train/loss=2.160]\nEpoch 0: | | 598/? [01:45<00:00, 5.68it/s, train/loss=2.160]\nEpoch 0: | | 598/? [01:45<00:00, 5.68it/s, train/loss=32.30]\nEpoch 0: | | 599/? [01:45<00:00, 5.69it/s, train/loss=32.30]\nEpoch 0: | | 599/? [01:45<00:00, 5.69it/s, train/loss=2.180]\nEpoch 0: | | 600/? [01:45<00:00, 5.68it/s, train/loss=2.180]\nEpoch 0: | | 600/? [01:45<00:00, 5.68it/s, train/loss=27.90]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 62.82it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 63.32it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 64.21it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 65.06it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 65.52it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 65.97it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 66.31it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 66.59it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 66.79it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 66.84it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 66.80it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 66.97it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 66.92it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 66.42it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 66.48it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 66.46it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 66.55it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 66.63it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 66.70it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 66.75it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 66.67it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 66.75it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 66.76it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 66.78it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 66.79it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 66.81it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 66.88it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 66.93it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 67.00it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 66.79it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 65.50it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 65.37it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 64.63it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 64.36it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 64.40it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 64.43it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 64.44it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 64.43it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 64.41it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 64.39it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 600/? [01:46<00:00, 5.62it/s, train/loss=27.90]\nEpoch 0: | | 601/? [01:47<00:00, 5.60it/s, train/loss=27.90]\nEpoch 0: | | 601/? [01:47<00:00, 5.60it/s, train/loss=2.240]\nEpoch 0: | | 602/? [01:47<00:00, 5.60it/s, train/loss=2.240]\nEpoch 0: | | 602/? [01:47<00:00, 5.60it/s, train/loss=27.10]\nEpoch 0: | | 603/? [01:47<00:00, 5.61it/s, train/loss=27.10]\nEpoch 0: | | 603/? [01:47<00:00, 5.61it/s, train/loss=2.310]\nEpoch 0: | | 604/? [01:47<00:00, 5.60it/s, train/loss=2.310]\nEpoch 0: | | 604/? [01:47<00:00, 5.60it/s, train/loss=33.40]\nEpoch 0: | | 605/? [01:47<00:00, 5.61it/s, train/loss=33.40]\nEpoch 0: | | 605/? [01:47<00:00, 5.61it/s, train/loss=2.350]\nEpoch 0: | | 606/? [01:48<00:00, 5.60it/s, train/loss=2.350]\nEpoch 0: | | 606/? [01:48<00:00, 5.60it/s, train/loss=13.90]\nEpoch 0: | | 607/? [01:48<00:00, 5.61it/s, train/loss=13.90]\nEpoch 0: | | 607/? [01:48<00:00, 5.61it/s, train/loss=2.310]\nEpoch 0: | | 608/? [01:48<00:00, 5.60it/s, train/loss=2.310]\nEpoch 0: | | 608/? [01:48<00:00, 5.60it/s, train/loss=19.40]\nEpoch 0: | | 609/? [01:48<00:00, 5.61it/s, train/loss=19.40]\nEpoch 0: | | 609/? [01:48<00:00, 5.61it/s, train/loss=2.240]\nEpoch 0: | | 610/? [01:48<00:00, 5.60it/s, train/loss=2.240]\nEpoch 0: | | 610/? [01:48<00:00, 5.60it/s, train/loss=10.60]\nEpoch 0: | | 611/? [01:48<00:00, 5.61it/s, train/loss=10.60]\nEpoch 0: | | 611/? [01:48<00:00, 5.61it/s, train/loss=2.180]\nEpoch 0: | | 612/? [01:49<00:00, 5.61it/s, train/loss=2.180]\nEpoch 0: | | 612/? [01:49<00:00, 5.61it/s, train/loss=23.00]\nEpoch 0: | | 613/? [01:49<00:00, 5.61it/s, train/loss=23.00]\nEpoch 0: | | 613/? [01:49<00:00, 5.61it/s, train/loss=2.130]\nEpoch 0: | | 614/? [01:49<00:00, 5.61it/s, train/loss=2.130]\nEpoch 0: | | 614/? [01:49<00:00, 5.61it/s, train/loss=15.30]\nEpoch 0: | | 615/? [01:49<00:00, 5.61it/s, train/loss=15.30]\nEpoch 0: | | 615/? [01:49<00:00, 5.61it/s, train/loss=2.090]\nEpoch 0: | | 616/? [01:49<00:00, 5.61it/s, train/loss=2.090]\nEpoch 0: | | 616/? [01:49<00:00, 5.61it/s, train/loss=34.00]\nEpoch 0: | | 617/? [01:49<00:00, 5.62it/s, train/loss=34.00]\nEpoch 0: | | 617/? [01:49<00:00, 5.62it/s, train/loss=2.060]\nEpoch 0: | | 618/? [01:50<00:00, 5.61it/s, train/loss=2.060]\nEpoch 0: | | 618/? [01:50<00:00, 5.61it/s, train/loss=10.70]\nEpoch 0: | | 619/? [01:50<00:00, 5.62it/s, train/loss=10.70]\nEpoch 0: | | 619/? [01:50<00:00, 5.62it/s, train/loss=2.020]\nEpoch 0: | | 620/? [01:50<00:00, 5.61it/s, train/loss=2.020]\nEpoch 0: | | 620/? [01:50<00:00, 5.61it/s, train/loss=12.90]\nEpoch 0: | | 621/? [01:50<00:00, 5.62it/s, train/loss=12.90]\nEpoch 0: | | 621/? [01:50<00:00, 5.62it/s, train/loss=1.970]\nEpoch 0: | | 622/? [01:50<00:00, 5.61it/s, train/loss=1.970]\nEpoch 0: | | 622/? [01:50<00:00, 5.61it/s, train/loss=21.60]\nEpoch 0: | | 623/? [01:50<00:00, 5.62it/s, train/loss=21.60]\nEpoch 0: | | 623/? [01:50<00:00, 5.62it/s, train/loss=1.930]\nEpoch 0: | | 624/? [01:51<00:00, 5.61it/s, train/loss=1.930]\nEpoch 0: | | 624/? [01:51<00:00, 5.61it/s, train/loss=36.80]\nEpoch 0: | | 625/? [01:51<00:00, 5.62it/s, train/loss=36.80]\nEpoch 0: | | 625/? [01:51<00:00, 5.62it/s, train/loss=1.920]\nEpoch 0: | | 626/? [01:51<00:00, 5.62it/s, train/loss=1.920]\nEpoch 0: | | 626/? [01:51<00:00, 5.62it/s, train/loss=26.50]\nEpoch 0: | | 627/? [01:51<00:00, 5.62it/s, train/loss=26.50]\nEpoch 0: | | 627/? [01:51<00:00, 5.62it/s, train/loss=1.930]\nEpoch 0: | | 628/? [01:51<00:00, 5.62it/s, train/loss=1.930]\nEpoch 0: | | 628/? [01:51<00:00, 5.62it/s, train/loss=28.90]\nEpoch 0: | | 629/? [01:51<00:00, 5.62it/s, train/loss=28.90]\nEpoch 0: | | 629/? [01:51<00:00, 5.62it/s, train/loss=1.910]\nEpoch 0: | | 630/? [01:52<00:00, 5.62it/s, train/loss=1.910]\nEpoch 0: | | 630/? [01:52<00:00, 5.62it/s, train/loss=35.60]\nEpoch 0: | | 631/? [01:52<00:00, 5.63it/s, train/loss=35.60]\nEpoch 0: | | 631/? [01:52<00:00, 5.63it/s, train/loss=1.900]\nEpoch 0: | | 632/? [01:52<00:00, 5.62it/s, train/loss=1.900]\nEpoch 0: | | 632/? [01:52<00:00, 5.62it/s, train/loss=15.00]\nEpoch 0: | | 633/? [01:52<00:00, 5.63it/s, train/loss=15.00]\nEpoch 0: | | 633/? [01:52<00:00, 5.63it/s, train/loss=1.970]\nEpoch 0: | | 634/? [01:52<00:00, 5.62it/s, train/loss=1.970]\nEpoch 0: | | 634/? [01:52<00:00, 5.62it/s, train/loss=19.70]\nEpoch 0: | | 635/? [01:52<00:00, 5.63it/s, train/loss=19.70]\nEpoch 0: | | 635/? [01:52<00:00, 5.63it/s, train/loss=2.050]\nEpoch 0: | | 636/? [01:53<00:00, 5.62it/s, train/loss=2.050]\nEpoch 0: | | 636/? [01:53<00:00, 5.62it/s, train/loss=33.90]\nEpoch 0: | | 637/? [01:53<00:00, 5.63it/s, train/loss=33.90]\nEpoch 0: | | 637/? [01:53<00:00, 5.63it/s, train/loss=2.140]\nEpoch 0: | | 638/? [01:53<00:00, 5.63it/s, train/loss=2.140]\nEpoch 0: | | 638/? [01:53<00:00, 5.62it/s, train/loss=30.40]\nEpoch 0: | | 639/? [01:53<00:00, 5.63it/s, train/loss=30.40]\nEpoch 0: | | 639/? [01:53<00:00, 5.63it/s, train/loss=2.220]\nEpoch 0: | | 640/? [01:53<00:00, 5.63it/s, train/loss=2.220]\nEpoch 0: | | 640/? [01:53<00:00, 5.63it/s, train/loss=25.00]\nEpoch 0: | | 641/? [01:53<00:00, 5.63it/s, train/loss=25.00]\nEpoch 0: | | 641/? [01:53<00:00, 5.63it/s, train/loss=2.240]\nEpoch 0: | | 642/? [01:54<00:00, 5.63it/s, train/loss=2.240]\nEpoch 0: | | 642/? [01:54<00:00, 5.63it/s, train/loss=10.00]\nEpoch 0: | | 643/? [01:54<00:00, 5.63it/s, train/loss=10.00]\nEpoch 0: | | 643/? [01:54<00:00, 5.63it/s, train/loss=2.220]\nEpoch 0: | | 644/? [01:54<00:00, 5.63it/s, train/loss=2.220]\nEpoch 0: | | 644/? [01:54<00:00, 5.63it/s, train/loss=22.80]\nEpoch 0: | | 645/? [01:54<00:00, 5.63it/s, train/loss=22.80]\nEpoch 0: | | 645/? [01:54<00:00, 5.63it/s, train/loss=2.190]\nEpoch 0: | | 646/? [01:54<00:00, 5.63it/s, train/loss=2.190]\nEpoch 0: | | 646/? [01:54<00:00, 5.63it/s, train/loss=22.90]\nEpoch 0: | | 647/? [01:54<00:00, 5.64it/s, train/loss=22.90]\nEpoch 0: | | 647/? [01:54<00:00, 5.64it/s, train/loss=2.190]\nEpoch 0: | | 648/? [01:55<00:00, 5.63it/s, train/loss=2.190]\nEpoch 0: | | 648/? [01:55<00:00, 5.63it/s, train/loss=42.40]\nEpoch 0: | | 649/? [01:55<00:00, 5.64it/s, train/loss=42.40]\nEpoch 0: | | 649/? [01:55<00:00, 5.64it/s, train/loss=2.190]\nEpoch 0: | | 650/? [01:55<00:00, 5.63it/s, train/loss=2.190]\nEpoch 0: | | 650/? [01:55<00:00, 5.63it/s, train/loss=61.90]\nEpoch 0: | | 651/? [01:55<00:00, 5.64it/s, train/loss=61.90]\nEpoch 0: | | 651/? [01:55<00:00, 5.64it/s, train/loss=2.180]\nEpoch 0: | | 652/? [01:55<00:00, 5.63it/s, train/loss=2.180]\nEpoch 0: | | 652/? [01:55<00:00, 5.63it/s, train/loss=38.10]\nEpoch 0: | | 653/? [01:55<00:00, 5.64it/s, train/loss=38.10]\nEpoch 0: | | 653/? [01:55<00:00, 5.64it/s, train/loss=2.180]\nEpoch 0: | | 654/? [01:56<00:00, 5.63it/s, train/loss=2.180]\nEpoch 0: | | 654/? [01:56<00:00, 5.63it/s, train/loss=20.60]\nEpoch 0: | | 655/? [01:56<00:00, 5.64it/s, train/loss=20.60]\nEpoch 0: | | 655/? [01:56<00:00, 5.64it/s, train/loss=2.230]\nEpoch 0: | | 656/? [01:56<00:00, 5.64it/s, train/loss=2.230]\nEpoch 0: | | 656/? [01:56<00:00, 5.64it/s, train/loss=18.20]\nEpoch 0: | | 657/? [01:56<00:00, 5.64it/s, train/loss=18.20]\nEpoch 0: | | 657/? [01:56<00:00, 5.64it/s, train/loss=2.270]\nEpoch 0: | | 658/? [01:56<00:00, 5.64it/s, train/loss=2.270]\nEpoch 0: | | 658/? [01:56<00:00, 5.64it/s, train/loss=17.30]\nEpoch 0: | | 659/? [01:56<00:00, 5.64it/s, train/loss=17.30]\nEpoch 0: | | 659/? [01:56<00:00, 5.64it/s, train/loss=2.290]\nEpoch 0: | | 660/? [01:57<00:00, 5.64it/s, train/loss=2.290]\nEpoch 0: | | 660/? [01:57<00:00, 5.64it/s, train/loss=11.40]\nEpoch 0: | | 661/? [01:57<00:00, 5.64it/s, train/loss=11.40]\nEpoch 0: | | 661/? [01:57<00:00, 5.64it/s, train/loss=2.270]\nEpoch 0: | | 662/? [01:57<00:00, 5.64it/s, train/loss=2.270]\nEpoch 0: | | 662/? [01:57<00:00, 5.64it/s, train/loss=14.50]\nEpoch 0: | | 663/? [01:57<00:00, 5.65it/s, train/loss=14.50]\nEpoch 0: | | 663/? [01:57<00:00, 5.65it/s, train/loss=2.210]\nEpoch 0: | | 664/? [01:57<00:00, 5.64it/s, train/loss=2.210]\nEpoch 0: | | 664/? [01:57<00:00, 5.64it/s, train/loss=24.50]\nEpoch 0: | | 665/? [01:57<00:00, 5.65it/s, train/loss=24.50]\nEpoch 0: | | 665/? [01:57<00:00, 5.65it/s, train/loss=2.100]\nEpoch 0: | | 666/? [01:58<00:00, 5.64it/s, train/loss=2.100]\nEpoch 0: | | 666/? [01:58<00:00, 5.64it/s, train/loss=29.30]\nEpoch 0: | | 667/? [01:58<00:00, 5.65it/s, train/loss=29.30]\nEpoch 0: | | 667/? [01:58<00:00, 5.65it/s, train/loss=2.000]\nEpoch 0: | | 668/? [01:58<00:00, 5.64it/s, train/loss=2.000]\nEpoch 0: | | 668/? [01:58<00:00, 5.64it/s, train/loss=24.10]\nEpoch 0: | | 669/? [01:58<00:00, 5.65it/s, train/loss=24.10]\nEpoch 0: | | 669/? [01:58<00:00, 5.65it/s, train/loss=1.960]\nEpoch 0: | | 670/? [01:58<00:00, 5.64it/s, train/loss=1.960]\nEpoch 0: | | 670/? [01:58<00:00, 5.64it/s, train/loss=32.10]\nEpoch 0: | | 671/? [01:58<00:00, 5.65it/s, train/loss=32.10]\nEpoch 0: | | 671/? [01:58<00:00, 5.65it/s, train/loss=1.950]\nEpoch 0: | | 672/? [01:59<00:00, 5.65it/s, train/loss=1.950]\nEpoch 0: | | 672/? [01:59<00:00, 5.65it/s, train/loss=21.70]\nEpoch 0: | | 673/? [01:59<00:00, 5.65it/s, train/loss=21.70]\nEpoch 0: | | 673/? [01:59<00:00, 5.65it/s, train/loss=1.960]\nEpoch 0: | | 674/? [01:59<00:00, 5.65it/s, train/loss=1.960]\nEpoch 0: | | 674/? [01:59<00:00, 5.65it/s, train/loss=31.20]\nEpoch 0: | | 675/? [01:59<00:00, 5.65it/s, train/loss=31.20]\nEpoch 0: | | 675/? [01:59<00:00, 5.65it/s, train/loss=1.980]\nEpoch 0: | | 676/? [01:59<00:00, 5.65it/s, train/loss=1.980]\nEpoch 0: | | 676/? [01:59<00:00, 5.65it/s, train/loss=10.90]\nEpoch 0: | | 677/? [01:59<00:00, 5.65it/s, train/loss=10.90]\nEpoch 0: | | 677/? [01:59<00:00, 5.65it/s, train/loss=2.000]\nEpoch 0: | | 678/? [02:00<00:00, 5.65it/s, train/loss=2.000]\nEpoch 0: | | 678/? [02:00<00:00, 5.65it/s, train/loss=11.30]\nEpoch 0: | | 679/? [02:00<00:00, 5.66it/s, train/loss=11.30]\nEpoch 0: | | 679/? [02:00<00:00, 5.66it/s, train/loss=2.020]\nEpoch 0: | | 680/? [02:00<00:00, 5.65it/s, train/loss=2.020]\nEpoch 0: | | 680/? [02:00<00:00, 5.65it/s, train/loss=26.00]\nEpoch 0: | | 681/? [02:00<00:00, 5.66it/s, train/loss=26.00]\nEpoch 0: | | 681/? [02:00<00:00, 5.66it/s, train/loss=2.000]\nEpoch 0: | | 682/? [02:00<00:00, 5.65it/s, train/loss=2.000]\nEpoch 0: | | 682/? [02:00<00:00, 5.65it/s, train/loss=26.70]\nEpoch 0: | | 683/? [02:00<00:00, 5.66it/s, train/loss=26.70]\nEpoch 0: | | 683/? [02:00<00:00, 5.66it/s, train/loss=1.980]\nEpoch 0: | | 684/? [02:01<00:00, 5.65it/s, train/loss=1.980]\nEpoch 0: | | 684/? [02:01<00:00, 5.65it/s, train/loss=8.930]\nEpoch 0: | | 685/? [02:01<00:00, 5.66it/s, train/loss=8.930]\nEpoch 0: | | 685/? [02:01<00:00, 5.66it/s, train/loss=1.980]\nEpoch 0: | | 686/? [02:01<00:00, 5.65it/s, train/loss=1.980]\nEpoch 0: | | 686/? [02:01<00:00, 5.65it/s, train/loss=37.30]\nEpoch 0: | | 687/? [02:01<00:00, 5.66it/s, train/loss=37.30]\nEpoch 0: | | 687/? [02:01<00:00, 5.66it/s, train/loss=1.970]\nEpoch 0: | | 688/? [02:01<00:00, 5.65it/s, train/loss=1.970]\nEpoch 0: | | 688/? [02:01<00:00, 5.65it/s, train/loss=30.80]\nEpoch 0: | | 689/? [02:01<00:00, 5.66it/s, train/loss=30.80]\nEpoch 0: | | 689/? [02:01<00:00, 5.66it/s, train/loss=2.160]\nEpoch 0: | | 690/? [02:02<00:00, 5.65it/s, train/loss=2.160]\nEpoch 0: | | 690/? [02:02<00:00, 5.65it/s, train/loss=32.70]\nEpoch 0: | | 691/? [02:02<00:00, 5.66it/s, train/loss=32.70]\nEpoch 0: | | 691/? [02:02<00:00, 5.66it/s, train/loss=2.230]\nEpoch 0: | | 692/? [02:02<00:00, 5.65it/s, train/loss=2.230]\nEpoch 0: | | 692/? [02:02<00:00, 5.65it/s, train/loss=22.50]\nEpoch 0: | | 693/? [02:02<00:00, 5.66it/s, train/loss=22.50]\nEpoch 0: | | 693/? [02:02<00:00, 5.66it/s, train/loss=2.280]\nEpoch 0: | | 694/? [02:02<00:00, 5.65it/s, train/loss=2.280]\nEpoch 0: | | 694/? [02:02<00:00, 5.65it/s, train/loss=23.20]\nEpoch 0: | | 695/? [02:02<00:00, 5.66it/s, train/loss=23.20]\nEpoch 0: | | 695/? [02:02<00:00, 5.66it/s, train/loss=2.250]\nEpoch 0: | | 696/? [02:03<00:00, 5.65it/s, train/loss=2.250]\nEpoch 0: | | 696/? [02:03<00:00, 5.65it/s, train/loss=40.20]\nEpoch 0: | | 697/? [02:03<00:00, 5.66it/s, train/loss=40.20]\nEpoch 0: | | 697/? [02:03<00:00, 5.66it/s, train/loss=2.170]\nEpoch 0: | | 698/? [02:03<00:00, 5.66it/s, train/loss=2.170]\nEpoch 0: | | 698/? [02:03<00:00, 5.66it/s, train/loss=16.40]\nEpoch 0: | | 699/? [02:03<00:00, 5.66it/s, train/loss=16.40]\nEpoch 0: | | 699/? [02:03<00:00, 5.66it/s, train/loss=2.140]\nEpoch 0: | | 700/? [02:03<00:00, 5.66it/s, train/loss=2.140]\nEpoch 0: | | 700/? [02:03<00:00, 5.66it/s, train/loss=13.90]\nEpoch 0: | | 701/? [02:03<00:00, 5.66it/s, train/loss=13.90]\nEpoch 0: | | 701/? [02:03<00:00, 5.66it/s, train/loss=2.160]\nEpoch 0: | | 702/? [02:04<00:00, 5.66it/s, train/loss=2.160]\nEpoch 0: | | 702/? [02:04<00:00, 5.66it/s, train/loss=18.10]\nEpoch 0: | | 703/? [02:04<00:00, 5.67it/s, train/loss=18.10]\nEpoch 0: | | 703/? [02:04<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 704/? [02:04<00:00, 5.66it/s, train/loss=2.180]\nEpoch 0: | | 704/? [02:04<00:00, 5.66it/s, train/loss=23.20]\nEpoch 0: | | 705/? [02:04<00:00, 5.67it/s, train/loss=23.20]\nEpoch 0: | | 705/? [02:04<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 706/? [02:04<00:00, 5.66it/s, train/loss=2.180]\nEpoch 0: | | 706/? [02:04<00:00, 5.66it/s, train/loss=31.30]\nEpoch 0: | | 707/? [02:04<00:00, 5.67it/s, train/loss=31.30]\nEpoch 0: | | 707/? [02:04<00:00, 5.67it/s, train/loss=2.160]\nEpoch 0: | | 708/? [02:04<00:00, 5.66it/s, train/loss=2.160]\nEpoch 0: | | 708/? [02:04<00:00, 5.66it/s, train/loss=19.40]\nEpoch 0: | | 709/? [02:05<00:00, 5.67it/s, train/loss=19.40]\nEpoch 0: | | 709/? [02:05<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 710/? [02:05<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 710/? [02:05<00:00, 5.67it/s, train/loss=31.20]\nEpoch 0: | | 711/? [02:05<00:00, 5.67it/s, train/loss=31.20]\nEpoch 0: | | 711/? [02:05<00:00, 5.67it/s, train/loss=2.220]\nEpoch 0: | | 712/? [02:05<00:00, 5.67it/s, train/loss=2.220]\nEpoch 0: | | 712/? [02:05<00:00, 5.67it/s, train/loss=46.40]\nEpoch 0: | | 713/? [02:05<00:00, 5.67it/s, train/loss=46.40]\nEpoch 0: | | 713/? [02:05<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 714/? [02:06<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 714/? [02:06<00:00, 5.67it/s, train/loss=31.40]\nEpoch 0: | | 715/? [02:06<00:00, 5.67it/s, train/loss=31.40]\nEpoch 0: | | 715/? [02:06<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 716/? [02:06<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 716/? [02:06<00:00, 5.67it/s, train/loss=35.10]\nEpoch 0: | | 717/? [02:06<00:00, 5.67it/s, train/loss=35.10]\nEpoch 0: | | 717/? [02:06<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 718/? [02:06<00:00, 5.67it/s, train/loss=2.200]\nEpoch 0: | | 718/? [02:06<00:00, 5.67it/s, train/loss=23.40]\nEpoch 0: | | 719/? [02:06<00:00, 5.67it/s, train/loss=23.40]\nEpoch 0: | | 719/? [02:06<00:00, 5.67it/s, train/loss=2.210]\nEpoch 0: | | 720/? [02:07<00:00, 5.67it/s, train/loss=2.210]\nEpoch 0: | | 720/? [02:07<00:00, 5.67it/s, train/loss=16.20]\nEpoch 0: | | 721/? [02:07<00:00, 5.67it/s, train/loss=16.20]\nEpoch 0: | | 721/? [02:07<00:00, 5.67it/s, train/loss=2.210]\nEpoch 0: | | 722/? [02:07<00:00, 5.67it/s, train/loss=2.210]\nEpoch 0: | | 722/? [02:07<00:00, 5.67it/s, train/loss=22.00]\nEpoch 0: | | 723/? [02:07<00:00, 5.67it/s, train/loss=22.00]\nEpoch 0: | | 723/? [02:07<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 724/? [02:07<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 724/? [02:07<00:00, 5.67it/s, train/loss=50.60]\nEpoch 0: | | 725/? [02:07<00:00, 5.68it/s, train/loss=50.60]\nEpoch 0: | | 725/? [02:07<00:00, 5.68it/s, train/loss=2.160]\nEpoch 0: | | 726/? [02:08<00:00, 5.67it/s, train/loss=2.160]\nEpoch 0: | | 726/? [02:08<00:00, 5.67it/s, train/loss=44.00]\nEpoch 0: | | 727/? [02:08<00:00, 5.68it/s, train/loss=44.00]\nEpoch 0: | | 727/? [02:08<00:00, 5.68it/s, train/loss=2.180]\nEpoch 0: | | 728/? [02:08<00:00, 5.67it/s, train/loss=2.180]\nEpoch 0: | | 728/? [02:08<00:00, 5.67it/s, train/loss=33.60]\nEpoch 0: | | 729/? [02:08<00:00, 5.68it/s, train/loss=33.60]\nEpoch 0: | | 729/? [02:08<00:00, 5.68it/s, train/loss=2.210]\nEpoch 0: | | 730/? [02:08<00:00, 5.67it/s, train/loss=2.210]\nEpoch 0: | | 730/? [02:08<00:00, 5.67it/s, train/loss=20.70]\nEpoch 0: | | 731/? [02:08<00:00, 5.68it/s, train/loss=20.70]\nEpoch 0: | | 731/? [02:08<00:00, 5.68it/s, train/loss=2.210]\nEpoch 0: | | 732/? [02:08<00:00, 5.68it/s, train/loss=2.210]\nEpoch 0: | | 732/? [02:08<00:00, 5.68it/s, train/loss=19.10]\nEpoch 0: | | 733/? [02:09<00:00, 5.68it/s, train/loss=19.10]\nEpoch 0: | | 733/? [02:09<00:00, 5.68it/s, train/loss=2.180]\nEpoch 0: | | 734/? [02:09<00:00, 5.68it/s, train/loss=2.180]\nEpoch 0: | | 734/? [02:09<00:00, 5.68it/s, train/loss=17.30]\nEpoch 0: | | 735/? [02:09<00:00, 5.68it/s, train/loss=17.30]\nEpoch 0: | | 735/? [02:09<00:00, 5.68it/s, train/loss=2.130]\nEpoch 0: | | 736/? [02:09<00:00, 5.68it/s, train/loss=2.130]\nEpoch 0: | | 736/? [02:09<00:00, 5.68it/s, train/loss=32.90]\nEpoch 0: | | 737/? [02:09<00:00, 5.68it/s, train/loss=32.90]\nEpoch 0: | | 737/? [02:09<00:00, 5.68it/s, train/loss=2.070]\nEpoch 0: | | 738/? [02:09<00:00, 5.68it/s, train/loss=2.070]\nEpoch 0: | | 738/? [02:09<00:00, 5.68it/s, train/loss=25.10]\nEpoch 0: | | 739/? [02:09<00:00, 5.69it/s, train/loss=25.10]\nEpoch 0: | | 739/? [02:09<00:00, 5.69it/s, train/loss=2.010]\nEpoch 0: | | 740/? [02:10<00:00, 5.68it/s, train/loss=2.010]\nEpoch 0: | | 740/? [02:10<00:00, 5.68it/s, train/loss=26.20]\nEpoch 0: | | 741/? [02:10<00:00, 5.69it/s, train/loss=26.20]\nEpoch 0: | | 741/? [02:10<00:00, 5.69it/s, train/loss=1.970]\nEpoch 0: | | 742/? [02:10<00:00, 5.68it/s, train/loss=1.970]\nEpoch 0: | | 742/? [02:10<00:00, 5.68it/s, train/loss=38.50]\nEpoch 0: | | 743/? [02:10<00:00, 5.69it/s, train/loss=38.50]\nEpoch 0: | | 743/? [02:10<00:00, 5.69it/s, train/loss=1.960]\nEpoch 0: | | 744/? [02:10<00:00, 5.68it/s, train/loss=1.960]\nEpoch 0: | | 744/? [02:10<00:00, 5.68it/s, train/loss=26.20]\nEpoch 0: | | 745/? [02:10<00:00, 5.69it/s, train/loss=26.20]\nEpoch 0: | | 745/? [02:10<00:00, 5.69it/s, train/loss=1.960]\nEpoch 0: | | 746/? [02:11<00:00, 5.68it/s, train/loss=1.960]\nEpoch 0: | | 746/? [02:11<00:00, 5.68it/s, train/loss=29.00]\nEpoch 0: | | 747/? [02:11<00:00, 5.69it/s, train/loss=29.00]\nEpoch 0: | | 747/? [02:11<00:00, 5.69it/s, train/loss=1.990]\nEpoch 0: | | 748/? [02:11<00:00, 5.69it/s, train/loss=1.990]\nEpoch 0: | | 748/? [02:11<00:00, 5.69it/s, train/loss=15.30]\nEpoch 0: | | 749/? [02:11<00:00, 5.69it/s, train/loss=15.30]\nEpoch 0: | | 749/? [02:11<00:00, 5.69it/s, train/loss=2.030]\nEpoch 0: | | 750/? [02:11<00:00, 5.69it/s, train/loss=2.030]\nEpoch 0: | | 750/? [02:11<00:00, 5.69it/s, train/loss=52.50]\nEpoch 0: | | 751/? [02:11<00:00, 5.69it/s, train/loss=52.50]\nEpoch 0: | | 751/? [02:11<00:00, 5.69it/s, train/loss=2.080]\nEpoch 0: | | 752/? [02:12<00:00, 5.69it/s, train/loss=2.080]\nEpoch 0: | | 752/? [02:12<00:00, 5.69it/s, train/loss=38.80]\nEpoch 0: | | 753/? [02:12<00:00, 5.69it/s, train/loss=38.80]\nEpoch 0: | | 753/? [02:12<00:00, 5.69it/s, train/loss=2.160]\nEpoch 0: | | 754/? [02:12<00:00, 5.69it/s, train/loss=2.160]\nEpoch 0: | | 754/? [02:12<00:00, 5.69it/s, train/loss=16.20]\nEpoch 0: | | 755/? [02:12<00:00, 5.70it/s, train/loss=16.20]\nEpoch 0: | | 755/? [02:12<00:00, 5.69it/s, train/loss=2.220]\nEpoch 0: | | 756/? [02:12<00:00, 5.69it/s, train/loss=2.220]\nEpoch 0: | | 756/? [02:12<00:00, 5.69it/s, train/loss=35.80]\nEpoch 0: | | 757/? [02:12<00:00, 5.70it/s, train/loss=35.80]\nEpoch 0: | | 757/? [02:12<00:00, 5.70it/s, train/loss=2.240]\nEpoch 0: | | 758/? [02:13<00:00, 5.69it/s, train/loss=2.240]\nEpoch 0: | | 758/? [02:13<00:00, 5.69it/s, train/loss=64.60]\nEpoch 0: | | 759/? [02:13<00:00, 5.70it/s, train/loss=64.60]\nEpoch 0: | | 759/? [02:13<00:00, 5.70it/s, train/loss=2.280]\nEpoch 0: | | 760/? [02:13<00:00, 5.69it/s, train/loss=2.280]\nEpoch 0: | | 760/? [02:13<00:00, 5.69it/s, train/loss=38.20]\nEpoch 0: | | 761/? [02:13<00:00, 5.70it/s, train/loss=38.20]\nEpoch 0: | | 761/? [02:13<00:00, 5.70it/s, train/loss=2.400]\nEpoch 0: | | 762/? [02:13<00:00, 5.69it/s, train/loss=2.400]\nEpoch 0: | | 762/? [02:13<00:00, 5.69it/s, train/loss=23.40]\nEpoch 0: | | 763/? [02:13<00:00, 5.70it/s, train/loss=23.40]\nEpoch 0: | | 763/? [02:13<00:00, 5.70it/s, train/loss=2.530]\nEpoch 0: | | 764/? [02:14<00:00, 5.70it/s, train/loss=2.530]\nEpoch 0: | | 764/? [02:14<00:00, 5.70it/s, train/loss=37.80]\nEpoch 0: | | 765/? [02:14<00:00, 5.70it/s, train/loss=37.80]\nEpoch 0: | | 765/? [02:14<00:00, 5.70it/s, train/loss=2.580]\nEpoch 0: | | 766/? [02:14<00:00, 5.70it/s, train/loss=2.580]\nEpoch 0: | | 766/? [02:14<00:00, 5.70it/s, train/loss=9.400]\nEpoch 0: | | 767/? [02:14<00:00, 5.70it/s, train/loss=9.400]\nEpoch 0: | | 767/? [02:14<00:00, 5.70it/s, train/loss=2.530]\nEpoch 0: | | 768/? [02:14<00:00, 5.70it/s, train/loss=2.530]\nEpoch 0: | | 768/? [02:14<00:00, 5.70it/s, train/loss=17.00]\nEpoch 0: | | 769/? [02:14<00:00, 5.70it/s, train/loss=17.00]\nEpoch 0: | | 769/? [02:14<00:00, 5.70it/s, train/loss=2.400]\nEpoch 0: | | 770/? [02:15<00:00, 5.70it/s, train/loss=2.400]\nEpoch 0: | | 770/? [02:15<00:00, 5.70it/s, train/loss=17.40]\nEpoch 0: | | 771/? [02:15<00:00, 5.70it/s, train/loss=17.40]\nEpoch 0: | | 771/? [02:15<00:00, 5.70it/s, train/loss=2.240]\nEpoch 0: | | 772/? [02:15<00:00, 5.70it/s, train/loss=2.240]\nEpoch 0: | | 772/? [02:15<00:00, 5.70it/s, train/loss=43.20]\nEpoch 0: | | 773/? [02:15<00:00, 5.71it/s, train/loss=43.20]\nEpoch 0: | | 773/? [02:15<00:00, 5.71it/s, train/loss=2.160]\nEpoch 0: | | 774/? [02:15<00:00, 5.70it/s, train/loss=2.160]\nEpoch 0: | | 774/? [02:15<00:00, 5.70it/s, train/loss=21.60]\nEpoch 0: | | 775/? [02:15<00:00, 5.71it/s, train/loss=21.60]\nEpoch 0: | | 775/? [02:15<00:00, 5.71it/s, train/loss=2.140]\nEpoch 0: | | 776/? [02:16<00:00, 5.70it/s, train/loss=2.140]\nEpoch 0: | | 776/? [02:16<00:00, 5.70it/s, train/loss=20.60]\nEpoch 0: | | 777/? [02:16<00:00, 5.71it/s, train/loss=20.60]\nEpoch 0: | | 777/? [02:16<00:00, 5.71it/s, train/loss=2.150]\nEpoch 0: | | 778/? [02:16<00:00, 5.70it/s, train/loss=2.150]\nEpoch 0: | | 778/? [02:16<00:00, 5.70it/s, train/loss=14.50]\nEpoch 0: | | 779/? [02:16<00:00, 5.71it/s, train/loss=14.50]\nEpoch 0: | | 779/? [02:16<00:00, 5.71it/s, train/loss=2.200]\nEpoch 0: | | 780/? [02:16<00:00, 5.70it/s, train/loss=2.200]\nEpoch 0: | | 780/? [02:16<00:00, 5.70it/s, train/loss=29.70]\nEpoch 0: | | 781/? [02:16<00:00, 5.71it/s, train/loss=29.70]\nEpoch 0: | | 781/? [02:16<00:00, 5.71it/s, train/loss=2.210]\nEpoch 0: | | 782/? [02:17<00:00, 5.71it/s, train/loss=2.210]\nEpoch 0: | | 782/? [02:17<00:00, 5.71it/s, train/loss=6.770]\nEpoch 0: | | 783/? [02:17<00:00, 5.71it/s, train/loss=6.770]\nEpoch 0: | | 783/? [02:17<00:00, 5.71it/s, train/loss=2.180]\nEpoch 0: | | 784/? [02:17<00:00, 5.71it/s, train/loss=2.180]\nEpoch 0: | | 784/? [02:17<00:00, 5.71it/s, train/loss=51.80]\nEpoch 0: | | 785/? [02:17<00:00, 5.71it/s, train/loss=51.80]\nEpoch 0: | | 785/? [02:17<00:00, 5.71it/s, train/loss=2.120]\nEpoch 0: | | 786/? [02:17<00:00, 5.71it/s, train/loss=2.120]\nEpoch 0: | | 786/? [02:17<00:00, 5.71it/s, train/loss=13.10]\nEpoch 0: | | 787/? [02:17<00:00, 5.71it/s, train/loss=13.10]\nEpoch 0: | | 787/? [02:17<00:00, 5.71it/s, train/loss=2.060]\nEpoch 0: | | 788/? [02:18<00:00, 5.71it/s, train/loss=2.060]\nEpoch 0: | | 788/? [02:18<00:00, 5.71it/s, train/loss=31.40]\nEpoch 0: | | 789/? [02:18<00:00, 5.71it/s, train/loss=31.40]\nEpoch 0: | | 789/? [02:18<00:00, 5.71it/s, train/loss=2.040]\nEpoch 0: | | 790/? [02:18<00:00, 5.71it/s, train/loss=2.040]\nEpoch 0: | | 790/? [02:18<00:00, 5.71it/s, train/loss=18.20]\nEpoch 0: | | 791/? [02:18<00:00, 5.71it/s, train/loss=18.20]\nEpoch 0: | | 791/? [02:18<00:00, 5.71it/s, train/loss=2.020]\nEpoch 0: | | 792/? [02:18<00:00, 5.71it/s, train/loss=2.020]\nEpoch 0: | | 792/? [02:18<00:00, 5.71it/s, train/loss=19.10]\nEpoch 0: | | 793/? [02:18<00:00, 5.72it/s, train/loss=19.10]\nEpoch 0: | | 793/? [02:18<00:00, 5.72it/s, train/loss=2.000]\nEpoch 0: | | 794/? [02:19<00:00, 5.71it/s, train/loss=2.000]\nEpoch 0: | | 794/? [02:19<00:00, 5.71it/s, train/loss=11.40]\nEpoch 0: | | 795/? [02:19<00:00, 5.72it/s, train/loss=11.40]\nEpoch 0: | | 795/? [02:19<00:00, 5.72it/s, train/loss=1.990]\nEpoch 0: | | 796/? [02:19<00:00, 5.71it/s, train/loss=1.990]\nEpoch 0: | | 796/? [02:19<00:00, 5.71it/s, train/loss=21.00]\nEpoch 0: | | 797/? [02:19<00:00, 5.72it/s, train/loss=21.00]\nEpoch 0: | | 797/? [02:19<00:00, 5.72it/s, train/loss=1.990]\nEpoch 0: | | 798/? [02:19<00:00, 5.71it/s, train/loss=1.990]\nEpoch 0: | | 798/? [02:19<00:00, 5.71it/s, train/loss=19.80]\nEpoch 0: | | 799/? [02:19<00:00, 5.72it/s, train/loss=19.80]\nEpoch 0: | | 799/? [02:19<00:00, 5.72it/s, train/loss=1.960]\nEpoch 0: | | 800/? [02:20<00:00, 5.71it/s, train/loss=1.960]\nEpoch 0: | | 800/? [02:20<00:00, 5.71it/s, train/loss=19.80]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 65.46it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:01, 31.53it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 38.31it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 40.70it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 37.31it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 40.04it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 42.57it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 44.78it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 46.68it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 48.30it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 49.68it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 50.92it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 51.66it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 52.59it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 53.46it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 54.25it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 54.95it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 55.61it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 56.23it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 56.76it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 57.23it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 57.70it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 58.15it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 56.91it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 57.10it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 57.49it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 58.21it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 58.55it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 58.87it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 59.02it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 59.31it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 59.58it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 59.84it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 60.09it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 60.31it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 60.51it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 60.69it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 60.86it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 61.03it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 800/? [02:21<00:00, 5.65it/s, train/loss=19.80]\n`Trainer.fit` stopped: `max_steps=800` reached.\nEpoch 0: | | 800/? [02:21<00:00, 5.65it/s, train/loss=19.80]\nEpoch 0: | | 800/? [02:21<00:00, 5.64it/s, train/loss=19.80]\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\nTesting: | | 0/? [00:00<?, ?it/s]\nTesting: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 1%| | 1/120 [00:00<00:01, 63.71it/s]\nTesting DataLoader 0: 2%|▏ | 2/120 [00:00<00:01, 65.37it/s]\nTesting DataLoader 0: 2%|▎ | 3/120 [00:00<00:01, 67.23it/s]\nTesting DataLoader 0: 3%|▎ | 4/120 [00:00<00:01, 68.26it/s]\nTesting DataLoader 0: 4%|▍ | 5/120 [00:00<00:01, 68.84it/s]\nTesting DataLoader 0: 5%|▌ | 6/120 [00:00<00:01, 68.90it/s]\nTesting DataLoader 0: 6%|▌ | 7/120 [00:00<00:01, 69.07it/s]\nTesting DataLoader 0: 7%|▋ | 8/120 [00:00<00:01, 69.10it/s]\nTesting DataLoader 0: 8%|▊ | 9/120 [00:00<00:01, 66.13it/s]\nTesting DataLoader 0: 8%|▊ | 10/120 [00:00<00:01, 60.76it/s]\nTesting DataLoader 0: 9%|▉ | 11/120 [00:00<00:01, 61.49it/s]\nTesting DataLoader 0: 10%|█ | 12/120 [00:00<00:01, 62.13it/s]\nTesting DataLoader 0: 11%|█ | 13/120 [00:00<00:01, 62.68it/s]\nTesting DataLoader 0: 12%|█▏ | 14/120 [00:00<00:01, 63.19it/s]\nTesting DataLoader 0: 12%|█▎ | 15/120 [00:00<00:01, 63.63it/s]\nTesting DataLoader 0: 13%|█▎ | 16/120 [00:00<00:01, 63.97it/s]\nTesting DataLoader 0: 14%|█▍ | 17/120 [00:00<00:01, 64.28it/s]\nTesting DataLoader 0: 15%|█▌ | 18/120 [00:00<00:01, 64.59it/s]\nTesting DataLoader 0: 16%|█▌ | 19/120 [00:00<00:01, 64.89it/s]\nTesting DataLoader 0: 17%|█▋ | 20/120 [00:00<00:01, 65.16it/s]\nTesting DataLoader 0: 18%|█▊ | 21/120 [00:00<00:01, 65.39it/s]\nTesting DataLoader 0: 18%|█▊ | 22/120 [00:00<00:01, 61.40it/s]\nTesting DataLoader 0: 19%|█▉ | 23/120 [00:00<00:01, 58.31it/s]\nTesting DataLoader 0: 20%|██ | 24/120 [00:00<00:01, 55.72it/s]\nTesting DataLoader 0: 21%|██ | 25/120 [00:00<00:01, 53.55it/s]\nTesting DataLoader 0: 22%|██▏ | 26/120 [00:00<00:01, 54.03it/s]\nTesting DataLoader 0: 22%|██▎ | 27/120 [00:00<00:01, 54.49it/s]\nTesting DataLoader 0: 23%|██▎ | 28/120 [00:00<00:01, 54.93it/s]\nTesting DataLoader 0: 24%|██▍ | 29/120 [00:00<00:01, 55.35it/s]\nTesting DataLoader 0: 25%|██▌ | 30/120 [00:00<00:01, 55.73it/s]\nTesting DataLoader 0: 26%|██▌ | 31/120 [00:00<00:01, 56.11it/s]\nTesting DataLoader 0: 27%|██▋ | 32/120 [00:00<00:01, 56.46it/s]\nTesting DataLoader 0: 28%|██▊ | 33/120 [00:00<00:01, 56.81it/s]\nTesting DataLoader 0: 28%|██▊ | 34/120 [00:00<00:01, 57.14it/s]\nTesting DataLoader 0: 29%|██▉ | 35/120 [00:00<00:01, 57.46it/s]\nTesting DataLoader 0: 30%|███ | 36/120 [00:00<00:01, 57.75it/s]\nTesting DataLoader 0: 31%|███ | 37/120 [00:00<00:01, 58.04it/s]\nTesting DataLoader 0: 32%|███▏ | 38/120 [00:00<00:01, 58.29it/s]\nTesting DataLoader 0: 32%|███▎ | 39/120 [00:00<00:01, 58.55it/s]\nTesting DataLoader 0: 33%|███▎ | 40/120 [00:00<00:01, 58.79it/s]\nTesting DataLoader 0: 34%|███▍ | 41/120 [00:00<00:01, 59.03it/s]\nTesting DataLoader 0: 35%|███▌ | 42/120 [00:00<00:01, 59.25it/s]\nTesting DataLoader 0: 36%|███▌ | 43/120 [00:00<00:01, 59.47it/s]\nTesting DataLoader 0: 37%|███▋ | 44/120 [00:00<00:01, 59.68it/s]\nTesting DataLoader 0: 38%|███▊ | 45/120 [00:00<00:01, 59.84it/s]\nTesting DataLoader 0: 38%|███▊ | 46/120 [00:00<00:01, 60.04it/s]\nTesting DataLoader 0: 39%|███▉ | 47/120 [00:00<00:01, 60.22it/s]\nTesting DataLoader 0: 40%|████ | 48/120 [00:00<00:01, 60.40it/s]\nTesting DataLoader 0: 41%|████ | 49/120 [00:00<00:01, 60.57it/s]\nTesting DataLoader 0: 42%|████▏ | 50/120 [00:00<00:01, 60.74it/s]\nTesting DataLoader 0: 42%|████▎ | 51/120 [00:00<00:01, 60.90it/s]\nTesting DataLoader 0: 43%|████▎ | 52/120 [00:00<00:01, 60.98it/s]\nTesting DataLoader 0: 44%|████▍ | 53/120 [00:00<00:01, 61.13it/s]\nTesting DataLoader 0: 45%|████▌ | 54/120 [00:00<00:01, 61.28it/s]\nTesting DataLoader 0: 46%|████▌ | 55/120 [00:00<00:01, 61.42it/s]\nTesting DataLoader 0: 47%|████▋ | 56/120 [00:00<00:01, 61.56it/s]\nTesting DataLoader 0: 48%|████▊ | 57/120 [00:00<00:01, 61.69it/s]\nTesting DataLoader 0: 48%|████▊ | 58/120 [00:00<00:01, 61.83it/s]\nTesting DataLoader 0: 49%|████▉ | 59/120 [00:00<00:00, 61.95it/s]\nTesting DataLoader 0: 50%|█████ | 60/120 [00:00<00:00, 62.08it/s]\nTesting DataLoader 0: 51%|█████ | 61/120 [00:00<00:00, 62.20it/s]\nTesting DataLoader 0: 52%|█████▏ | 62/120 [00:00<00:00, 62.32it/s]\nTesting DataLoader 0: 52%|█████▎ | 63/120 [00:01<00:00, 62.44it/s]\nTesting DataLoader 0: 53%|█████▎ | 64/120 [00:01<00:00, 62.55it/s]\nTesting DataLoader 0: 54%|█████▍ | 65/120 [00:01<00:00, 62.65it/s]\nTesting DataLoader 0: 55%|█████▌ | 66/120 [00:01<00:00, 62.76it/s]\nTesting DataLoader 0: 56%|█████▌ | 67/120 [00:01<00:00, 62.85it/s]\nTesting DataLoader 0: 57%|█████▋ | 68/120 [00:01<00:00, 62.95it/s]\nTesting DataLoader 0: 57%|█████▊ | 69/120 [00:01<00:00, 63.04it/s]\nTesting DataLoader 0: 58%|█████▊ | 70/120 [00:01<00:00, 63.14it/s]\nTesting DataLoader 0: 59%|█████▉ | 71/120 [00:01<00:00, 63.23it/s]\nTesting DataLoader 0: 60%|██████ | 72/120 [00:01<00:00, 63.01it/s]\nTesting DataLoader 0: 61%|██████ | 73/120 [00:01<00:00, 62.79it/s]\nTesting DataLoader 0: 62%|██████▏ | 74/120 [00:01<00:00, 61.71it/s]\nTesting DataLoader 0: 62%|██████▎ | 75/120 [00:01<00:00, 60.96it/s]\nTesting DataLoader 0: 63%|██████▎ | 76/120 [00:01<00:00, 60.23it/s]\nTesting DataLoader 0: 64%|██████▍ | 77/120 [00:01<00:00, 60.32it/s]\nTesting DataLoader 0: 65%|██████▌ | 78/120 [00:01<00:00, 60.42it/s]\nTesting DataLoader 0: 66%|██████▌ | 79/120 [00:01<00:00, 60.53it/s]\nTesting DataLoader 0: 67%|██████▋ | 80/120 [00:01<00:00, 60.47it/s]\nTesting DataLoader 0: 68%|██████▊ | 81/120 [00:01<00:00, 60.57it/s]\nTesting DataLoader 0: 68%|██████▊ | 82/120 [00:01<00:00, 60.67it/s]\nTesting DataLoader 0: 69%|██████▉ | 83/120 [00:01<00:00, 60.75it/s]\nTesting DataLoader 0: 70%|███████ | 84/120 [00:01<00:00, 60.84it/s]\nTesting DataLoader 0: 71%|███████ | 85/120 [00:01<00:00, 60.93it/s]\nTesting DataLoader 0: 72%|███████▏ | 86/120 [00:01<00:00, 61.02it/s]\nTesting DataLoader 0: 72%|███████▎ | 87/120 [00:01<00:00, 61.11it/s]\nTesting DataLoader 0: 73%|███████▎ | 88/120 [00:01<00:00, 61.21it/s]\nTesting DataLoader 0: 74%|███████▍ | 89/120 [00:01<00:00, 61.30it/s]\nTesting DataLoader 0: 75%|███████▌ | 90/120 [00:01<00:00, 61.39it/s]\nTesting DataLoader 0: 76%|███████▌ | 91/120 [00:01<00:00, 61.48it/s]\nTesting DataLoader 0: 77%|███████▋ | 92/120 [00:01<00:00, 61.55it/s]\nTesting DataLoader 0: 78%|███████▊ | 93/120 [00:01<00:00, 61.61it/s]\nTesting DataLoader 0: 78%|███████▊ | 94/120 [00:01<00:00, 61.68it/s]\nTesting DataLoader 0: 79%|███████▉ | 95/120 [00:01<00:00, 61.76it/s]\nTesting DataLoader 0: 80%|████████ | 96/120 [00:01<00:00, 61.84it/s]\nTesting DataLoader 0: 81%|████████ | 97/120 [00:01<00:00, 61.91it/s]\nTesting DataLoader 0: 82%|████████▏ | 98/120 [00:01<00:00, 61.99it/s]\nTesting DataLoader 0: 82%|████████▎ | 99/120 [00:01<00:00, 62.06it/s]\nTesting DataLoader 0: 83%|████████▎ | 100/120 [00:01<00:00, 62.13it/s]\nTesting DataLoader 0: 84%|████████▍ | 101/120 [00:01<00:00, 62.21it/s]\nTesting DataLoader 0: 85%|████████▌ | 102/120 [00:01<00:00, 62.28it/s]\nTesting DataLoader 0: 86%|████████▌ | 103/120 [00:01<00:00, 62.35it/s]\nTesting DataLoader 0: 87%|████████▋ | 104/120 [00:01<00:00, 62.41it/s]\nTesting DataLoader 0: 88%|████████▊ | 105/120 [00:01<00:00, 62.46it/s]\nTesting DataLoader 0: 88%|████████▊ | 106/120 [00:01<00:00, 62.52it/s]\nTesting DataLoader 0: 89%|████████▉ | 107/120 [00:01<00:00, 62.58it/s]\nTesting DataLoader 0: 90%|█████████ | 108/120 [00:01<00:00, 62.64it/s]\nTesting DataLoader 0: 91%|█████████ | 109/120 [00:01<00:00, 62.70it/s]\nTesting DataLoader 0: 92%|█████████▏| 110/120 [00:01<00:00, 62.76it/s]\nTesting DataLoader 0: 92%|█████████▎| 111/120 [00:01<00:00, 62.82it/s]\nTesting DataLoader 0: 93%|█████████▎| 112/120 [00:01<00:00, 62.88it/s]\nTesting DataLoader 0: 94%|█████████▍| 113/120 [00:01<00:00, 62.92it/s]\nTesting DataLoader 0: 95%|█████████▌| 114/120 [00:01<00:00, 62.98it/s]\nTesting DataLoader 0: 96%|█████████▌| 115/120 [00:01<00:00, 63.04it/s]\nTesting DataLoader 0: 97%|█████████▋| 116/120 [00:01<00:00, 63.09it/s]\nTesting DataLoader 0: 98%|█████████▊| 117/120 [00:01<00:00, 63.14it/s]\nTesting DataLoader 0: 98%|█████████▊| 118/120 [00:01<00:00, 63.19it/s]\nTesting DataLoader 0: 99%|█████████▉| 119/120 [00:01<00:00, 63.24it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:01<00:00, 63.31it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:02<00:00, 48.06it/s]\nTest results saved to outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/save\nRunning step 2: NeuS\n{'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800},\n'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 128, 'width': 128, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': True, 'requires_normal': False, 'random_camera': {'height': 128, 'width': 128, 'batch_size': 1, 'eval_height': 256, 'eval_width': 256, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}},\n'data_type': 'dreamcraft3d-single-image-datamodule',\n'description': '',\n'exp_dir': 'outputs/dreamcraft3d-coarse-neus',\n'exp_root_dir': 'outputs',\n'n_gpus': 1,\n'name': 'dreamcraft3d-coarse-neus',\n'resume': None,\n'seed': 0,\n'system': {'stage': 'coarse', 'geometry_type': 'implicit-sdf', 'geometry': {'radius': 2.0, 'normal_type': 'finite_difference', 'sdf_bias': 'sphere', 'sdf_bias_params': 0.5, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378, 'start_level': 8, 'start_step': 2000, 'update_steps': 500}}, 'material_type': 'no-material', 'material': {'requires_normal': True}, 'background_type': 'solid-color-background', 'renderer_type': 'neus-volume-renderer', 'renderer': {'radius': 2.0, 'num_samples_per_ray': 512, 'cos_anneal_end_steps': 800, 'eval_chunk_size': 8192}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': 0, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.05, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_orient': 10.0, 'lambda_sparsity': 0.1, 'lambda_opaque': 0.1, 'lambda_clip': 0.0, 'lambda_eikonal': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'betas': [0.9, 0.99], 'eps': 1e-15}, 'params': {'geometry.encoding': {'lr': 0.01}, 'geometry.sdf_network': {'lr': 0.001}, 'geometry.feature_network': {'lr': 0.001}, 'renderer': {'lr': 0.001}}}, 'weights': 'outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/ckpts/last.ckpt'},\n'system_type': 'dreamcraft3d-system',\n'tag': 'replicate_user',\n'timestamp': '@20240222-134422',\n'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': '16-mixed'},\n'trial_dir': 'outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422',\n'trial_name': 'replicate_user@20240222-134422',\n'use_timestamp': True}\nLoading Deep Floyd ...\nCouldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d74fb6-298d8d076e9d29f944cbc198;0e1233af-4a94-4850-a984-d00aa82f1e06)\nCannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0.\nRepo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it..\nWill try to load from local cache.\nLoading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s]\nLoading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 4.81it/s]\nLoading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 12.46it/s]\nLoaded Deep Floyd!\nLoading Stable Zero123 ...\nget obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion\nLatentDiffusion: Running in eps-prediction mode\nDiffusionWrapper has 859.53 M params.\nKeeping EMAs of 688.\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\nLoaded Stable Zero123!\nUsing prompt [A green leafy plant in a striped terracotta pot] and negative prompt []\nUsing view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view]\nloaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth\nUsing 16bit Automatic Mixed Precision (AMP)\nGPU available: True (cuda), used: True\nTPU available: False, using: 0 TPU cores\nIPU available: False, using: 0 IPUs\nHPU available: False, using: 0 HPUs\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128])\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n| Name | Type | Params\n----------------------------------------------------\n0 | geometry | ImplicitSDF | 12.6 M\n1 | material | NoMaterial | 0\n2 | background | SolidColorBackground | 0\n3 | renderer | NeuSVolumeRenderer | 1\n----------------------------------------------------\n12.6 M Trainable params\n0 Non-trainable params\n12.6 M Total params\n50.417 Total estimated model params size (MB)\nValidation results will be saved to outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/save\nTraining: | | 0/? [00:00<?, ?it/s]\nTraining: | | 0/? [00:00<?, ?it/s]\nEpoch 0: | | 0/? [00:00<?, ?it/s] \nEpoch 0: | | 1/? [00:00<00:00, 8.63it/s]\nEpoch 0: | | 1/? [00:00<00:00, 8.58it/s, train/loss=82.50]\nEpoch 0: | | 2/? [00:00<00:00, 4.07it/s, train/loss=82.50]\nEpoch 0: | | 2/? [00:00<00:00, 4.07it/s, train/loss=13.30]\nEpoch 0: | | 3/? [00:00<00:00, 5.11it/s, train/loss=13.30]\nEpoch 0: | | 3/? [00:00<00:00, 5.10it/s, train/loss=70.40]\nEpoch 0: | | 4/? [00:00<00:00, 4.22it/s, train/loss=70.40]\nEpoch 0: | | 4/? [00:00<00:00, 4.21it/s, train/loss=15.60]\nEpoch 0: | | 5/? [00:01<00:00, 4.76it/s, train/loss=15.60]\nEpoch 0: | | 5/? [00:01<00:00, 4.75it/s, train/loss=61.30]\nEpoch 0: | | 6/? [00:01<00:00, 4.18it/s, train/loss=61.30]\nEpoch 0: | | 6/? [00:01<00:00, 4.17it/s, train/loss=14.90]\nEpoch 0: | | 7/? [00:01<00:00, 4.39it/s, train/loss=14.90]\nEpoch 0: | | 7/? [00:01<00:00, 4.38it/s, train/loss=53.20]\nEpoch 0: | | 8/? [00:02<00:00, 3.95it/s, train/loss=53.20]\nEpoch 0: | | 8/? [00:02<00:00, 3.95it/s, train/loss=29.60]\nEpoch 0: | | 9/? [00:02<00:00, 4.12it/s, train/loss=29.60]\nEpoch 0: | | 9/? [00:02<00:00, 4.12it/s, train/loss=45.60]\nEpoch 0: | | 10/? [00:02<00:00, 3.83it/s, train/loss=45.60]\nEpoch 0: | | 10/? [00:02<00:00, 3.83it/s, train/loss=42.30]\nEpoch 0: | | 11/? [00:02<00:00, 3.97it/s, train/loss=42.30]\nEpoch 0: | | 11/? [00:02<00:00, 3.97it/s, train/loss=39.00]\nEpoch 0: | | 12/? [00:03<00:00, 3.77it/s, train/loss=39.00]\nEpoch 0: | | 12/? [00:03<00:00, 3.77it/s, train/loss=23.80]\nEpoch 0: | | 13/? [00:03<00:00, 3.88it/s, train/loss=23.80]\nEpoch 0: | | 13/? [00:03<00:00, 3.88it/s, train/loss=33.10]\nEpoch 0: | | 14/? [00:03<00:00, 3.70it/s, train/loss=33.10]\nEpoch 0: | | 14/? [00:03<00:00, 3.70it/s, train/loss=28.80]\nEpoch 0: | | 15/? [00:03<00:00, 3.88it/s, train/loss=28.80]\nEpoch 0: | | 15/? [00:03<00:00, 3.88it/s, train/loss=28.20]\nEpoch 0: | | 16/? [00:04<00:00, 3.81it/s, train/loss=28.20]\nEpoch 0: | | 16/? [00:04<00:00, 3.81it/s, train/loss=52.40]\nEpoch 0: | | 17/? [00:04<00:00, 3.97it/s, train/loss=52.40]\nEpoch 0: | | 17/? [00:04<00:00, 3.97it/s, train/loss=24.40]\nEpoch 0: | | 18/? [00:04<00:00, 3.90it/s, train/loss=24.40]\nEpoch 0: | | 18/? [00:04<00:00, 3.90it/s, train/loss=14.60]\nEpoch 0: | | 19/? [00:04<00:00, 4.05it/s, train/loss=14.60]\nEpoch 0: | | 19/? [00:04<00:00, 4.04it/s, train/loss=21.40]\nEpoch 0: | | 20/? [00:05<00:00, 3.98it/s, train/loss=21.40]\nEpoch 0: | | 20/? [00:05<00:00, 3.98it/s, train/loss=11.20]\nEpoch 0: | | 21/? [00:05<00:00, 4.11it/s, train/loss=11.20]\nEpoch 0: | | 21/? [00:05<00:00, 4.11it/s, train/loss=19.20]\nEpoch 0: | | 22/? [00:05<00:00, 4.05it/s, train/loss=19.20]\nEpoch 0: | | 22/? [00:05<00:00, 4.05it/s, train/loss=45.90]\nEpoch 0: | | 23/? [00:05<00:00, 4.18it/s, train/loss=45.90]\nEpoch 0: | | 23/? [00:05<00:00, 4.18it/s, train/loss=17.60]\nEpoch 0: | | 24/? [00:05<00:00, 4.12it/s, train/loss=17.60]\nEpoch 0: | | 24/? [00:05<00:00, 4.12it/s, train/loss=15.40]\nEpoch 0: | | 25/? [00:05<00:00, 4.24it/s, train/loss=15.40]\nEpoch 0: | | 25/? [00:05<00:00, 4.24it/s, train/loss=16.30]\nEpoch 0: | | 26/? [00:06<00:00, 4.18it/s, train/loss=16.30]\nEpoch 0: | | 26/? [00:06<00:00, 4.18it/s, train/loss=29.90]\nEpoch 0: | | 27/? [00:06<00:00, 4.30it/s, train/loss=29.90]\nEpoch 0: | | 27/? [00:06<00:00, 4.30it/s, train/loss=15.40]\nEpoch 0: | | 28/? [00:06<00:00, 4.24it/s, train/loss=15.40]\nEpoch 0: | | 28/? [00:06<00:00, 4.24it/s, train/loss=13.20]\nEpoch 0: | | 29/? [00:06<00:00, 4.36it/s, train/loss=13.20]\nEpoch 0: | | 29/? [00:06<00:00, 4.36it/s, train/loss=14.50]\nEpoch 0: | | 30/? [00:06<00:00, 4.30it/s, train/loss=14.50]\nEpoch 0: | | 30/? [00:06<00:00, 4.30it/s, train/loss=6.360]\nEpoch 0: | | 31/? [00:07<00:00, 4.41it/s, train/loss=6.360]\nEpoch 0: | | 31/? [00:07<00:00, 4.41it/s, train/loss=13.70]\nEpoch 0: | | 32/? [00:07<00:00, 4.36it/s, train/loss=13.70]\nEpoch 0: | | 32/? [00:07<00:00, 4.36it/s, train/loss=14.30]\nEpoch 0: | | 33/? [00:07<00:00, 4.41it/s, train/loss=14.30]\nEpoch 0: | | 33/? [00:07<00:00, 4.41it/s, train/loss=13.00]\nEpoch 0: | | 34/? [00:07<00:00, 4.36it/s, train/loss=13.00]\nEpoch 0: | | 34/? [00:07<00:00, 4.36it/s, train/loss=12.60]\nEpoch 0: | | 35/? [00:07<00:00, 4.46it/s, train/loss=12.60]\nEpoch 0: | | 35/? [00:07<00:00, 4.45it/s, train/loss=12.40]\nEpoch 0: | | 36/? [00:08<00:00, 4.41it/s, train/loss=12.40]\nEpoch 0: | | 36/? [00:08<00:00, 4.41it/s, train/loss=16.80]\nEpoch 0: | | 37/? [00:08<00:00, 4.50it/s, train/loss=16.80]\nEpoch 0: | | 37/? [00:08<00:00, 4.50it/s, train/loss=11.90]\nEpoch 0: | | 38/? [00:08<00:00, 4.45it/s, train/loss=11.90]\nEpoch 0: | | 38/? [00:08<00:00, 4.45it/s, train/loss=52.20]\nEpoch 0: | | 39/? [00:08<00:00, 4.54it/s, train/loss=52.20]\nEpoch 0: | | 39/? [00:08<00:00, 4.54it/s, train/loss=11.30]\nEpoch 0: | | 40/? [00:08<00:00, 4.50it/s, train/loss=11.30]\nEpoch 0: | | 40/? [00:08<00:00, 4.49it/s, train/loss=16.60]\nEpoch 0: | | 41/? [00:08<00:00, 4.58it/s, train/loss=16.60]\nEpoch 0: | | 41/? [00:08<00:00, 4.58it/s, train/loss=10.90]\nEpoch 0: | | 42/? [00:09<00:00, 4.54it/s, train/loss=10.90]\nEpoch 0: | | 42/? [00:09<00:00, 4.54it/s, train/loss=24.50]\nEpoch 0: | | 43/? [00:09<00:00, 4.61it/s, train/loss=24.50]\nEpoch 0: | | 43/? [00:09<00:00, 4.61it/s, train/loss=10.50]\nEpoch 0: | | 44/? [00:09<00:00, 4.57it/s, train/loss=10.50]\nEpoch 0: | | 44/? [00:09<00:00, 4.57it/s, train/loss=35.50]\nEpoch 0: | | 45/? [00:09<00:00, 4.65it/s, train/loss=35.50]\nEpoch 0: | | 45/? [00:09<00:00, 4.65it/s, train/loss=10.10]\nEpoch 0: | | 46/? [00:09<00:00, 4.61it/s, train/loss=10.10]\nEpoch 0: | | 46/? [00:09<00:00, 4.61it/s, train/loss=26.20]\nEpoch 0: | | 47/? [00:10<00:00, 4.68it/s, train/loss=26.20]\nEpoch 0: | | 47/? [00:10<00:00, 4.68it/s, train/loss=9.790]\nEpoch 0: | | 48/? [00:10<00:00, 4.64it/s, train/loss=9.790]\nEpoch 0: | | 48/? [00:10<00:00, 4.64it/s, train/loss=14.20]\nEpoch 0: | | 49/? [00:10<00:00, 4.72it/s, train/loss=14.20]\nEpoch 0: | | 49/? [00:10<00:00, 4.72it/s, train/loss=9.460]\nEpoch 0: | | 50/? [00:10<00:00, 4.68it/s, train/loss=9.460]\nEpoch 0: | | 50/? [00:10<00:00, 4.68it/s, train/loss=31.70]\nEpoch 0: | | 51/? [00:10<00:00, 4.75it/s, train/loss=31.70]\nEpoch 0: | | 51/? [00:10<00:00, 4.75it/s, train/loss=9.160]\nEpoch 0: | | 52/? [00:11<00:00, 4.71it/s, train/loss=9.160]\nEpoch 0: | | 52/? [00:11<00:00, 4.71it/s, train/loss=24.50]\nEpoch 0: | | 53/? [00:11<00:00, 4.78it/s, train/loss=24.50]\nEpoch 0: | | 53/? [00:11<00:00, 4.78it/s, train/loss=8.860]\nEpoch 0: | | 54/? [00:11<00:00, 4.74it/s, train/loss=8.860]\nEpoch 0: | | 54/? [00:11<00:00, 4.74it/s, train/loss=22.90]\nEpoch 0: | | 55/? [00:11<00:00, 4.81it/s, train/loss=22.90]\nEpoch 0: | | 55/? [00:11<00:00, 4.81it/s, train/loss=8.610]\nEpoch 0: | | 56/? [00:11<00:00, 4.77it/s, train/loss=8.610]\nEpoch 0: | | 56/? [00:11<00:00, 4.77it/s, train/loss=50.00]\nEpoch 0: | | 57/? [00:11<00:00, 4.83it/s, train/loss=50.00]\nEpoch 0: | | 57/? [00:11<00:00, 4.83it/s, train/loss=8.320]\nEpoch 0: | | 58/? [00:12<00:00, 4.79it/s, train/loss=8.320]\nEpoch 0: | | 58/? [00:12<00:00, 4.79it/s, train/loss=10.20]\nEpoch 0: | | 59/? [00:12<00:00, 4.86it/s, train/loss=10.20]\nEpoch 0: | | 59/? [00:12<00:00, 4.86it/s, train/loss=8.120]\nEpoch 0: | | 60/? [00:12<00:00, 4.82it/s, train/loss=8.120]\nEpoch 0: | | 60/? [00:12<00:00, 4.82it/s, train/loss=25.00]\nEpoch 0: | | 61/? [00:12<00:00, 4.88it/s, train/loss=25.00]\nEpoch 0: | | 61/? [00:12<00:00, 4.88it/s, train/loss=7.890]\nEpoch 0: | | 62/? [00:12<00:00, 4.85it/s, train/loss=7.890]\nEpoch 0: | | 62/? [00:12<00:00, 4.85it/s, train/loss=39.10]\nEpoch 0: | | 63/? [00:12<00:00, 4.91it/s, train/loss=39.10]\nEpoch 0: | | 63/? [00:12<00:00, 4.91it/s, train/loss=7.680]\nEpoch 0: | | 64/? [00:13<00:00, 4.87it/s, train/loss=7.680]\nEpoch 0: | | 64/? [00:13<00:00, 4.87it/s, train/loss=19.80]\nEpoch 0: | | 65/? [00:13<00:00, 4.93it/s, train/loss=19.80]\nEpoch 0: | | 65/? [00:13<00:00, 4.93it/s, train/loss=7.520]\nEpoch 0: | | 66/? [00:13<00:00, 4.89it/s, train/loss=7.520]\nEpoch 0: | | 66/? [00:13<00:00, 4.89it/s, train/loss=25.30]\nEpoch 0: | | 67/? [00:13<00:00, 4.95it/s, train/loss=25.30]\nEpoch 0: | | 67/? [00:13<00:00, 4.95it/s, train/loss=7.340]\nEpoch 0: | | 68/? [00:13<00:00, 4.92it/s, train/loss=7.340]\nEpoch 0: | | 68/? [00:13<00:00, 4.92it/s, train/loss=26.40]\nEpoch 0: | | 69/? [00:13<00:00, 4.97it/s, train/loss=26.40]\nEpoch 0: | | 69/? [00:13<00:00, 4.97it/s, train/loss=7.160]\nEpoch 0: | | 70/? [00:14<00:00, 4.94it/s, train/loss=7.160]\nEpoch 0: | | 70/? [00:14<00:00, 4.94it/s, train/loss=28.30]\nEpoch 0: | | 71/? [00:14<00:00, 4.99it/s, train/loss=28.30]\nEpoch 0: | | 71/? [00:14<00:00, 4.99it/s, train/loss=6.960]\nEpoch 0: | | 72/? [00:14<00:00, 4.96it/s, train/loss=6.960]\nEpoch 0: | | 72/? [00:14<00:00, 4.96it/s, train/loss=19.70]\nEpoch 0: | | 73/? [00:14<00:00, 5.01it/s, train/loss=19.70]\nEpoch 0: | | 73/? [00:14<00:00, 5.01it/s, train/loss=6.810]\nEpoch 0: | | 74/? [00:14<00:00, 4.98it/s, train/loss=6.810]\nEpoch 0: | | 74/? [00:14<00:00, 4.98it/s, train/loss=25.40]\nEpoch 0: | | 75/? [00:14<00:00, 5.03it/s, train/loss=25.40]\nEpoch 0: | | 75/? [00:14<00:00, 5.03it/s, train/loss=6.630]\nEpoch 0: | | 76/? [00:15<00:00, 5.00it/s, train/loss=6.630]\nEpoch 0: | | 76/? [00:15<00:00, 5.00it/s, train/loss=38.60]\nEpoch 0: | | 77/? [00:15<00:00, 5.05it/s, train/loss=38.60]\nEpoch 0: | | 77/? [00:15<00:00, 5.05it/s, train/loss=6.480]\nEpoch 0: | | 78/? [00:15<00:00, 5.02it/s, train/loss=6.480]\nEpoch 0: | | 78/? [00:15<00:00, 5.02it/s, train/loss=13.70]\nEpoch 0: | | 79/? [00:15<00:00, 5.07it/s, train/loss=13.70]\nEpoch 0: | | 79/? [00:15<00:00, 5.07it/s, train/loss=6.330]\nEpoch 0: | | 80/? [00:15<00:00, 5.04it/s, train/loss=6.330]\nEpoch 0: | | 80/? [00:15<00:00, 5.03it/s, train/loss=32.80]\nEpoch 0: | | 81/? [00:15<00:00, 5.08it/s, train/loss=32.80]\nEpoch 0: | | 81/? [00:15<00:00, 5.08it/s, train/loss=6.160]\nEpoch 0: | | 82/? [00:16<00:00, 5.05it/s, train/loss=6.160]\nEpoch 0: | | 82/? [00:16<00:00, 5.05it/s, train/loss=79.20]\nEpoch 0: | | 83/? [00:16<00:00, 5.10it/s, train/loss=79.20]\nEpoch 0: | | 83/? [00:16<00:00, 5.10it/s, train/loss=6.010]\nEpoch 0: | | 84/? [00:16<00:00, 5.07it/s, train/loss=6.010]\nEpoch 0: | | 84/? [00:16<00:00, 5.07it/s, train/loss=9.970]\nEpoch 0: | | 85/? [00:16<00:00, 5.11it/s, train/loss=9.970]\nEpoch 0: | | 85/? [00:16<00:00, 5.11it/s, train/loss=6.020]\nEpoch 0: | | 86/? [00:16<00:00, 5.08it/s, train/loss=6.020]\nEpoch 0: | | 86/? [00:16<00:00, 5.08it/s, train/loss=9.380]\nEpoch 0: | | 87/? [00:16<00:00, 5.13it/s, train/loss=9.380]\nEpoch 0: | | 87/? [00:16<00:00, 5.13it/s, train/loss=5.970]\nEpoch 0: | | 88/? [00:17<00:00, 5.10it/s, train/loss=5.970]\nEpoch 0: | | 88/? [00:17<00:00, 5.10it/s, train/loss=43.40]\nEpoch 0: | | 89/? [00:17<00:00, 5.14it/s, train/loss=43.40]\nEpoch 0: | | 89/? [00:17<00:00, 5.14it/s, train/loss=5.850]\nEpoch 0: | | 90/? [00:17<00:00, 5.11it/s, train/loss=5.850]\nEpoch 0: | | 90/? [00:17<00:00, 5.11it/s, train/loss=31.80]\nEpoch 0: | | 91/? [00:17<00:00, 5.16it/s, train/loss=31.80]\nEpoch 0: | | 91/? [00:17<00:00, 5.16it/s, train/loss=5.750]\nEpoch 0: | | 92/? [00:17<00:00, 5.13it/s, train/loss=5.750]\nEpoch 0: | | 92/? [00:17<00:00, 5.13it/s, train/loss=30.60]\nEpoch 0: | | 93/? [00:17<00:00, 5.17it/s, train/loss=30.60]\nEpoch 0: | | 93/? [00:17<00:00, 5.17it/s, train/loss=5.680]\nEpoch 0: | | 94/? [00:18<00:00, 5.14it/s, train/loss=5.680]\nEpoch 0: | | 94/? [00:18<00:00, 5.14it/s, train/loss=7.830]\nEpoch 0: | | 95/? [00:18<00:00, 5.18it/s, train/loss=7.830]\nEpoch 0: | | 95/? [00:18<00:00, 5.18it/s, train/loss=5.570]\nEpoch 0: | | 96/? [00:18<00:00, 5.16it/s, train/loss=5.570]\nEpoch 0: | | 96/? [00:18<00:00, 5.16it/s, train/loss=74.70]\nEpoch 0: | | 97/? [00:18<00:00, 5.20it/s, train/loss=74.70]\nEpoch 0: | | 97/? [00:18<00:00, 5.20it/s, train/loss=5.550]\nEpoch 0: | | 98/? [00:18<00:00, 5.17it/s, train/loss=5.550]\nEpoch 0: | | 98/? [00:18<00:00, 5.17it/s, train/loss=28.10]\nEpoch 0: | | 99/? [00:18<00:00, 5.21it/s, train/loss=28.10]\nEpoch 0: | | 99/? [00:18<00:00, 5.21it/s, train/loss=5.500]\nEpoch 0: | | 100/? [00:19<00:00, 5.18it/s, train/loss=5.500]\nEpoch 0: | | 100/? [00:19<00:00, 5.18it/s, train/loss=26.30]\nEpoch 0: | | 101/? [00:19<00:00, 5.22it/s, train/loss=26.30]\nEpoch 0: | | 101/? [00:19<00:00, 5.22it/s, train/loss=5.460]\nEpoch 0: | | 102/? [00:19<00:00, 5.20it/s, train/loss=5.460]\nEpoch 0: | | 102/? [00:19<00:00, 5.20it/s, train/loss=18.60]\nEpoch 0: | | 103/? [00:19<00:00, 5.24it/s, train/loss=18.60]\nEpoch 0: | | 103/? [00:19<00:00, 5.24it/s, train/loss=5.390]\nEpoch 0: | | 104/? [00:19<00:00, 5.21it/s, train/loss=5.390]\nEpoch 0: | | 104/? [00:19<00:00, 5.21it/s, train/loss=35.60]\nEpoch 0: | | 105/? [00:20<00:00, 5.25it/s, train/loss=35.60]\nEpoch 0: | | 105/? [00:20<00:00, 5.25it/s, train/loss=5.390]\nEpoch 0: | | 106/? [00:20<00:00, 5.22it/s, train/loss=5.390]\nEpoch 0: | | 106/? [00:20<00:00, 5.22it/s, train/loss=27.10]\nEpoch 0: | | 107/? [00:20<00:00, 5.26it/s, train/loss=27.10]\nEpoch 0: | | 107/? [00:20<00:00, 5.26it/s, train/loss=5.360]\nEpoch 0: | | 108/? [00:20<00:00, 5.23it/s, train/loss=5.360]\nEpoch 0: | | 108/? [00:20<00:00, 5.23it/s, train/loss=19.40]\nEpoch 0: | | 109/? [00:20<00:00, 5.27it/s, train/loss=19.40]\nEpoch 0: | | 109/? [00:20<00:00, 5.27it/s, train/loss=5.320]\nEpoch 0: | | 110/? [00:20<00:00, 5.24it/s, train/loss=5.320]\nEpoch 0: | | 110/? [00:20<00:00, 5.24it/s, train/loss=11.00]\nEpoch 0: | | 111/? [00:21<00:00, 5.28it/s, train/loss=11.00]\nEpoch 0: | | 111/? [00:21<00:00, 5.28it/s, train/loss=5.210]\nEpoch 0: | | 112/? [00:21<00:00, 5.25it/s, train/loss=5.210]\nEpoch 0: | | 112/? [00:21<00:00, 5.25it/s, train/loss=31.30]\nEpoch 0: | | 113/? [00:21<00:00, 5.29it/s, train/loss=31.30]\nEpoch 0: | | 113/? [00:21<00:00, 5.29it/s, train/loss=5.080]\nEpoch 0: | | 114/? [00:21<00:00, 5.27it/s, train/loss=5.080]\nEpoch 0: | | 114/? [00:21<00:00, 5.26it/s, train/loss=13.40]\nEpoch 0: | | 115/? [00:21<00:00, 5.30it/s, train/loss=13.40]\nEpoch 0: | | 115/? [00:21<00:00, 5.30it/s, train/loss=5.000]\nEpoch 0: | | 116/? [00:21<00:00, 5.28it/s, train/loss=5.000]\nEpoch 0: | | 116/? [00:21<00:00, 5.28it/s, train/loss=21.70]\nEpoch 0: | | 117/? [00:22<00:00, 5.31it/s, train/loss=21.70]\nEpoch 0: | | 117/? [00:22<00:00, 5.31it/s, train/loss=4.900]\nEpoch 0: | | 118/? [00:22<00:00, 5.29it/s, train/loss=4.900]\nEpoch 0: | | 118/? [00:22<00:00, 5.29it/s, train/loss=29.80]\nEpoch 0: | | 119/? [00:22<00:00, 5.32it/s, train/loss=29.80]\nEpoch 0: | | 119/? [00:22<00:00, 5.32it/s, train/loss=4.820]\nEpoch 0: | | 120/? [00:22<00:00, 5.30it/s, train/loss=4.820]\nEpoch 0: | | 120/? [00:22<00:00, 5.30it/s, train/loss=16.00]\nEpoch 0: | | 121/? [00:22<00:00, 5.33it/s, train/loss=16.00]\nEpoch 0: | | 121/? [00:22<00:00, 5.33it/s, train/loss=4.760]\nEpoch 0: | | 122/? [00:22<00:00, 5.31it/s, train/loss=4.760]\nEpoch 0: | | 122/? [00:22<00:00, 5.31it/s, train/loss=9.140]\nEpoch 0: | | 123/? [00:23<00:00, 5.34it/s, train/loss=9.140]\nEpoch 0: | | 123/? [00:23<00:00, 5.34it/s, train/loss=4.590]\nEpoch 0: | | 124/? [00:23<00:00, 5.31it/s, train/loss=4.590]\nEpoch 0: | | 124/? [00:23<00:00, 5.31it/s, train/loss=15.00]\nEpoch 0: | | 125/? [00:23<00:00, 5.35it/s, train/loss=15.00]\nEpoch 0: | | 125/? [00:23<00:00, 5.35it/s, train/loss=4.540]\nEpoch 0: | | 126/? [00:23<00:00, 5.33it/s, train/loss=4.540]\nEpoch 0: | | 126/? [00:23<00:00, 5.32it/s, train/loss=29.10]\nEpoch 0: | | 127/? [00:23<00:00, 5.36it/s, train/loss=29.10]\nEpoch 0: | | 127/? [00:23<00:00, 5.36it/s, train/loss=4.470]\nEpoch 0: | | 128/? [00:23<00:00, 5.33it/s, train/loss=4.470]\nEpoch 0: | | 128/? [00:23<00:00, 5.33it/s, train/loss=14.60]\nEpoch 0: | | 129/? [00:24<00:00, 5.37it/s, train/loss=14.60]\nEpoch 0: | | 129/? [00:24<00:00, 5.37it/s, train/loss=4.440]\nEpoch 0: | | 130/? [00:24<00:00, 5.34it/s, train/loss=4.440]\nEpoch 0: | | 130/? [00:24<00:00, 5.34it/s, train/loss=53.50]\nEpoch 0: | | 131/? [00:24<00:00, 5.38it/s, train/loss=53.50]\nEpoch 0: | | 131/? [00:24<00:00, 5.38it/s, train/loss=4.370]\nEpoch 0: | | 132/? [00:24<00:00, 5.35it/s, train/loss=4.370]\nEpoch 0: | | 132/? [00:24<00:00, 5.35it/s, train/loss=21.30]\nEpoch 0: | | 133/? [00:24<00:00, 5.39it/s, train/loss=21.30]\nEpoch 0: | | 133/? [00:24<00:00, 5.38it/s, train/loss=4.300]\nEpoch 0: | | 134/? [00:24<00:00, 5.36it/s, train/loss=4.300]\nEpoch 0: | | 134/? [00:24<00:00, 5.36it/s, train/loss=41.60]\nEpoch 0: | | 135/? [00:25<00:00, 5.39it/s, train/loss=41.60]\nEpoch 0: | | 135/? [00:25<00:00, 5.39it/s, train/loss=4.300]\nEpoch 0: | | 136/? [00:25<00:00, 5.37it/s, train/loss=4.300]\nEpoch 0: | | 136/? [00:25<00:00, 5.37it/s, train/loss=56.40]\nEpoch 0: | | 137/? [00:25<00:00, 5.40it/s, train/loss=56.40]\nEpoch 0: | | 137/? [00:25<00:00, 5.40it/s, train/loss=4.250]\nEpoch 0: | | 138/? [00:25<00:00, 5.38it/s, train/loss=4.250]\nEpoch 0: | | 138/? [00:25<00:00, 5.38it/s, train/loss=27.90]\nEpoch 0: | | 139/? [00:25<00:00, 5.41it/s, train/loss=27.90]\nEpoch 0: | | 139/? [00:25<00:00, 5.41it/s, train/loss=4.200]\nEpoch 0: | | 140/? [00:25<00:00, 5.39it/s, train/loss=4.200]\nEpoch 0: | | 140/? [00:25<00:00, 5.39it/s, train/loss=23.60]\nEpoch 0: | | 141/? [00:26<00:00, 5.42it/s, train/loss=23.60]\nEpoch 0: | | 141/? [00:26<00:00, 5.42it/s, train/loss=4.210]\nEpoch 0: | | 142/? [00:26<00:00, 5.39it/s, train/loss=4.210]\nEpoch 0: | | 142/? [00:26<00:00, 5.39it/s, train/loss=34.30]\nEpoch 0: | | 143/? [00:26<00:00, 5.42it/s, train/loss=34.30]\nEpoch 0: | | 143/? [00:26<00:00, 5.42it/s, train/loss=4.270]\nEpoch 0: | | 144/? [00:26<00:00, 5.40it/s, train/loss=4.270]\nEpoch 0: | | 144/? [00:26<00:00, 5.40it/s, train/loss=11.00]\nEpoch 0: | | 145/? [00:26<00:00, 5.43it/s, train/loss=11.00]\nEpoch 0: | | 145/? [00:26<00:00, 5.43it/s, train/loss=4.260]\nEpoch 0: | | 146/? [00:26<00:00, 5.41it/s, train/loss=4.260]\nEpoch 0: | | 146/? [00:26<00:00, 5.41it/s, train/loss=16.60]\nEpoch 0: | | 147/? [00:27<00:00, 5.44it/s, train/loss=16.60]\nEpoch 0: | | 147/? [00:27<00:00, 5.44it/s, train/loss=4.250]\nEpoch 0: | | 148/? [00:27<00:00, 5.42it/s, train/loss=4.250]\nEpoch 0: | | 148/? [00:27<00:00, 5.42it/s, train/loss=56.10]\nEpoch 0: | | 149/? [00:27<00:00, 5.45it/s, train/loss=56.10]\nEpoch 0: | | 149/? [00:27<00:00, 5.45it/s, train/loss=4.270]\nEpoch 0: | | 150/? [00:27<00:00, 5.43it/s, train/loss=4.270]\nEpoch 0: | | 150/? [00:27<00:00, 5.43it/s, train/loss=17.70]\nEpoch 0: | | 151/? [00:27<00:00, 5.46it/s, train/loss=17.70]\nEpoch 0: | | 151/? [00:27<00:00, 5.46it/s, train/loss=4.270]\nEpoch 0: | | 152/? [00:27<00:00, 5.44it/s, train/loss=4.270]\nEpoch 0: | | 152/? [00:27<00:00, 5.44it/s, train/loss=29.20]\nEpoch 0: | | 153/? [00:28<00:00, 5.46it/s, train/loss=29.20]\nEpoch 0: | | 153/? [00:28<00:00, 5.46it/s, train/loss=4.220]\nEpoch 0: | | 154/? [00:28<00:00, 5.44it/s, train/loss=4.220]\nEpoch 0: | | 154/? [00:28<00:00, 5.44it/s, train/loss=24.70]\nEpoch 0: | | 155/? [00:28<00:00, 5.47it/s, train/loss=24.70]\nEpoch 0: | | 155/? [00:28<00:00, 5.47it/s, train/loss=4.170]\nEpoch 0: | | 156/? [00:28<00:00, 5.45it/s, train/loss=4.170]\nEpoch 0: | | 156/? [00:28<00:00, 5.45it/s, train/loss=32.10]\nEpoch 0: | | 157/? [00:28<00:00, 5.48it/s, train/loss=32.10]\nEpoch 0: | | 157/? [00:28<00:00, 5.48it/s, train/loss=4.130]\nEpoch 0: | | 158/? [00:28<00:00, 5.46it/s, train/loss=4.130]\nEpoch 0: | | 158/? [00:28<00:00, 5.46it/s, train/loss=50.40]\nEpoch 0: | | 159/? [00:29<00:00, 5.47it/s, train/loss=50.40]\nEpoch 0: | | 159/? [00:29<00:00, 5.47it/s, train/loss=4.160]\nEpoch 0: | | 160/? [00:29<00:00, 5.45it/s, train/loss=4.160]\nEpoch 0: | | 160/? [00:29<00:00, 5.45it/s, train/loss=39.00]\nEpoch 0: | | 161/? [00:29<00:00, 5.47it/s, train/loss=39.00]\nEpoch 0: | | 161/? [00:29<00:00, 5.47it/s, train/loss=4.080]\nEpoch 0: | | 162/? [00:29<00:00, 5.45it/s, train/loss=4.080]\nEpoch 0: | | 162/? [00:29<00:00, 5.45it/s, train/loss=23.90]\nEpoch 0: | | 163/? [00:29<00:00, 5.48it/s, train/loss=23.90]\nEpoch 0: | | 163/? [00:29<00:00, 5.48it/s, train/loss=4.140]\nEpoch 0: | | 164/? [00:30<00:00, 5.46it/s, train/loss=4.140]\nEpoch 0: | | 164/? [00:30<00:00, 5.46it/s, train/loss=20.70]\nEpoch 0: | | 165/? [00:30<00:00, 5.48it/s, train/loss=20.70]\nEpoch 0: | | 165/? [00:30<00:00, 5.48it/s, train/loss=3.990]\nEpoch 0: | | 166/? [00:30<00:00, 5.46it/s, train/loss=3.990]\nEpoch 0: | | 166/? [00:30<00:00, 5.46it/s, train/loss=46.60]\nEpoch 0: | | 167/? [00:30<00:00, 5.49it/s, train/loss=46.60]\nEpoch 0: | | 167/? [00:30<00:00, 5.49it/s, train/loss=4.030]\nEpoch 0: | | 168/? [00:30<00:00, 5.47it/s, train/loss=4.030]\nEpoch 0: | | 168/? [00:30<00:00, 5.47it/s, train/loss=31.20]\nEpoch 0: | | 169/? [00:30<00:00, 5.50it/s, train/loss=31.20]\nEpoch 0: | | 169/? [00:30<00:00, 5.50it/s, train/loss=3.920]\nEpoch 0: | | 170/? [00:31<00:00, 5.48it/s, train/loss=3.920]\nEpoch 0: | | 170/? [00:31<00:00, 5.48it/s, train/loss=24.30]\nEpoch 0: | | 171/? [00:31<00:00, 5.49it/s, train/loss=24.30]\nEpoch 0: | | 171/? [00:31<00:00, 5.49it/s, train/loss=3.860]\nEpoch 0: | | 172/? [00:31<00:00, 5.47it/s, train/loss=3.860]\nEpoch 0: | | 172/? [00:31<00:00, 5.47it/s, train/loss=48.80]\nEpoch 0: | | 173/? [00:31<00:00, 5.49it/s, train/loss=48.80]\nEpoch 0: | | 173/? [00:31<00:00, 5.49it/s, train/loss=3.870]\nEpoch 0: | | 174/? [00:31<00:00, 5.45it/s, train/loss=3.870]\nEpoch 0: | | 174/? [00:31<00:00, 5.45it/s, train/loss=29.00]\nEpoch 0: | | 175/? [00:31<00:00, 5.47it/s, train/loss=29.00]\nEpoch 0: | | 175/? [00:31<00:00, 5.47it/s, train/loss=3.860]\nEpoch 0: | | 176/? [00:32<00:00, 5.45it/s, train/loss=3.860]\nEpoch 0: | | 176/? [00:32<00:00, 5.45it/s, train/loss=28.10]\nEpoch 0: | | 177/? [00:32<00:00, 5.47it/s, train/loss=28.10]\nEpoch 0: | | 177/? [00:32<00:00, 5.47it/s, train/loss=3.830]\nEpoch 0: | | 178/? [00:32<00:00, 5.45it/s, train/loss=3.830]\nEpoch 0: | | 178/? [00:32<00:00, 5.45it/s, train/loss=29.80]\nEpoch 0: | | 179/? [00:32<00:00, 5.48it/s, train/loss=29.80]\nEpoch 0: | | 179/? [00:32<00:00, 5.48it/s, train/loss=3.810]\nEpoch 0: | | 180/? [00:32<00:00, 5.46it/s, train/loss=3.810]\nEpoch 0: | | 180/? [00:32<00:00, 5.46it/s, train/loss=22.60]\nEpoch 0: | | 181/? [00:32<00:00, 5.49it/s, train/loss=22.60]\nEpoch 0: | | 181/? [00:32<00:00, 5.49it/s, train/loss=3.810]\nEpoch 0: | | 182/? [00:33<00:00, 5.47it/s, train/loss=3.810]\nEpoch 0: | | 182/? [00:33<00:00, 5.47it/s, train/loss=17.40]\nEpoch 0: | | 183/? [00:33<00:00, 5.49it/s, train/loss=17.40]\nEpoch 0: | | 183/? [00:33<00:00, 5.49it/s, train/loss=3.830]\nEpoch 0: | | 184/? [00:33<00:00, 5.47it/s, train/loss=3.830]\nEpoch 0: | | 184/? [00:33<00:00, 5.47it/s, train/loss=26.80]\nEpoch 0: | | 185/? [00:33<00:00, 5.50it/s, train/loss=26.80]\nEpoch 0: | | 185/? [00:33<00:00, 5.50it/s, train/loss=3.770]\nEpoch 0: | | 186/? [00:33<00:00, 5.48it/s, train/loss=3.770]\nEpoch 0: | | 186/? [00:33<00:00, 5.48it/s, train/loss=24.20]\nEpoch 0: | | 187/? [00:33<00:00, 5.51it/s, train/loss=24.20]\nEpoch 0: | | 187/? [00:33<00:00, 5.51it/s, train/loss=3.750]\nEpoch 0: | | 188/? [00:34<00:00, 5.49it/s, train/loss=3.750]\nEpoch 0: | | 188/? [00:34<00:00, 5.49it/s, train/loss=24.00]\nEpoch 0: | | 189/? [00:34<00:00, 5.51it/s, train/loss=24.00]\nEpoch 0: | | 189/? [00:34<00:00, 5.51it/s, train/loss=3.690]\nEpoch 0: | | 190/? [00:34<00:00, 5.50it/s, train/loss=3.690]\nEpoch 0: | | 190/? [00:34<00:00, 5.50it/s, train/loss=21.50]\nEpoch 0: | | 191/? [00:34<00:00, 5.52it/s, train/loss=21.50]\nEpoch 0: | | 191/? [00:34<00:00, 5.52it/s, train/loss=3.680]\nEpoch 0: | | 192/? [00:34<00:00, 5.50it/s, train/loss=3.680]\nEpoch 0: | | 192/? [00:34<00:00, 5.50it/s, train/loss=36.10]\nEpoch 0: | | 193/? [00:34<00:00, 5.53it/s, train/loss=36.10]\nEpoch 0: | | 193/? [00:34<00:00, 5.52it/s, train/loss=3.640]\nEpoch 0: | | 194/? [00:35<00:00, 5.51it/s, train/loss=3.640]\nEpoch 0: | | 194/? [00:35<00:00, 5.51it/s, train/loss=13.30]\nEpoch 0: | | 195/? [00:35<00:00, 5.53it/s, train/loss=13.30]\nEpoch 0: | | 195/? [00:35<00:00, 5.53it/s, train/loss=3.600]\nEpoch 0: | | 196/? [00:35<00:00, 5.51it/s, train/loss=3.600]\nEpoch 0: | | 196/? [00:35<00:00, 5.51it/s, train/loss=33.60]\nEpoch 0: | | 197/? [00:35<00:00, 5.53it/s, train/loss=33.60]\nEpoch 0: | | 197/? [00:35<00:00, 5.52it/s, train/loss=3.520]\nEpoch 0: | | 198/? [00:36<00:00, 5.50it/s, train/loss=3.520]\nEpoch 0: | | 198/? [00:36<00:00, 5.50it/s, train/loss=35.50]\nEpoch 0: | | 199/? [00:36<00:00, 5.51it/s, train/loss=35.50]\nEpoch 0: | | 199/? [00:36<00:00, 5.51it/s, train/loss=3.470]\nEpoch 0: | | 200/? [00:36<00:00, 5.48it/s, train/loss=3.470]\nEpoch 0: | | 200/? [00:36<00:00, 5.48it/s, train/loss=14.60]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:10, 3.63it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:10, 3.65it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:10, 3.66it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:01<00:09, 3.65it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:02<00:08, 3.67it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:02<00:08, 3.68it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:02<00:08, 3.68it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:02<00:07, 3.69it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:03<00:07, 3.69it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:03<00:07, 3.70it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:03<00:07, 3.70it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:04<00:06, 3.71it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:04<00:06, 3.71it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:04<00:06, 3.72it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:04<00:05, 3.72it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:05<00:05, 3.72it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:05<00:05, 3.73it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:05<00:05, 3.73it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:05<00:04, 3.73it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:06<00:04, 3.73it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:06<00:04, 3.73it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:06<00:04, 3.74it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:06<00:03, 3.74it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:07<00:03, 3.74it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:07<00:03, 3.75it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:07<00:02, 3.75it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:07<00:02, 3.75it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:08<00:02, 3.76it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:08<00:02, 3.76it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:08<00:01, 3.76it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:09<00:01, 3.77it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:09<00:01, 3.77it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:09<00:01, 3.78it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:09<00:00, 3.78it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:10<00:00, 3.79it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:10<00:00, 3.78it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:10<00:00, 3.78it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 200/? [00:47<00:00, 4.18it/s, train/loss=14.60]\nEpoch 0: | | 201/? [00:48<00:00, 4.17it/s, train/loss=14.60]\nEpoch 0: | | 201/? [00:48<00:00, 4.17it/s, train/loss=3.450]\nEpoch 0: | | 202/? [00:48<00:00, 4.16it/s, train/loss=3.450]\nEpoch 0: | | 202/? [00:48<00:00, 4.16it/s, train/loss=29.70]\nEpoch 0: | | 203/? [00:48<00:00, 4.17it/s, train/loss=29.70]\nEpoch 0: | | 203/? [00:48<00:00, 4.17it/s, train/loss=3.370]\nEpoch 0: | | 204/? [00:49<00:00, 4.16it/s, train/loss=3.370]\nEpoch 0: | | 204/? [00:49<00:00, 4.16it/s, train/loss=36.30]\nEpoch 0: | | 205/? [00:49<00:00, 4.17it/s, train/loss=36.30]\nEpoch 0: | | 205/? [00:49<00:00, 4.17it/s, train/loss=3.240]\nEpoch 0: | | 206/? [00:49<00:00, 4.17it/s, train/loss=3.240]\nEpoch 0: | | 206/? [00:49<00:00, 4.17it/s, train/loss=20.20]\nEpoch 0: | | 207/? [00:49<00:00, 4.19it/s, train/loss=20.20]\nEpoch 0: | | 207/? [00:49<00:00, 4.19it/s, train/loss=3.100]\nEpoch 0: | | 208/? [00:49<00:00, 4.18it/s, train/loss=3.100]\nEpoch 0: | | 208/? [00:49<00:00, 4.18it/s, train/loss=30.20]\nEpoch 0: | | 209/? [00:49<00:00, 4.20it/s, train/loss=30.20]\nEpoch 0: | | 209/? [00:49<00:00, 4.20it/s, train/loss=2.980]\nEpoch 0: | | 210/? [00:50<00:00, 4.20it/s, train/loss=2.980]\nEpoch 0: | | 210/? [00:50<00:00, 4.20it/s, train/loss=22.10]\nEpoch 0: | | 211/? [00:50<00:00, 4.21it/s, train/loss=22.10]\nEpoch 0: | | 211/? [00:50<00:00, 4.21it/s, train/loss=2.870]\nEpoch 0: | | 212/? [00:50<00:00, 4.21it/s, train/loss=2.870]\nEpoch 0: | | 212/? [00:50<00:00, 4.21it/s, train/loss=31.50]\nEpoch 0: | | 213/? [00:50<00:00, 4.22it/s, train/loss=31.50]\nEpoch 0: | | 213/? [00:50<00:00, 4.22it/s, train/loss=2.790]\nEpoch 0: | | 214/? [00:50<00:00, 4.22it/s, train/loss=2.790]\nEpoch 0: | | 214/? [00:50<00:00, 4.22it/s, train/loss=20.80]\nEpoch 0: | | 215/? [00:50<00:00, 4.24it/s, train/loss=20.80]\nEpoch 0: | | 215/? [00:50<00:00, 4.24it/s, train/loss=2.730]\nEpoch 0: | | 216/? [00:51<00:00, 4.23it/s, train/loss=2.730]\nEpoch 0: | | 216/? [00:51<00:00, 4.23it/s, train/loss=65.60]\nEpoch 0: | | 217/? [00:51<00:00, 4.25it/s, train/loss=65.60]\nEpoch 0: | | 217/? [00:51<00:00, 4.25it/s, train/loss=2.680]\nEpoch 0: | | 218/? [00:51<00:00, 4.25it/s, train/loss=2.680]\nEpoch 0: | | 218/? [00:51<00:00, 4.25it/s, train/loss=23.40]\nEpoch 0: | | 219/? [00:51<00:00, 4.26it/s, train/loss=23.40]\nEpoch 0: | | 219/? [00:51<00:00, 4.26it/s, train/loss=2.660]\nEpoch 0: | | 220/? [00:51<00:00, 4.26it/s, train/loss=2.660]\nEpoch 0: | | 220/? [00:51<00:00, 4.26it/s, train/loss=27.50]\nEpoch 0: | | 221/? [00:51<00:00, 4.28it/s, train/loss=27.50]\nEpoch 0: | | 221/? [00:51<00:00, 4.28it/s, train/loss=2.650]\nEpoch 0: | | 222/? [00:51<00:00, 4.27it/s, train/loss=2.650]\nEpoch 0: | | 222/? [00:51<00:00, 4.27it/s, train/loss=89.30]\nEpoch 0: | | 223/? [00:52<00:00, 4.29it/s, train/loss=89.30]\nEpoch 0: | | 223/? [00:52<00:00, 4.29it/s, train/loss=2.650]\nEpoch 0: | | 224/? [00:52<00:00, 4.28it/s, train/loss=2.650]\nEpoch 0: | | 224/? [00:52<00:00, 4.28it/s, train/loss=46.50]\nEpoch 0: | | 225/? [00:52<00:00, 4.30it/s, train/loss=46.50]\nEpoch 0: | | 225/? [00:52<00:00, 4.30it/s, train/loss=2.650]\nEpoch 0: | | 226/? [00:52<00:00, 4.29it/s, train/loss=2.650]\nEpoch 0: | | 226/? [00:52<00:00, 4.29it/s, train/loss=24.20]\nEpoch 0: | | 227/? [00:52<00:00, 4.31it/s, train/loss=24.20]\nEpoch 0: | | 227/? [00:52<00:00, 4.31it/s, train/loss=2.630]\nEpoch 0: | | 228/? [00:52<00:00, 4.30it/s, train/loss=2.630]\nEpoch 0: | | 228/? [00:52<00:00, 4.30it/s, train/loss=21.20]\nEpoch 0: | | 229/? [00:52<00:00, 4.32it/s, train/loss=21.20]\nEpoch 0: | | 229/? [00:52<00:00, 4.32it/s, train/loss=2.570]\nEpoch 0: | | 230/? [00:53<00:00, 4.32it/s, train/loss=2.570]\nEpoch 0: | | 230/? [00:53<00:00, 4.32it/s, train/loss=28.80]\nEpoch 0: | | 231/? [00:53<00:00, 4.33it/s, train/loss=28.80]\nEpoch 0: | | 231/? [00:53<00:00, 4.33it/s, train/loss=2.490]\nEpoch 0: | | 232/? [00:53<00:00, 4.33it/s, train/loss=2.490]\nEpoch 0: | | 232/? [00:53<00:00, 4.33it/s, train/loss=18.90]\nEpoch 0: | | 233/? [00:53<00:00, 4.34it/s, train/loss=18.90]\nEpoch 0: | | 233/? [00:53<00:00, 4.34it/s, train/loss=2.410]\nEpoch 0: | | 234/? [00:53<00:00, 4.34it/s, train/loss=2.410]\nEpoch 0: | | 234/? [00:53<00:00, 4.34it/s, train/loss=27.70]\nEpoch 0: | | 235/? [00:53<00:00, 4.35it/s, train/loss=27.70]\nEpoch 0: | | 235/? [00:53<00:00, 4.35it/s, train/loss=2.350]\nEpoch 0: | | 236/? [00:54<00:00, 4.35it/s, train/loss=2.350]\nEpoch 0: | | 236/? [00:54<00:00, 4.35it/s, train/loss=26.80]\nEpoch 0: | | 237/? [00:54<00:00, 4.36it/s, train/loss=26.80]\nEpoch 0: | | 237/? [00:54<00:00, 4.36it/s, train/loss=2.300]\nEpoch 0: | | 238/? [00:54<00:00, 4.36it/s, train/loss=2.300]\nEpoch 0: | | 238/? [00:54<00:00, 4.36it/s, train/loss=21.90]\nEpoch 0: | | 239/? [00:54<00:00, 4.38it/s, train/loss=21.90]\nEpoch 0: | | 239/? [00:54<00:00, 4.37it/s, train/loss=2.240]\nEpoch 0: | | 240/? [00:54<00:00, 4.37it/s, train/loss=2.240]\nEpoch 0: | | 240/? [00:54<00:00, 4.37it/s, train/loss=6.910]\nEpoch 0: | | 241/? [00:54<00:00, 4.39it/s, train/loss=6.910]\nEpoch 0: | | 241/? [00:54<00:00, 4.39it/s, train/loss=2.190]\nEpoch 0: | | 242/? [00:55<00:00, 4.38it/s, train/loss=2.190]\nEpoch 0: | | 242/? [00:55<00:00, 4.38it/s, train/loss=20.40]\nEpoch 0: | | 243/? [00:55<00:00, 4.40it/s, train/loss=20.40]\nEpoch 0: | | 243/? [00:55<00:00, 4.40it/s, train/loss=2.140]\nEpoch 0: | | 244/? [00:55<00:00, 4.39it/s, train/loss=2.140]\nEpoch 0: | | 244/? [00:55<00:00, 4.39it/s, train/loss=27.40]\nEpoch 0: | | 245/? [00:55<00:00, 4.41it/s, train/loss=27.40]\nEpoch 0: | | 245/? [00:55<00:00, 4.41it/s, train/loss=2.100]\nEpoch 0: | | 246/? [00:55<00:00, 4.40it/s, train/loss=2.100]\nEpoch 0: | | 246/? [00:55<00:00, 4.40it/s, train/loss=21.10]\nEpoch 0: | | 247/? [00:55<00:00, 4.42it/s, train/loss=21.10]\nEpoch 0: | | 247/? [00:55<00:00, 4.42it/s, train/loss=2.060]\nEpoch 0: | | 248/? [00:56<00:00, 4.41it/s, train/loss=2.060]\nEpoch 0: | | 248/? [00:56<00:00, 4.41it/s, train/loss=12.50]\nEpoch 0: | | 249/? [00:56<00:00, 4.43it/s, train/loss=12.50]\nEpoch 0: | | 249/? [00:56<00:00, 4.43it/s, train/loss=2.020]\nEpoch 0: | | 250/? [00:56<00:00, 4.42it/s, train/loss=2.020]\nEpoch 0: | | 250/? [00:56<00:00, 4.42it/s, train/loss=24.50]\nEpoch 0: | | 251/? [00:56<00:00, 4.43it/s, train/loss=24.50]\nEpoch 0: | | 251/? [00:56<00:00, 4.43it/s, train/loss=1.990]\nEpoch 0: | | 252/? [00:56<00:00, 4.43it/s, train/loss=1.990]\nEpoch 0: | | 252/? [00:56<00:00, 4.43it/s, train/loss=10.80]\nEpoch 0: | | 253/? [00:56<00:00, 4.44it/s, train/loss=10.80]\nEpoch 0: | | 253/? [00:56<00:00, 4.44it/s, train/loss=1.960]\nEpoch 0: | | 254/? [00:57<00:00, 4.44it/s, train/loss=1.960]\nEpoch 0: | | 254/? [00:57<00:00, 4.44it/s, train/loss=44.30]\nEpoch 0: | | 255/? [00:57<00:00, 4.45it/s, train/loss=44.30]\nEpoch 0: | | 255/? [00:57<00:00, 4.45it/s, train/loss=1.930]\nEpoch 0: | | 256/? [00:57<00:00, 4.45it/s, train/loss=1.930]\nEpoch 0: | | 256/? [00:57<00:00, 4.45it/s, train/loss=34.80]\nEpoch 0: | | 257/? [00:57<00:00, 4.46it/s, train/loss=34.80]\nEpoch 0: | | 257/? [00:57<00:00, 4.46it/s, train/loss=1.910]\nEpoch 0: | | 258/? [00:57<00:00, 4.46it/s, train/loss=1.910]\nEpoch 0: | | 258/? [00:57<00:00, 4.46it/s, train/loss=30.50]\nEpoch 0: | | 259/? [00:57<00:00, 4.47it/s, train/loss=30.50]\nEpoch 0: | | 259/? [00:57<00:00, 4.47it/s, train/loss=1.900]\nEpoch 0: | | 260/? [00:58<00:00, 4.47it/s, train/loss=1.900]\nEpoch 0: | | 260/? [00:58<00:00, 4.47it/s, train/loss=37.80]\nEpoch 0: | | 261/? [00:58<00:00, 4.48it/s, train/loss=37.80]\nEpoch 0: | | 261/? [00:58<00:00, 4.48it/s, train/loss=1.890]\nEpoch 0: | | 262/? [00:58<00:00, 4.48it/s, train/loss=1.890]\nEpoch 0: | | 262/? [00:58<00:00, 4.48it/s, train/loss=24.40]\nEpoch 0: | | 263/? [00:58<00:00, 4.49it/s, train/loss=24.40]\nEpoch 0: | | 263/? [00:58<00:00, 4.49it/s, train/loss=1.900]\nEpoch 0: | | 264/? [00:58<00:00, 4.49it/s, train/loss=1.900]\nEpoch 0: | | 264/? [00:58<00:00, 4.49it/s, train/loss=36.50]\nEpoch 0: | | 265/? [00:58<00:00, 4.50it/s, train/loss=36.50]\nEpoch 0: | | 265/? [00:58<00:00, 4.50it/s, train/loss=1.930]\nEpoch 0: | | 266/? [00:59<00:00, 4.50it/s, train/loss=1.930]\nEpoch 0: | | 266/? [00:59<00:00, 4.50it/s, train/loss=40.20]\nEpoch 0: | | 267/? [00:59<00:00, 4.51it/s, train/loss=40.20]\nEpoch 0: | | 267/? [00:59<00:00, 4.51it/s, train/loss=1.960]\nEpoch 0: | | 268/? [00:59<00:00, 4.51it/s, train/loss=1.960]\nEpoch 0: | | 268/? [00:59<00:00, 4.51it/s, train/loss=15.30]\nEpoch 0: | | 269/? [00:59<00:00, 4.52it/s, train/loss=15.30]\nEpoch 0: | | 269/? [00:59<00:00, 4.52it/s, train/loss=1.980]\nEpoch 0: | | 270/? [00:59<00:00, 4.52it/s, train/loss=1.980]\nEpoch 0: | | 270/? [00:59<00:00, 4.52it/s, train/loss=11.80]\nEpoch 0: | | 271/? [00:59<00:00, 4.53it/s, train/loss=11.80]\nEpoch 0: | | 271/? [00:59<00:00, 4.53it/s, train/loss=1.980]\nEpoch 0: | | 272/? [01:00<00:00, 4.53it/s, train/loss=1.980]\nEpoch 0: | | 272/? [01:00<00:00, 4.53it/s, train/loss=37.30]\nEpoch 0: | | 273/? [01:00<00:00, 4.54it/s, train/loss=37.30]\nEpoch 0: | | 273/? [01:00<00:00, 4.54it/s, train/loss=1.930]\nEpoch 0: | | 274/? [01:00<00:00, 4.53it/s, train/loss=1.930]\nEpoch 0: | | 274/? [01:00<00:00, 4.53it/s, train/loss=20.50]\nEpoch 0: | | 275/? [01:00<00:00, 4.55it/s, train/loss=20.50]\nEpoch 0: | | 275/? [01:00<00:00, 4.55it/s, train/loss=1.890]\nEpoch 0: | | 276/? [01:00<00:00, 4.54it/s, train/loss=1.890]\nEpoch 0: | | 276/? [01:00<00:00, 4.54it/s, train/loss=15.60]\nEpoch 0: | | 277/? [01:00<00:00, 4.55it/s, train/loss=15.60]\nEpoch 0: | | 277/? [01:00<00:00, 4.55it/s, train/loss=1.880]\nEpoch 0: | | 278/? [01:01<00:00, 4.54it/s, train/loss=1.880]\nEpoch 0: | | 278/? [01:01<00:00, 4.54it/s, train/loss=51.20]\nEpoch 0: | | 279/? [01:01<00:00, 4.56it/s, train/loss=51.20]\nEpoch 0: | | 279/? [01:01<00:00, 4.56it/s, train/loss=1.880]\nEpoch 0: | | 280/? [01:01<00:00, 4.55it/s, train/loss=1.880]\nEpoch 0: | | 280/? [01:01<00:00, 4.55it/s, train/loss=22.40]\nEpoch 0: | | 281/? [01:01<00:00, 4.56it/s, train/loss=22.40]\nEpoch 0: | | 281/? [01:01<00:00, 4.56it/s, train/loss=1.880]\nEpoch 0: | | 282/? [01:01<00:00, 4.56it/s, train/loss=1.880]\nEpoch 0: | | 282/? [01:01<00:00, 4.56it/s, train/loss=12.20]\nEpoch 0: | | 283/? [01:01<00:00, 4.57it/s, train/loss=12.20]\nEpoch 0: | | 283/? [01:01<00:00, 4.57it/s, train/loss=1.850]\nEpoch 0: | | 284/? [01:02<00:00, 4.57it/s, train/loss=1.850]\nEpoch 0: | | 284/? [01:02<00:00, 4.57it/s, train/loss=26.80]\nEpoch 0: | | 285/? [01:02<00:00, 4.58it/s, train/loss=26.80]\nEpoch 0: | | 285/? [01:02<00:00, 4.58it/s, train/loss=1.800]\nEpoch 0: | | 286/? [01:02<00:00, 4.58it/s, train/loss=1.800]\nEpoch 0: | | 286/? [01:02<00:00, 4.58it/s, train/loss=19.70]\nEpoch 0: | | 287/? [01:02<00:00, 4.59it/s, train/loss=19.70]\nEpoch 0: | | 287/? [01:02<00:00, 4.59it/s, train/loss=1.770]\nEpoch 0: | | 288/? [01:02<00:00, 4.58it/s, train/loss=1.770]\nEpoch 0: | | 288/? [01:02<00:00, 4.58it/s, train/loss=27.50]\nEpoch 0: | | 289/? [01:02<00:00, 4.60it/s, train/loss=27.50]\nEpoch 0: | | 289/? [01:02<00:00, 4.60it/s, train/loss=1.740]\nEpoch 0: | | 290/? [01:03<00:00, 4.59it/s, train/loss=1.740]\nEpoch 0: | | 290/? [01:03<00:00, 4.59it/s, train/loss=35.80]\nEpoch 0: | | 291/? [01:03<00:00, 4.61it/s, train/loss=35.80]\nEpoch 0: | | 291/? [01:03<00:00, 4.61it/s, train/loss=1.740]\nEpoch 0: | | 292/? [01:03<00:00, 4.60it/s, train/loss=1.740]\nEpoch 0: | | 292/? [01:03<00:00, 4.60it/s, train/loss=28.60]\nEpoch 0: | | 293/? [01:03<00:00, 4.61it/s, train/loss=28.60]\nEpoch 0: | | 293/? [01:03<00:00, 4.61it/s, train/loss=1.750]\nEpoch 0: | | 294/? [01:03<00:00, 4.61it/s, train/loss=1.750]\nEpoch 0: | | 294/? [01:03<00:00, 4.61it/s, train/loss=33.70]\nEpoch 0: | | 295/? [01:03<00:00, 4.62it/s, train/loss=33.70]\nEpoch 0: | | 295/? [01:03<00:00, 4.62it/s, train/loss=1.760]\nEpoch 0: | | 296/? [01:04<00:00, 4.62it/s, train/loss=1.760]\nEpoch 0: | | 296/? [01:04<00:00, 4.62it/s, train/loss=36.40]\nEpoch 0: | | 297/? [01:04<00:00, 4.63it/s, train/loss=36.40]\nEpoch 0: | | 297/? [01:04<00:00, 4.63it/s, train/loss=1.760]\nEpoch 0: | | 298/? [01:04<00:00, 4.62it/s, train/loss=1.760]\nEpoch 0: | | 298/? [01:04<00:00, 4.62it/s, train/loss=9.910]\nEpoch 0: | | 299/? [01:04<00:00, 4.64it/s, train/loss=9.910]\nEpoch 0: | | 299/? [01:04<00:00, 4.64it/s, train/loss=1.740]\nEpoch 0: | | 300/? [01:04<00:00, 4.63it/s, train/loss=1.740]\nEpoch 0: | | 300/? [01:04<00:00, 4.63it/s, train/loss=11.90]\nEpoch 0: | | 301/? [01:04<00:00, 4.65it/s, train/loss=11.90]\nEpoch 0: | | 301/? [01:04<00:00, 4.65it/s, train/loss=1.710]\nEpoch 0: | | 302/? [01:05<00:00, 4.64it/s, train/loss=1.710]\nEpoch 0: | | 302/? [01:05<00:00, 4.64it/s, train/loss=31.00]\nEpoch 0: | | 303/? [01:05<00:00, 4.65it/s, train/loss=31.00]\nEpoch 0: | | 303/? [01:05<00:00, 4.65it/s, train/loss=1.710]\nEpoch 0: | | 304/? [01:05<00:00, 4.65it/s, train/loss=1.710]\nEpoch 0: | | 304/? [01:05<00:00, 4.65it/s, train/loss=23.80]\nEpoch 0: | | 305/? [01:05<00:00, 4.66it/s, train/loss=23.80]\nEpoch 0: | | 305/? [01:05<00:00, 4.66it/s, train/loss=1.760]\nEpoch 0: | | 306/? [01:05<00:00, 4.66it/s, train/loss=1.760]\nEpoch 0: | | 306/? [01:05<00:00, 4.66it/s, train/loss=13.10]\nEpoch 0: | | 307/? [01:05<00:00, 4.67it/s, train/loss=13.10]\nEpoch 0: | | 307/? [01:05<00:00, 4.67it/s, train/loss=1.800]\nEpoch 0: | | 308/? [01:06<00:00, 4.67it/s, train/loss=1.800]\nEpoch 0: | | 308/? [01:06<00:00, 4.67it/s, train/loss=20.90]\nEpoch 0: | | 309/? [01:06<00:00, 4.68it/s, train/loss=20.90]\nEpoch 0: | | 309/? [01:06<00:00, 4.68it/s, train/loss=1.770]\nEpoch 0: | | 310/? [01:06<00:00, 4.67it/s, train/loss=1.770]\nEpoch 0: | | 310/? [01:06<00:00, 4.67it/s, train/loss=36.20]\nEpoch 0: | | 311/? [01:06<00:00, 4.69it/s, train/loss=36.20]\nEpoch 0: | | 311/? [01:06<00:00, 4.68it/s, train/loss=1.700]\nEpoch 0: | | 312/? [01:06<00:00, 4.68it/s, train/loss=1.700]\nEpoch 0: | | 312/? [01:06<00:00, 4.68it/s, train/loss=29.00]\nEpoch 0: | | 313/? [01:06<00:00, 4.69it/s, train/loss=29.00]\nEpoch 0: | | 313/? [01:06<00:00, 4.69it/s, train/loss=1.640]\nEpoch 0: | | 314/? [01:06<00:00, 4.69it/s, train/loss=1.640]\nEpoch 0: | | 314/? [01:06<00:00, 4.69it/s, train/loss=12.90]\nEpoch 0: | | 315/? [01:07<00:00, 4.70it/s, train/loss=12.90]\nEpoch 0: | | 315/? [01:07<00:00, 4.70it/s, train/loss=1.620]\nEpoch 0: | | 316/? [01:07<00:00, 4.70it/s, train/loss=1.620]\nEpoch 0: | | 316/? [01:07<00:00, 4.70it/s, train/loss=19.40]\nEpoch 0: | | 317/? [01:07<00:00, 4.71it/s, train/loss=19.40]\nEpoch 0: | | 317/? [01:07<00:00, 4.71it/s, train/loss=1.590]\nEpoch 0: | | 318/? [01:07<00:00, 4.70it/s, train/loss=1.590]\nEpoch 0: | | 318/? [01:07<00:00, 4.70it/s, train/loss=17.20]\nEpoch 0: | | 319/? [01:07<00:00, 4.72it/s, train/loss=17.20]\nEpoch 0: | | 319/? [01:07<00:00, 4.71it/s, train/loss=1.570]\nEpoch 0: | | 320/? [01:07<00:00, 4.71it/s, train/loss=1.570]\nEpoch 0: | | 320/? [01:07<00:00, 4.71it/s, train/loss=8.480]\nEpoch 0: | | 321/? [01:07<00:00, 4.72it/s, train/loss=8.480]\nEpoch 0: | | 321/? [01:07<00:00, 4.72it/s, train/loss=1.620]\nEpoch 0: | | 322/? [01:08<00:00, 4.72it/s, train/loss=1.620]\nEpoch 0: | | 322/? [01:08<00:00, 4.72it/s, train/loss=20.80]\nEpoch 0: | | 323/? [01:08<00:00, 4.73it/s, train/loss=20.80]\nEpoch 0: | | 323/? [01:08<00:00, 4.73it/s, train/loss=1.580]\nEpoch 0: | | 324/? [01:08<00:00, 4.72it/s, train/loss=1.580]\nEpoch 0: | | 324/? [01:08<00:00, 4.72it/s, train/loss=12.70]\nEpoch 0: | | 325/? [01:08<00:00, 4.74it/s, train/loss=12.70]\nEpoch 0: | | 325/? [01:08<00:00, 4.74it/s, train/loss=1.560]\nEpoch 0: | | 326/? [01:08<00:00, 4.73it/s, train/loss=1.560]\nEpoch 0: | | 326/? [01:08<00:00, 4.73it/s, train/loss=28.90]\nEpoch 0: | | 327/? [01:08<00:00, 4.74it/s, train/loss=28.90]\nEpoch 0: | | 327/? [01:08<00:00, 4.74it/s, train/loss=1.540]\nEpoch 0: | | 328/? [01:09<00:00, 4.74it/s, train/loss=1.540]\nEpoch 0: | | 328/? [01:09<00:00, 4.74it/s, train/loss=24.00]\nEpoch 0: | | 329/? [01:09<00:00, 4.75it/s, train/loss=24.00]\nEpoch 0: | | 329/? [01:09<00:00, 4.75it/s, train/loss=1.520]\nEpoch 0: | | 330/? [01:09<00:00, 4.75it/s, train/loss=1.520]\nEpoch 0: | | 330/? [01:09<00:00, 4.75it/s, train/loss=21.20]\nEpoch 0: | | 331/? [01:09<00:00, 4.76it/s, train/loss=21.20]\nEpoch 0: | | 331/? [01:09<00:00, 4.76it/s, train/loss=1.510]\nEpoch 0: | | 332/? [01:09<00:00, 4.75it/s, train/loss=1.510]\nEpoch 0: | | 332/? [01:09<00:00, 4.75it/s, train/loss=71.20]\nEpoch 0: | | 333/? [01:09<00:00, 4.76it/s, train/loss=71.20]\nEpoch 0: | | 333/? [01:09<00:00, 4.76it/s, train/loss=1.500]\nEpoch 0: | | 334/? [01:10<00:00, 4.76it/s, train/loss=1.500]\nEpoch 0: | | 334/? [01:10<00:00, 4.76it/s, train/loss=15.70]\nEpoch 0: | | 335/? [01:10<00:00, 4.77it/s, train/loss=15.70]\nEpoch 0: | | 335/? [01:10<00:00, 4.77it/s, train/loss=1.510]\nEpoch 0: | | 336/? [01:10<00:00, 4.77it/s, train/loss=1.510]\nEpoch 0: | | 336/? [01:10<00:00, 4.77it/s, train/loss=40.90]\nEpoch 0: | | 337/? [01:10<00:00, 4.78it/s, train/loss=40.90]\nEpoch 0: | | 337/? [01:10<00:00, 4.78it/s, train/loss=1.530]\nEpoch 0: | | 338/? [01:10<00:00, 4.77it/s, train/loss=1.530]\nEpoch 0: | | 338/? [01:10<00:00, 4.77it/s, train/loss=52.10]\nEpoch 0: | | 339/? [01:10<00:00, 4.79it/s, train/loss=52.10]\nEpoch 0: | | 339/? [01:10<00:00, 4.79it/s, train/loss=1.570]\nEpoch 0: | | 340/? [01:11<00:00, 4.78it/s, train/loss=1.570]\nEpoch 0: | | 340/? [01:11<00:00, 4.78it/s, train/loss=13.10]\nEpoch 0: | | 341/? [01:11<00:00, 4.79it/s, train/loss=13.10]\nEpoch 0: | | 341/? [01:11<00:00, 4.79it/s, train/loss=1.650]\nEpoch 0: | | 342/? [01:11<00:00, 4.79it/s, train/loss=1.650]\nEpoch 0: | | 342/? [01:11<00:00, 4.79it/s, train/loss=35.70]\nEpoch 0: | | 343/? [01:11<00:00, 4.80it/s, train/loss=35.70]\nEpoch 0: | | 343/? [01:11<00:00, 4.80it/s, train/loss=1.690]\nEpoch 0: | | 344/? [01:11<00:00, 4.79it/s, train/loss=1.690]\nEpoch 0: | | 344/? [01:11<00:00, 4.79it/s, train/loss=37.80]\nEpoch 0: | | 345/? [01:11<00:00, 4.81it/s, train/loss=37.80]\nEpoch 0: | | 345/? [01:11<00:00, 4.81it/s, train/loss=1.700]\nEpoch 0: | | 346/? [01:12<00:00, 4.80it/s, train/loss=1.700]\nEpoch 0: | | 346/? [01:12<00:00, 4.80it/s, train/loss=14.10]\nEpoch 0: | | 347/? [01:12<00:00, 4.81it/s, train/loss=14.10]\nEpoch 0: | | 347/? [01:12<00:00, 4.81it/s, train/loss=1.700]\nEpoch 0: | | 348/? [01:12<00:00, 4.81it/s, train/loss=1.700]\nEpoch 0: | | 348/? [01:12<00:00, 4.81it/s, train/loss=43.30]\nEpoch 0: | | 349/? [01:12<00:00, 4.82it/s, train/loss=43.30]\nEpoch 0: | | 349/? [01:12<00:00, 4.82it/s, train/loss=1.670]\nEpoch 0: | | 350/? [01:12<00:00, 4.81it/s, train/loss=1.670]\nEpoch 0: | | 350/? [01:12<00:00, 4.81it/s, train/loss=21.80]\nEpoch 0: | | 351/? [01:12<00:00, 4.82it/s, train/loss=21.80]\nEpoch 0: | | 351/? [01:12<00:00, 4.82it/s, train/loss=1.620]\nEpoch 0: | | 352/? [01:13<00:00, 4.82it/s, train/loss=1.620]\nEpoch 0: | | 352/? [01:13<00:00, 4.82it/s, train/loss=38.20]\nEpoch 0: | | 353/? [01:13<00:00, 4.83it/s, train/loss=38.20]\nEpoch 0: | | 353/? [01:13<00:00, 4.83it/s, train/loss=1.580]\nEpoch 0: | | 354/? [01:13<00:00, 4.83it/s, train/loss=1.580]\nEpoch 0: | | 354/? [01:13<00:00, 4.83it/s, train/loss=14.50]\nEpoch 0: | | 355/? [01:13<00:00, 4.84it/s, train/loss=14.50]\nEpoch 0: | | 355/? [01:13<00:00, 4.84it/s, train/loss=1.550]\nEpoch 0: | | 356/? [01:13<00:00, 4.83it/s, train/loss=1.550]\nEpoch 0: | | 356/? [01:13<00:00, 4.83it/s, train/loss=27.10]\nEpoch 0: | | 357/? [01:13<00:00, 4.84it/s, train/loss=27.10]\nEpoch 0: | | 357/? [01:13<00:00, 4.84it/s, train/loss=1.530]\nEpoch 0: | | 358/? [01:13<00:00, 4.84it/s, train/loss=1.530]\nEpoch 0: | | 358/? [01:13<00:00, 4.84it/s, train/loss=22.20]\nEpoch 0: | | 359/? [01:14<00:00, 4.85it/s, train/loss=22.20]\nEpoch 0: | | 359/? [01:14<00:00, 4.85it/s, train/loss=1.510]\nEpoch 0: | | 360/? [01:14<00:00, 4.84it/s, train/loss=1.510]\nEpoch 0: | | 360/? [01:14<00:00, 4.84it/s, train/loss=16.60]\nEpoch 0: | | 361/? [01:14<00:00, 4.86it/s, train/loss=16.60]\nEpoch 0: | | 361/? [01:14<00:00, 4.86it/s, train/loss=1.510]\nEpoch 0: | | 362/? [01:14<00:00, 4.85it/s, train/loss=1.510]\nEpoch 0: | | 362/? [01:14<00:00, 4.85it/s, train/loss=29.70]\nEpoch 0: | | 363/? [01:14<00:00, 4.86it/s, train/loss=29.70]\nEpoch 0: | | 363/? [01:14<00:00, 4.86it/s, train/loss=1.500]\nEpoch 0: | | 364/? [01:14<00:00, 4.86it/s, train/loss=1.500]\nEpoch 0: | | 364/? [01:14<00:00, 4.86it/s, train/loss=34.00]\nEpoch 0: | | 365/? [01:14<00:00, 4.87it/s, train/loss=34.00]\nEpoch 0: | | 365/? [01:14<00:00, 4.87it/s, train/loss=1.500]\nEpoch 0: | | 366/? [01:15<00:00, 4.86it/s, train/loss=1.500]\nEpoch 0: | | 366/? [01:15<00:00, 4.86it/s, train/loss=15.00]\nEpoch 0: | | 367/? [01:15<00:00, 4.87it/s, train/loss=15.00]\nEpoch 0: | | 367/? [01:15<00:00, 4.87it/s, train/loss=1.490]\nEpoch 0: | | 368/? [01:15<00:00, 4.86it/s, train/loss=1.490]\nEpoch 0: | | 368/? [01:15<00:00, 4.86it/s, train/loss=24.70]\nEpoch 0: | | 369/? [01:15<00:00, 4.86it/s, train/loss=24.70]\nEpoch 0: | | 369/? [01:15<00:00, 4.86it/s, train/loss=1.630]\nEpoch 0: | | 370/? [01:16<00:00, 4.85it/s, train/loss=1.630]\nEpoch 0: | | 370/? [01:16<00:00, 4.85it/s, train/loss=30.90]\nEpoch 0: | | 371/? [01:16<00:00, 4.86it/s, train/loss=30.90]\nEpoch 0: | | 371/? [01:16<00:00, 4.86it/s, train/loss=1.620]\nEpoch 0: | | 372/? [01:16<00:00, 4.85it/s, train/loss=1.620]\nEpoch 0: | | 372/? [01:16<00:00, 4.85it/s, train/loss=26.20]\nEpoch 0: | | 373/? [01:16<00:00, 4.86it/s, train/loss=26.20]\nEpoch 0: | | 373/? [01:16<00:00, 4.86it/s, train/loss=1.610]\nEpoch 0: | | 374/? [01:17<00:00, 4.85it/s, train/loss=1.610]\nEpoch 0: | | 374/? [01:17<00:00, 4.85it/s, train/loss=15.60]\nEpoch 0: | | 375/? [01:17<00:00, 4.85it/s, train/loss=15.60]\nEpoch 0: | | 375/? [01:17<00:00, 4.85it/s, train/loss=1.600]\nEpoch 0: | | 376/? [01:17<00:00, 4.85it/s, train/loss=1.600]\nEpoch 0: | | 376/? [01:17<00:00, 4.85it/s, train/loss=30.70]\nEpoch 0: | | 377/? [01:17<00:00, 4.86it/s, train/loss=30.70]\nEpoch 0: | | 377/? [01:17<00:00, 4.86it/s, train/loss=1.590]\nEpoch 0: | | 378/? [01:17<00:00, 4.85it/s, train/loss=1.590]\nEpoch 0: | | 378/? [01:17<00:00, 4.85it/s, train/loss=28.90]\nEpoch 0: | | 379/? [01:17<00:00, 4.86it/s, train/loss=28.90]\nEpoch 0: | | 379/? [01:17<00:00, 4.86it/s, train/loss=1.580]\nEpoch 0: | | 380/? [01:18<00:00, 4.86it/s, train/loss=1.580]\nEpoch 0: | | 380/? [01:18<00:00, 4.86it/s, train/loss=39.10]\nEpoch 0: | | 381/? [01:18<00:00, 4.87it/s, train/loss=39.10]\nEpoch 0: | | 381/? [01:18<00:00, 4.87it/s, train/loss=1.600]\nEpoch 0: | | 382/? [01:18<00:00, 4.86it/s, train/loss=1.600]\nEpoch 0: | | 382/? [01:18<00:00, 4.86it/s, train/loss=20.10]\nEpoch 0: | | 383/? [01:18<00:00, 4.87it/s, train/loss=20.10]\nEpoch 0: | | 383/? [01:18<00:00, 4.87it/s, train/loss=1.660]\nEpoch 0: | | 384/? [01:18<00:00, 4.87it/s, train/loss=1.660]\nEpoch 0: | | 384/? [01:18<00:00, 4.87it/s, train/loss=39.30]\nEpoch 0: | | 385/? [01:18<00:00, 4.88it/s, train/loss=39.30]\nEpoch 0: | | 385/? [01:18<00:00, 4.88it/s, train/loss=1.710]\nEpoch 0: | | 386/? [01:19<00:00, 4.87it/s, train/loss=1.710]\nEpoch 0: | | 386/? [01:19<00:00, 4.87it/s, train/loss=9.900]\nEpoch 0: | | 387/? [01:19<00:00, 4.88it/s, train/loss=9.900]\nEpoch 0: | | 387/? [01:19<00:00, 4.88it/s, train/loss=1.710]\nEpoch 0: | | 388/? [01:19<00:00, 4.88it/s, train/loss=1.710]\nEpoch 0: | | 388/? [01:19<00:00, 4.88it/s, train/loss=27.30]\nEpoch 0: | | 389/? [01:19<00:00, 4.89it/s, train/loss=27.30]\nEpoch 0: | | 389/? [01:19<00:00, 4.89it/s, train/loss=1.700]\nEpoch 0: | | 390/? [01:19<00:00, 4.89it/s, train/loss=1.700]\nEpoch 0: | | 390/? [01:19<00:00, 4.89it/s, train/loss=23.70]\nEpoch 0: | | 391/? [01:19<00:00, 4.90it/s, train/loss=23.70]\nEpoch 0: | | 391/? [01:19<00:00, 4.90it/s, train/loss=1.670]\nEpoch 0: | | 392/? [01:20<00:00, 4.89it/s, train/loss=1.670]\nEpoch 0: | | 392/? [01:20<00:00, 4.89it/s, train/loss=22.80]\nEpoch 0: | | 393/? [01:20<00:00, 4.90it/s, train/loss=22.80]\nEpoch 0: | | 393/? [01:20<00:00, 4.90it/s, train/loss=1.640]\nEpoch 0: | | 394/? [01:20<00:00, 4.90it/s, train/loss=1.640]\nEpoch 0: | | 394/? [01:20<00:00, 4.90it/s, train/loss=26.00]\nEpoch 0: | | 395/? [01:20<00:00, 4.91it/s, train/loss=26.00]\nEpoch 0: | | 395/? [01:20<00:00, 4.91it/s, train/loss=1.640]\nEpoch 0: | | 396/? [01:20<00:00, 4.90it/s, train/loss=1.640]\nEpoch 0: | | 396/? [01:20<00:00, 4.90it/s, train/loss=9.660]\nEpoch 0: | | 397/? [01:20<00:00, 4.91it/s, train/loss=9.660]\nEpoch 0: | | 397/? [01:20<00:00, 4.91it/s, train/loss=1.630]\nEpoch 0: | | 398/? [01:21<00:00, 4.91it/s, train/loss=1.630]\nEpoch 0: | | 398/? [01:21<00:00, 4.91it/s, train/loss=12.90]\nEpoch 0: | | 399/? [01:21<00:00, 4.92it/s, train/loss=12.90]\nEpoch 0: | | 399/? [01:21<00:00, 4.92it/s, train/loss=1.610]\nEpoch 0: | | 400/? [01:21<00:00, 4.91it/s, train/loss=1.610]\nEpoch 0: | | 400/? [01:21<00:00, 4.91it/s, train/loss=37.30]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:08, 4.51it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:08, 4.40it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:08, 4.44it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:08, 4.44it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:01<00:07, 4.45it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:07, 4.44it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:07, 4.48it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:01<00:07, 4.47it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:02<00:06, 4.47it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:02<00:06, 4.50it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:02<00:06, 4.50it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:02<00:06, 4.50it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:02<00:05, 4.53it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:03<00:05, 4.52it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:03<00:05, 4.54it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:03<00:05, 4.56it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:03<00:05, 4.58it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:03<00:04, 4.58it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:04<00:04, 4.59it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:04<00:04, 4.60it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:04<00:04, 4.61it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:04<00:03, 4.62it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:04<00:03, 4.61it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:05<00:03, 4.61it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:05<00:03, 4.61it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:05<00:03, 4.62it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:05<00:02, 4.61it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:06<00:02, 4.60it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:06<00:02, 4.60it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:06<00:02, 4.61it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:06<00:01, 4.62it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:06<00:01, 4.63it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:07<00:01, 4.63it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:07<00:01, 4.64it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:07<00:01, 4.64it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:07<00:00, 4.64it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:07<00:00, 4.63it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:08<00:00, 4.62it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:08<00:00, 4.63it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:08<00:00, 4.63it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 400/? [01:30<00:00, 4.40it/s, train/loss=37.30]\nEpoch 0: | | 401/? [01:31<00:00, 4.36it/s, train/loss=37.30]\nEpoch 0: | | 401/? [01:31<00:00, 4.36it/s, train/loss=1.570]\nEpoch 0: | | 402/? [01:32<00:00, 4.36it/s, train/loss=1.570]\nEpoch 0: | | 402/? [01:32<00:00, 4.36it/s, train/loss=12.40]\nEpoch 0: | | 403/? [01:32<00:00, 4.37it/s, train/loss=12.40]\nEpoch 0: | | 403/? [01:32<00:00, 4.37it/s, train/loss=1.540]\nEpoch 0: | | 404/? [01:32<00:00, 4.37it/s, train/loss=1.540]\nEpoch 0: | | 404/? [01:32<00:00, 4.37it/s, train/loss=18.20]\nEpoch 0: | | 405/? [01:32<00:00, 4.37it/s, train/loss=18.20]\nEpoch 0: | | 405/? [01:32<00:00, 4.37it/s, train/loss=1.510]\nEpoch 0: | | 406/? [01:32<00:00, 4.37it/s, train/loss=1.510]\nEpoch 0: | | 406/? [01:32<00:00, 4.37it/s, train/loss=23.10]\nEpoch 0: | | 407/? [01:32<00:00, 4.38it/s, train/loss=23.10]\nEpoch 0: | | 407/? [01:32<00:00, 4.38it/s, train/loss=1.500]\nEpoch 0: | | 408/? [01:33<00:00, 4.38it/s, train/loss=1.500]\nEpoch 0: | | 408/? [01:33<00:00, 4.38it/s, train/loss=16.30]\nEpoch 0: | | 409/? [01:33<00:00, 4.39it/s, train/loss=16.30]\nEpoch 0: | | 409/? [01:33<00:00, 4.39it/s, train/loss=1.490]\nEpoch 0: | | 410/? [01:33<00:00, 4.38it/s, train/loss=1.490]\nEpoch 0: | | 410/? [01:33<00:00, 4.38it/s, train/loss=27.70]\nEpoch 0: | | 411/? [01:33<00:00, 4.39it/s, train/loss=27.70]\nEpoch 0: | | 411/? [01:33<00:00, 4.39it/s, train/loss=1.500]\nEpoch 0: | | 412/? [01:33<00:00, 4.39it/s, train/loss=1.500]\nEpoch 0: | | 412/? [01:33<00:00, 4.39it/s, train/loss=11.30]\nEpoch 0: | | 413/? [01:33<00:00, 4.40it/s, train/loss=11.30]\nEpoch 0: | | 413/? [01:33<00:00, 4.40it/s, train/loss=1.490]\nEpoch 0: | | 414/? [01:34<00:00, 4.40it/s, train/loss=1.490]\nEpoch 0: | | 414/? [01:34<00:00, 4.40it/s, train/loss=11.10]\nEpoch 0: | | 415/? [01:34<00:00, 4.41it/s, train/loss=11.10]\nEpoch 0: | | 415/? [01:34<00:00, 4.41it/s, train/loss=1.480]\nEpoch 0: | | 416/? [01:34<00:00, 4.40it/s, train/loss=1.480]\nEpoch 0: | | 416/? [01:34<00:00, 4.40it/s, train/loss=21.90]\nEpoch 0: | | 417/? [01:34<00:00, 4.41it/s, train/loss=21.90]\nEpoch 0: | | 417/? [01:34<00:00, 4.41it/s, train/loss=1.460]\nEpoch 0: | | 418/? [01:34<00:00, 4.41it/s, train/loss=1.460]\nEpoch 0: | | 418/? [01:34<00:00, 4.41it/s, train/loss=35.50]\nEpoch 0: | | 419/? [01:34<00:00, 4.42it/s, train/loss=35.50]\nEpoch 0: | | 419/? [01:34<00:00, 4.42it/s, train/loss=1.440]\nEpoch 0: | | 420/? [01:35<00:00, 4.42it/s, train/loss=1.440]\nEpoch 0: | | 420/? [01:35<00:00, 4.42it/s, train/loss=40.30]\nEpoch 0: | | 421/? [01:35<00:00, 4.43it/s, train/loss=40.30]\nEpoch 0: | | 421/? [01:35<00:00, 4.43it/s, train/loss=1.400]\nEpoch 0: | | 422/? [01:35<00:00, 4.42it/s, train/loss=1.400]\nEpoch 0: | | 422/? [01:35<00:00, 4.42it/s, train/loss=23.00]\nEpoch 0: | | 423/? [01:35<00:00, 4.43it/s, train/loss=23.00]\nEpoch 0: | | 423/? [01:35<00:00, 4.43it/s, train/loss=1.370]\nEpoch 0: | | 424/? [01:35<00:00, 4.43it/s, train/loss=1.370]\nEpoch 0: | | 424/? [01:35<00:00, 4.43it/s, train/loss=17.50]\nEpoch 0: | | 425/? [01:35<00:00, 4.44it/s, train/loss=17.50]\nEpoch 0: | | 425/? [01:35<00:00, 4.44it/s, train/loss=1.360]\nEpoch 0: | | 426/? [01:36<00:00, 4.44it/s, train/loss=1.360]\nEpoch 0: | | 426/? [01:36<00:00, 4.44it/s, train/loss=26.50]\nEpoch 0: | | 427/? [01:36<00:00, 4.45it/s, train/loss=26.50]\nEpoch 0: | | 427/? [01:36<00:00, 4.45it/s, train/loss=1.370]\nEpoch 0: | | 428/? [01:36<00:00, 4.44it/s, train/loss=1.370]\nEpoch 0: | | 428/? [01:36<00:00, 4.44it/s, train/loss=40.60]\nEpoch 0: | | 429/? [01:36<00:00, 4.45it/s, train/loss=40.60]\nEpoch 0: | | 429/? [01:36<00:00, 4.45it/s, train/loss=1.410]\nEpoch 0: | | 430/? [01:36<00:00, 4.45it/s, train/loss=1.410]\nEpoch 0: | | 430/? [01:36<00:00, 4.45it/s, train/loss=9.530]\nEpoch 0: | | 431/? [01:36<00:00, 4.46it/s, train/loss=9.530]\nEpoch 0: | | 431/? [01:36<00:00, 4.46it/s, train/loss=1.460]\nEpoch 0: | | 432/? [01:36<00:00, 4.46it/s, train/loss=1.460]\nEpoch 0: | | 432/? [01:36<00:00, 4.46it/s, train/loss=10.90]\nEpoch 0: | | 433/? [01:36<00:00, 4.46it/s, train/loss=10.90]\nEpoch 0: | | 433/? [01:36<00:00, 4.46it/s, train/loss=1.410]\nEpoch 0: | | 434/? [01:37<00:00, 4.46it/s, train/loss=1.410]\nEpoch 0: | | 434/? [01:37<00:00, 4.46it/s, train/loss=13.10]\nEpoch 0: | | 435/? [01:37<00:00, 4.47it/s, train/loss=13.10]\nEpoch 0: | | 435/? [01:37<00:00, 4.47it/s, train/loss=1.380]\nEpoch 0: | | 436/? [01:37<00:00, 4.47it/s, train/loss=1.380]\nEpoch 0: | | 436/? [01:37<00:00, 4.47it/s, train/loss=30.50]\nEpoch 0: | | 437/? [01:37<00:00, 4.48it/s, train/loss=30.50]\nEpoch 0: | | 437/? [01:37<00:00, 4.48it/s, train/loss=1.340]\nEpoch 0: | | 438/? [01:37<00:00, 4.47it/s, train/loss=1.340]\nEpoch 0: | | 438/? [01:37<00:00, 4.47it/s, train/loss=19.70]\nEpoch 0: | | 439/? [01:37<00:00, 4.48it/s, train/loss=19.70]\nEpoch 0: | | 439/? [01:37<00:00, 4.48it/s, train/loss=1.300]\nEpoch 0: | | 440/? [01:38<00:00, 4.48it/s, train/loss=1.300]\nEpoch 0: | | 440/? [01:38<00:00, 4.48it/s, train/loss=8.380]\nEpoch 0: | | 441/? [01:38<00:00, 4.49it/s, train/loss=8.380]\nEpoch 0: | | 441/? [01:38<00:00, 4.49it/s, train/loss=1.310]\nEpoch 0: | | 442/? [01:38<00:00, 4.49it/s, train/loss=1.310]\nEpoch 0: | | 442/? [01:38<00:00, 4.49it/s, train/loss=20.80]\nEpoch 0: | | 443/? [01:38<00:00, 4.49it/s, train/loss=20.80]\nEpoch 0: | | 443/? [01:38<00:00, 4.49it/s, train/loss=1.340]\nEpoch 0: | | 444/? [01:38<00:00, 4.49it/s, train/loss=1.340]\nEpoch 0: | | 444/? [01:38<00:00, 4.49it/s, train/loss=19.60]\nEpoch 0: | | 445/? [01:38<00:00, 4.50it/s, train/loss=19.60]\nEpoch 0: | | 445/? [01:38<00:00, 4.50it/s, train/loss=1.360]\nEpoch 0: | | 446/? [01:39<00:00, 4.50it/s, train/loss=1.360]\nEpoch 0: | | 446/? [01:39<00:00, 4.50it/s, train/loss=27.50]\nEpoch 0: | | 447/? [01:39<00:00, 4.51it/s, train/loss=27.50]\nEpoch 0: | | 447/? [01:39<00:00, 4.51it/s, train/loss=1.350]\nEpoch 0: | | 448/? [01:39<00:00, 4.50it/s, train/loss=1.350]\nEpoch 0: | | 448/? [01:39<00:00, 4.50it/s, train/loss=21.00]\nEpoch 0: | | 449/? [01:39<00:00, 4.51it/s, train/loss=21.00]\nEpoch 0: | | 449/? [01:39<00:00, 4.51it/s, train/loss=1.310]\nEpoch 0: | | 450/? [01:39<00:00, 4.51it/s, train/loss=1.310]\nEpoch 0: | | 450/? [01:39<00:00, 4.51it/s, train/loss=23.30]\nEpoch 0: | | 451/? [01:39<00:00, 4.52it/s, train/loss=23.30]\nEpoch 0: | | 451/? [01:39<00:00, 4.52it/s, train/loss=1.240]\nEpoch 0: | | 452/? [01:40<00:00, 4.52it/s, train/loss=1.240]\nEpoch 0: | | 452/? [01:40<00:00, 4.52it/s, train/loss=35.10]\nEpoch 0: | | 453/? [01:40<00:00, 4.53it/s, train/loss=35.10]\nEpoch 0: | | 453/? [01:40<00:00, 4.53it/s, train/loss=1.200]\nEpoch 0: | | 454/? [01:40<00:00, 4.52it/s, train/loss=1.200]\nEpoch 0: | | 454/? [01:40<00:00, 4.52it/s, train/loss=20.00]\nEpoch 0: | | 455/? [01:40<00:00, 4.53it/s, train/loss=20.00]\nEpoch 0: | | 455/? [01:40<00:00, 4.53it/s, train/loss=1.200]\nEpoch 0: | | 456/? [01:40<00:00, 4.53it/s, train/loss=1.200]\nEpoch 0: | | 456/? [01:40<00:00, 4.53it/s, train/loss=33.20]\nEpoch 0: | | 457/? [01:40<00:00, 4.54it/s, train/loss=33.20]\nEpoch 0: | | 457/? [01:40<00:00, 4.54it/s, train/loss=1.240]\nEpoch 0: | | 458/? [01:41<00:00, 4.53it/s, train/loss=1.240]\nEpoch 0: | | 458/? [01:41<00:00, 4.53it/s, train/loss=12.90]\nEpoch 0: | | 459/? [01:41<00:00, 4.54it/s, train/loss=12.90]\nEpoch 0: | | 459/? [01:41<00:00, 4.54it/s, train/loss=1.340]\nEpoch 0: | | 460/? [01:41<00:00, 4.54it/s, train/loss=1.340]\nEpoch 0: | | 460/? [01:41<00:00, 4.54it/s, train/loss=27.10]\nEpoch 0: | | 461/? [01:41<00:00, 4.55it/s, train/loss=27.10]\nEpoch 0: | | 461/? [01:41<00:00, 4.55it/s, train/loss=1.450]\nEpoch 0: | | 462/? [01:41<00:00, 4.55it/s, train/loss=1.450]\nEpoch 0: | | 462/? [01:41<00:00, 4.55it/s, train/loss=14.40]\nEpoch 0: | | 463/? [01:41<00:00, 4.55it/s, train/loss=14.40]\nEpoch 0: | | 463/? [01:41<00:00, 4.55it/s, train/loss=1.480]\nEpoch 0: | | 464/? [01:41<00:00, 4.55it/s, train/loss=1.480]\nEpoch 0: | | 464/? [01:41<00:00, 4.55it/s, train/loss=11.30]\nEpoch 0: | | 465/? [01:41<00:00, 4.56it/s, train/loss=11.30]\nEpoch 0: | | 465/? [01:41<00:00, 4.56it/s, train/loss=1.420]\nEpoch 0: | | 466/? [01:42<00:00, 4.56it/s, train/loss=1.420]\nEpoch 0: | | 466/? [01:42<00:00, 4.56it/s, train/loss=27.20]\nEpoch 0: | | 467/? [01:42<00:00, 4.57it/s, train/loss=27.20]\nEpoch 0: | | 467/? [01:42<00:00, 4.57it/s, train/loss=1.320]\nEpoch 0: | | 468/? [01:42<00:00, 4.56it/s, train/loss=1.320]\nEpoch 0: | | 468/? [01:42<00:00, 4.56it/s, train/loss=30.50]\nEpoch 0: | | 469/? [01:42<00:00, 4.57it/s, train/loss=30.50]\nEpoch 0: | | 469/? [01:42<00:00, 4.57it/s, train/loss=1.240]\nEpoch 0: | | 470/? [01:42<00:00, 4.57it/s, train/loss=1.240]\nEpoch 0: | | 470/? [01:42<00:00, 4.57it/s, train/loss=14.90]\nEpoch 0: | | 471/? [01:42<00:00, 4.58it/s, train/loss=14.90]\nEpoch 0: | | 471/? [01:42<00:00, 4.58it/s, train/loss=1.200]\nEpoch 0: | | 472/? [01:43<00:00, 4.57it/s, train/loss=1.200]\nEpoch 0: | | 472/? [01:43<00:00, 4.57it/s, train/loss=12.10]\nEpoch 0: | | 473/? [01:43<00:00, 4.58it/s, train/loss=12.10]\nEpoch 0: | | 473/? [01:43<00:00, 4.58it/s, train/loss=1.180]\nEpoch 0: | | 474/? [01:43<00:00, 4.58it/s, train/loss=1.180]\nEpoch 0: | | 474/? [01:43<00:00, 4.58it/s, train/loss=41.20]\nEpoch 0: | | 475/? [01:43<00:00, 4.59it/s, train/loss=41.20]\nEpoch 0: | | 475/? [01:43<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 476/? [01:43<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 476/? [01:43<00:00, 4.59it/s, train/loss=29.90]\nEpoch 0: | | 477/? [01:43<00:00, 4.59it/s, train/loss=29.90]\nEpoch 0: | | 477/? [01:43<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 478/? [01:44<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 478/? [01:44<00:00, 4.59it/s, train/loss=25.50]\nEpoch 0: | | 479/? [01:44<00:00, 4.60it/s, train/loss=25.50]\nEpoch 0: | | 479/? [01:44<00:00, 4.60it/s, train/loss=1.160]\nEpoch 0: | | 480/? [01:44<00:00, 4.60it/s, train/loss=1.160]\nEpoch 0: | | 480/? [01:44<00:00, 4.60it/s, train/loss=8.880]\nEpoch 0: | | 481/? [01:44<00:00, 4.60it/s, train/loss=8.880]\nEpoch 0: | | 481/? [01:44<00:00, 4.60it/s, train/loss=1.140]\nEpoch 0: | | 482/? [01:44<00:00, 4.60it/s, train/loss=1.140]\nEpoch 0: | | 482/? [01:44<00:00, 4.60it/s, train/loss=17.90]\nEpoch 0: | | 483/? [01:44<00:00, 4.61it/s, train/loss=17.90]\nEpoch 0: | | 483/? [01:44<00:00, 4.61it/s, train/loss=1.110]\nEpoch 0: | | 484/? [01:45<00:00, 4.61it/s, train/loss=1.110]\nEpoch 0: | | 484/? [01:45<00:00, 4.61it/s, train/loss=32.30]\nEpoch 0: | | 485/? [01:45<00:00, 4.62it/s, train/loss=32.30]\nEpoch 0: | | 485/? [01:45<00:00, 4.62it/s, train/loss=1.080]\nEpoch 0: | | 486/? [01:45<00:00, 4.61it/s, train/loss=1.080]\nEpoch 0: | | 486/? [01:45<00:00, 4.61it/s, train/loss=22.40]\nEpoch 0: | | 487/? [01:45<00:00, 4.62it/s, train/loss=22.40]\nEpoch 0: | | 487/? [01:45<00:00, 4.62it/s, train/loss=1.080]\nEpoch 0: | | 488/? [01:45<00:00, 4.62it/s, train/loss=1.080]\nEpoch 0: | | 488/? [01:45<00:00, 4.62it/s, train/loss=19.40]\nEpoch 0: | | 489/? [01:45<00:00, 4.63it/s, train/loss=19.40]\nEpoch 0: | | 489/? [01:45<00:00, 4.63it/s, train/loss=1.080]\nEpoch 0: | | 490/? [01:45<00:00, 4.62it/s, train/loss=1.080]\nEpoch 0: | | 490/? [01:45<00:00, 4.62it/s, train/loss=22.90]\nEpoch 0: | | 491/? [01:46<00:00, 4.63it/s, train/loss=22.90]\nEpoch 0: | | 491/? [01:46<00:00, 4.63it/s, train/loss=1.080]\nEpoch 0: | | 492/? [01:46<00:00, 4.63it/s, train/loss=1.080]\nEpoch 0: | | 492/? [01:46<00:00, 4.63it/s, train/loss=24.60]\nEpoch 0: | | 493/? [01:46<00:00, 4.64it/s, train/loss=24.60]\nEpoch 0: | | 493/? [01:46<00:00, 4.64it/s, train/loss=1.080]\nEpoch 0: | | 494/? [01:46<00:00, 4.63it/s, train/loss=1.080]\nEpoch 0: | | 494/? [01:46<00:00, 4.63it/s, train/loss=29.80]\nEpoch 0: | | 495/? [01:46<00:00, 4.64it/s, train/loss=29.80]\nEpoch 0: | | 495/? [01:46<00:00, 4.64it/s, train/loss=1.100]\nEpoch 0: | | 496/? [01:46<00:00, 4.64it/s, train/loss=1.100]\nEpoch 0: | | 496/? [01:46<00:00, 4.64it/s, train/loss=31.80]\nEpoch 0: | | 497/? [01:46<00:00, 4.65it/s, train/loss=31.80]\nEpoch 0: | | 497/? [01:46<00:00, 4.65it/s, train/loss=1.130]\nEpoch 0: | | 498/? [01:47<00:00, 4.64it/s, train/loss=1.130]\nEpoch 0: | | 498/? [01:47<00:00, 4.64it/s, train/loss=11.90]\nEpoch 0: | | 499/? [01:47<00:00, 4.65it/s, train/loss=11.90]\nEpoch 0: | | 499/? [01:47<00:00, 4.65it/s, train/loss=1.140]\nEpoch 0: | | 500/? [01:47<00:00, 4.65it/s, train/loss=1.140]\nEpoch 0: | | 500/? [01:47<00:00, 4.65it/s, train/loss=31.60]\nEpoch 0: | | 501/? [01:47<00:00, 4.66it/s, train/loss=31.60]\nEpoch 0: | | 501/? [01:47<00:00, 4.66it/s, train/loss=1.140]\nEpoch 0: | | 502/? [01:47<00:00, 4.65it/s, train/loss=1.140]\nEpoch 0: | | 502/? [01:47<00:00, 4.65it/s, train/loss=56.30]\nEpoch 0: | | 503/? [01:47<00:00, 4.66it/s, train/loss=56.30]\nEpoch 0: | | 503/? [01:47<00:00, 4.66it/s, train/loss=1.150]\nEpoch 0: | | 504/? [01:48<00:00, 4.66it/s, train/loss=1.150]\nEpoch 0: | | 504/? [01:48<00:00, 4.66it/s, train/loss=45.80]\nEpoch 0: | | 505/? [01:48<00:00, 4.67it/s, train/loss=45.80]\nEpoch 0: | | 505/? [01:48<00:00, 4.67it/s, train/loss=1.150]\nEpoch 0: | | 506/? [01:48<00:00, 4.66it/s, train/loss=1.150]\nEpoch 0: | | 506/? [01:48<00:00, 4.66it/s, train/loss=10.50]\nEpoch 0: | | 507/? [01:48<00:00, 4.67it/s, train/loss=10.50]\nEpoch 0: | | 507/? [01:48<00:00, 4.67it/s, train/loss=1.150]\nEpoch 0: | | 508/? [01:48<00:00, 4.67it/s, train/loss=1.150]\nEpoch 0: | | 508/? [01:48<00:00, 4.67it/s, train/loss=33.40]\nEpoch 0: | | 509/? [01:48<00:00, 4.68it/s, train/loss=33.40]\nEpoch 0: | | 509/? [01:48<00:00, 4.68it/s, train/loss=1.140]\nEpoch 0: | | 510/? [01:49<00:00, 4.67it/s, train/loss=1.140]\nEpoch 0: | | 510/? [01:49<00:00, 4.67it/s, train/loss=16.90]\nEpoch 0: | | 511/? [01:49<00:00, 4.68it/s, train/loss=16.90]\nEpoch 0: | | 511/? [01:49<00:00, 4.68it/s, train/loss=1.140]\nEpoch 0: | | 512/? [01:49<00:00, 4.68it/s, train/loss=1.140]\nEpoch 0: | | 512/? [01:49<00:00, 4.68it/s, train/loss=26.30]\nEpoch 0: | | 513/? [01:49<00:00, 4.69it/s, train/loss=26.30]\nEpoch 0: | | 513/? [01:49<00:00, 4.69it/s, train/loss=1.150]\nEpoch 0: | | 514/? [01:49<00:00, 4.69it/s, train/loss=1.150]\nEpoch 0: | | 514/? [01:49<00:00, 4.68it/s, train/loss=15.90]\nEpoch 0: | | 515/? [01:49<00:00, 4.69it/s, train/loss=15.90]\nEpoch 0: | | 515/? [01:49<00:00, 4.69it/s, train/loss=1.170]\nEpoch 0: | | 516/? [01:50<00:00, 4.69it/s, train/loss=1.170]\nEpoch 0: | | 516/? [01:50<00:00, 4.69it/s, train/loss=29.20]\nEpoch 0: | | 517/? [01:50<00:00, 4.70it/s, train/loss=29.20]\nEpoch 0: | | 517/? [01:50<00:00, 4.70it/s, train/loss=1.210]\nEpoch 0: | | 518/? [01:50<00:00, 4.69it/s, train/loss=1.210]\nEpoch 0: | | 518/? [01:50<00:00, 4.69it/s, train/loss=35.40]\nEpoch 0: | | 519/? [01:50<00:00, 4.70it/s, train/loss=35.40]\nEpoch 0: | | 519/? [01:50<00:00, 4.70it/s, train/loss=1.210]\nEpoch 0: | | 520/? [01:50<00:00, 4.70it/s, train/loss=1.210]\nEpoch 0: | | 520/? [01:50<00:00, 4.70it/s, train/loss=31.80]\nEpoch 0: | | 521/? [01:50<00:00, 4.71it/s, train/loss=31.80]\nEpoch 0: | | 521/? [01:50<00:00, 4.71it/s, train/loss=1.160]\nEpoch 0: | | 522/? [01:50<00:00, 4.70it/s, train/loss=1.160]\nEpoch 0: | | 522/? [01:50<00:00, 4.70it/s, train/loss=28.70]\nEpoch 0: | | 523/? [01:50<00:00, 4.71it/s, train/loss=28.70]\nEpoch 0: | | 523/? [01:50<00:00, 4.71it/s, train/loss=1.140]\nEpoch 0: | | 524/? [01:51<00:00, 4.71it/s, train/loss=1.140]\nEpoch 0: | | 524/? [01:51<00:00, 4.71it/s, train/loss=26.10]\nEpoch 0: | | 525/? [01:51<00:00, 4.72it/s, train/loss=26.10]\nEpoch 0: | | 525/? [01:51<00:00, 4.72it/s, train/loss=1.160]\nEpoch 0: | | 526/? [01:51<00:00, 4.71it/s, train/loss=1.160]\nEpoch 0: | | 526/? [01:51<00:00, 4.71it/s, train/loss=21.50]\nEpoch 0: | | 527/? [01:51<00:00, 4.72it/s, train/loss=21.50]\nEpoch 0: | | 527/? [01:51<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 528/? [01:51<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 528/? [01:51<00:00, 4.72it/s, train/loss=27.90]\nEpoch 0: | | 529/? [01:51<00:00, 4.73it/s, train/loss=27.90]\nEpoch 0: | | 529/? [01:51<00:00, 4.73it/s, train/loss=1.250]\nEpoch 0: | | 530/? [01:52<00:00, 4.72it/s, train/loss=1.250]\nEpoch 0: | | 530/? [01:52<00:00, 4.72it/s, train/loss=14.70]\nEpoch 0: | | 531/? [01:52<00:00, 4.73it/s, train/loss=14.70]\nEpoch 0: | | 531/? [01:52<00:00, 4.73it/s, train/loss=1.250]\nEpoch 0: | | 532/? [01:52<00:00, 4.73it/s, train/loss=1.250]\nEpoch 0: | | 532/? [01:52<00:00, 4.73it/s, train/loss=23.20]\nEpoch 0: | | 533/? [01:52<00:00, 4.74it/s, train/loss=23.20]\nEpoch 0: | | 533/? [01:52<00:00, 4.74it/s, train/loss=1.240]\nEpoch 0: | | 534/? [01:52<00:00, 4.73it/s, train/loss=1.240]\nEpoch 0: | | 534/? [01:52<00:00, 4.73it/s, train/loss=12.80]\nEpoch 0: | | 535/? [01:52<00:00, 4.74it/s, train/loss=12.80]\nEpoch 0: | | 535/? [01:52<00:00, 4.74it/s, train/loss=1.230]\nEpoch 0: | | 536/? [01:53<00:00, 4.74it/s, train/loss=1.230]\nEpoch 0: | | 536/? [01:53<00:00, 4.74it/s, train/loss=44.10]\nEpoch 0: | | 537/? [01:53<00:00, 4.75it/s, train/loss=44.10]\nEpoch 0: | | 537/? [01:53<00:00, 4.75it/s, train/loss=1.210]\nEpoch 0: | | 538/? [01:53<00:00, 4.74it/s, train/loss=1.210]\nEpoch 0: | | 538/? [01:53<00:00, 4.74it/s, train/loss=16.80]\nEpoch 0: | | 539/? [01:53<00:00, 4.75it/s, train/loss=16.80]\nEpoch 0: | | 539/? [01:53<00:00, 4.75it/s, train/loss=1.200]\nEpoch 0: | | 540/? [01:53<00:00, 4.75it/s, train/loss=1.200]\nEpoch 0: | | 540/? [01:53<00:00, 4.75it/s, train/loss=16.80]\nEpoch 0: | | 541/? [01:53<00:00, 4.76it/s, train/loss=16.80]\nEpoch 0: | | 541/? [01:53<00:00, 4.76it/s, train/loss=1.190]\nEpoch 0: | | 542/? [01:54<00:00, 4.75it/s, train/loss=1.190]\nEpoch 0: | | 542/? [01:54<00:00, 4.75it/s, train/loss=17.30]\nEpoch 0: | | 543/? [01:54<00:00, 4.76it/s, train/loss=17.30]\nEpoch 0: | | 543/? [01:54<00:00, 4.76it/s, train/loss=1.170]\nEpoch 0: | | 544/? [01:54<00:00, 4.76it/s, train/loss=1.170]\nEpoch 0: | | 544/? [01:54<00:00, 4.76it/s, train/loss=12.40]\nEpoch 0: | | 545/? [01:54<00:00, 4.76it/s, train/loss=12.40]\nEpoch 0: | | 545/? [01:54<00:00, 4.76it/s, train/loss=1.170]\nEpoch 0: | | 546/? [01:54<00:00, 4.76it/s, train/loss=1.170]\nEpoch 0: | | 546/? [01:54<00:00, 4.76it/s, train/loss=25.30]\nEpoch 0: | | 547/? [01:54<00:00, 4.76it/s, train/loss=25.30]\nEpoch 0: | | 547/? [01:54<00:00, 4.76it/s, train/loss=1.150]\nEpoch 0: | | 548/? [01:55<00:00, 4.76it/s, train/loss=1.150]\nEpoch 0: | | 548/? [01:55<00:00, 4.76it/s, train/loss=25.90]\nEpoch 0: | | 549/? [01:55<00:00, 4.76it/s, train/loss=25.90]\nEpoch 0: | | 549/? [01:55<00:00, 4.76it/s, train/loss=1.110]\nEpoch 0: | | 550/? [01:55<00:00, 4.76it/s, train/loss=1.110]\nEpoch 0: | | 550/? [01:55<00:00, 4.76it/s, train/loss=17.80]\nEpoch 0: | | 551/? [01:55<00:00, 4.77it/s, train/loss=17.80]\nEpoch 0: | | 551/? [01:55<00:00, 4.77it/s, train/loss=1.070]\nEpoch 0: | | 552/? [01:55<00:00, 4.77it/s, train/loss=1.070]\nEpoch 0: | | 552/? [01:55<00:00, 4.77it/s, train/loss=36.40]\nEpoch 0: | | 553/? [01:55<00:00, 4.77it/s, train/loss=36.40]\nEpoch 0: | | 553/? [01:55<00:00, 4.77it/s, train/loss=1.030]\nEpoch 0: | | 554/? [01:56<00:00, 4.77it/s, train/loss=1.030]\nEpoch 0: | | 554/? [01:56<00:00, 4.77it/s, train/loss=16.90]\nEpoch 0: | | 555/? [01:56<00:00, 4.78it/s, train/loss=16.90]\nEpoch 0: | | 555/? [01:56<00:00, 4.78it/s, train/loss=1.020]\nEpoch 0: | | 556/? [01:56<00:00, 4.77it/s, train/loss=1.020]\nEpoch 0: | | 556/? [01:56<00:00, 4.77it/s, train/loss=20.60]\nEpoch 0: | | 557/? [01:56<00:00, 4.78it/s, train/loss=20.60]\nEpoch 0: | | 557/? [01:56<00:00, 4.78it/s, train/loss=1.010]\nEpoch 0: | | 558/? [01:56<00:00, 4.78it/s, train/loss=1.010]\nEpoch 0: | | 558/? [01:56<00:00, 4.78it/s, train/loss=28.10]\nEpoch 0: | | 559/? [01:56<00:00, 4.78it/s, train/loss=28.10]\nEpoch 0: | | 559/? [01:56<00:00, 4.78it/s, train/loss=1.020]\nEpoch 0: | | 560/? [01:57<00:00, 4.77it/s, train/loss=1.020]\nEpoch 0: | | 560/? [01:57<00:00, 4.77it/s, train/loss=37.20]\nEpoch 0: | | 561/? [01:57<00:00, 4.78it/s, train/loss=37.20]\nEpoch 0: | | 561/? [01:57<00:00, 4.78it/s, train/loss=1.030]\nEpoch 0: | | 562/? [01:57<00:00, 4.77it/s, train/loss=1.030]\nEpoch 0: | | 562/? [01:57<00:00, 4.77it/s, train/loss=10.80]\nEpoch 0: | | 563/? [01:57<00:00, 4.78it/s, train/loss=10.80]\nEpoch 0: | | 563/? [01:57<00:00, 4.78it/s, train/loss=1.050]\nEpoch 0: | | 564/? [01:58<00:00, 4.77it/s, train/loss=1.050]\nEpoch 0: | | 564/? [01:58<00:00, 4.77it/s, train/loss=23.20]\nEpoch 0: | | 565/? [01:58<00:00, 4.77it/s, train/loss=23.20]\nEpoch 0: | | 565/? [01:58<00:00, 4.77it/s, train/loss=1.080]\nEpoch 0: | | 566/? [01:58<00:00, 4.77it/s, train/loss=1.080]\nEpoch 0: | | 566/? [01:58<00:00, 4.77it/s, train/loss=23.40]\nEpoch 0: | | 567/? [01:58<00:00, 4.77it/s, train/loss=23.40]\nEpoch 0: | | 567/? [01:58<00:00, 4.77it/s, train/loss=1.130]\nEpoch 0: | | 568/? [01:59<00:00, 4.77it/s, train/loss=1.130]\nEpoch 0: | | 568/? [01:59<00:00, 4.77it/s, train/loss=53.80]\nEpoch 0: | | 569/? [01:59<00:00, 4.77it/s, train/loss=53.80]\nEpoch 0: | | 569/? [01:59<00:00, 4.77it/s, train/loss=1.140]\nEpoch 0: | | 570/? [01:59<00:00, 4.77it/s, train/loss=1.140]\nEpoch 0: | | 570/? [01:59<00:00, 4.77it/s, train/loss=18.30]\nEpoch 0: | | 571/? [01:59<00:00, 4.77it/s, train/loss=18.30]\nEpoch 0: | | 571/? [01:59<00:00, 4.77it/s, train/loss=1.120]\nEpoch 0: | | 572/? [02:00<00:00, 4.76it/s, train/loss=1.120]\nEpoch 0: | | 572/? [02:00<00:00, 4.76it/s, train/loss=11.50]\nEpoch 0: | | 573/? [02:00<00:00, 4.77it/s, train/loss=11.50]\nEpoch 0: | | 573/? [02:00<00:00, 4.77it/s, train/loss=1.090]\nEpoch 0: | | 574/? [02:00<00:00, 4.76it/s, train/loss=1.090]\nEpoch 0: | | 574/? [02:00<00:00, 4.76it/s, train/loss=15.20]\nEpoch 0: | | 575/? [02:00<00:00, 4.77it/s, train/loss=15.20]\nEpoch 0: | | 575/? [02:00<00:00, 4.77it/s, train/loss=1.060]\nEpoch 0: | | 576/? [02:00<00:00, 4.76it/s, train/loss=1.060]\nEpoch 0: | | 576/? [02:00<00:00, 4.76it/s, train/loss=33.00]\nEpoch 0: | | 577/? [02:01<00:00, 4.77it/s, train/loss=33.00]\nEpoch 0: | | 577/? [02:01<00:00, 4.77it/s, train/loss=1.060]\nEpoch 0: | | 578/? [02:01<00:00, 4.76it/s, train/loss=1.060]\nEpoch 0: | | 578/? [02:01<00:00, 4.76it/s, train/loss=21.20]\nEpoch 0: | | 579/? [02:01<00:00, 4.76it/s, train/loss=21.20]\nEpoch 0: | | 579/? [02:01<00:00, 4.76it/s, train/loss=1.090]\nEpoch 0: | | 580/? [02:01<00:00, 4.76it/s, train/loss=1.090]\nEpoch 0: | | 580/? [02:01<00:00, 4.76it/s, train/loss=83.40]\nEpoch 0: | | 581/? [02:02<00:00, 4.76it/s, train/loss=83.40]\nEpoch 0: | | 581/? [02:02<00:00, 4.76it/s, train/loss=1.160]\nEpoch 0: | | 582/? [02:02<00:00, 4.76it/s, train/loss=1.160]\nEpoch 0: | | 582/? [02:02<00:00, 4.76it/s, train/loss=19.10]\nEpoch 0: | | 583/? [02:02<00:00, 4.76it/s, train/loss=19.10]\nEpoch 0: | | 583/? [02:02<00:00, 4.76it/s, train/loss=1.240]\nEpoch 0: | | 584/? [02:02<00:00, 4.75it/s, train/loss=1.240]\nEpoch 0: | | 584/? [02:02<00:00, 4.75it/s, train/loss=60.20]\nEpoch 0: | | 585/? [02:02<00:00, 4.76it/s, train/loss=60.20]\nEpoch 0: | | 585/? [02:02<00:00, 4.76it/s, train/loss=1.230]\nEpoch 0: | | 586/? [02:03<00:00, 4.75it/s, train/loss=1.230]\nEpoch 0: | | 586/? [02:03<00:00, 4.75it/s, train/loss=21.30]\nEpoch 0: | | 587/? [02:03<00:00, 4.76it/s, train/loss=21.30]\nEpoch 0: | | 587/? [02:03<00:00, 4.76it/s, train/loss=1.210]\nEpoch 0: | | 588/? [02:03<00:00, 4.75it/s, train/loss=1.210]\nEpoch 0: | | 588/? [02:03<00:00, 4.75it/s, train/loss=32.10]\nEpoch 0: | | 589/? [02:03<00:00, 4.76it/s, train/loss=32.10]\nEpoch 0: | | 589/? [02:03<00:00, 4.76it/s, train/loss=1.240]\nEpoch 0: | | 590/? [02:04<00:00, 4.75it/s, train/loss=1.240]\nEpoch 0: | | 590/? [02:04<00:00, 4.75it/s, train/loss=28.90]\nEpoch 0: | | 591/? [02:04<00:00, 4.76it/s, train/loss=28.90]\nEpoch 0: | | 591/? [02:04<00:00, 4.76it/s, train/loss=1.270]\nEpoch 0: | | 592/? [02:04<00:00, 4.75it/s, train/loss=1.270]\nEpoch 0: | | 592/? [02:04<00:00, 4.75it/s, train/loss=12.50]\nEpoch 0: | | 593/? [02:04<00:00, 4.76it/s, train/loss=12.50]\nEpoch 0: | | 593/? [02:04<00:00, 4.76it/s, train/loss=1.260]\nEpoch 0: | | 594/? [02:04<00:00, 4.76it/s, train/loss=1.260]\nEpoch 0: | | 594/? [02:04<00:00, 4.76it/s, train/loss=24.00]\nEpoch 0: | | 595/? [02:04<00:00, 4.77it/s, train/loss=24.00]\nEpoch 0: | | 595/? [02:04<00:00, 4.77it/s, train/loss=1.230]\nEpoch 0: | | 596/? [02:05<00:00, 4.76it/s, train/loss=1.230]\nEpoch 0: | | 596/? [02:05<00:00, 4.76it/s, train/loss=15.00]\nEpoch 0: | | 597/? [02:05<00:00, 4.77it/s, train/loss=15.00]\nEpoch 0: | | 597/? [02:05<00:00, 4.77it/s, train/loss=1.210]\nEpoch 0: | | 598/? [02:05<00:00, 4.77it/s, train/loss=1.210]\nEpoch 0: | | 598/? [02:05<00:00, 4.77it/s, train/loss=10.30]\nEpoch 0: | | 599/? [02:05<00:00, 4.77it/s, train/loss=10.30]\nEpoch 0: | | 599/? [02:05<00:00, 4.77it/s, train/loss=1.200]\nEpoch 0: | | 600/? [02:05<00:00, 4.77it/s, train/loss=1.200]\nEpoch 0: | | 600/? [02:05<00:00, 4.77it/s, train/loss=21.10]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:06, 5.79it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:06, 5.50it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:06, 5.39it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:06, 5.34it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:06, 5.42it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:06, 5.44it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:06, 5.47it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:01<00:05, 5.50it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:05, 5.53it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:05, 5.57it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:05, 5.60it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:02<00:04, 5.62it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:02<00:04, 5.60it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:02<00:04, 5.58it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:02<00:04, 5.55it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:02<00:04, 5.53it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:03<00:04, 5.51it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:03<00:04, 5.49it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:03<00:03, 5.48it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:03<00:03, 5.47it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:03<00:03, 5.46it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:04<00:03, 5.46it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:04<00:03, 5.47it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:04<00:02, 5.46it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:04<00:02, 5.46it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:04<00:02, 5.46it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:04<00:02, 5.45it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:05<00:02, 5.45it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:05<00:02, 5.45it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:05<00:01, 5.45it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:05<00:01, 5.45it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:05<00:01, 5.46it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:06<00:01, 5.46it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:06<00:01, 5.48it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:06<00:00, 5.49it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:06<00:00, 5.48it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:06<00:00, 5.48it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:06<00:00, 5.49it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:07<00:00, 5.50it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:07<00:00, 5.51it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 600/? [02:13<00:00, 4.48it/s, train/loss=21.10]\nEpoch 0: | | 601/? [02:14<00:00, 4.47it/s, train/loss=21.10]\nEpoch 0: | | 601/? [02:14<00:00, 4.47it/s, train/loss=1.190]\nEpoch 0: | | 602/? [02:14<00:00, 4.47it/s, train/loss=1.190]\nEpoch 0: | | 602/? [02:14<00:00, 4.47it/s, train/loss=34.40]\nEpoch 0: | | 603/? [02:14<00:00, 4.48it/s, train/loss=34.40]\nEpoch 0: | | 603/? [02:14<00:00, 4.48it/s, train/loss=1.200]\nEpoch 0: | | 604/? [02:14<00:00, 4.47it/s, train/loss=1.200]\nEpoch 0: | | 604/? [02:14<00:00, 4.47it/s, train/loss=17.70]\nEpoch 0: | | 605/? [02:15<00:00, 4.48it/s, train/loss=17.70]\nEpoch 0: | | 605/? [02:15<00:00, 4.48it/s, train/loss=1.220]\nEpoch 0: | | 606/? [02:15<00:00, 4.48it/s, train/loss=1.220]\nEpoch 0: | | 606/? [02:15<00:00, 4.48it/s, train/loss=21.60]\nEpoch 0: | | 607/? [02:15<00:00, 4.49it/s, train/loss=21.60]\nEpoch 0: | | 607/? [02:15<00:00, 4.49it/s, train/loss=1.190]\nEpoch 0: | | 608/? [02:15<00:00, 4.48it/s, train/loss=1.190]\nEpoch 0: | | 608/? [02:15<00:00, 4.48it/s, train/loss=21.10]\nEpoch 0: | | 609/? [02:15<00:00, 4.49it/s, train/loss=21.10]\nEpoch 0: | | 609/? [02:15<00:00, 4.49it/s, train/loss=1.120]\nEpoch 0: | | 610/? [02:15<00:00, 4.49it/s, train/loss=1.120]\nEpoch 0: | | 610/? [02:15<00:00, 4.49it/s, train/loss=23.20]\nEpoch 0: | | 611/? [02:15<00:00, 4.49it/s, train/loss=23.20]\nEpoch 0: | | 611/? [02:15<00:00, 4.49it/s, train/loss=1.070]\nEpoch 0: | | 612/? [02:16<00:00, 4.49it/s, train/loss=1.070]\nEpoch 0: | | 612/? [02:16<00:00, 4.49it/s, train/loss=24.80]\nEpoch 0: | | 613/? [02:16<00:00, 4.50it/s, train/loss=24.80]\nEpoch 0: | | 613/? [02:16<00:00, 4.50it/s, train/loss=1.040]\nEpoch 0: | | 614/? [02:16<00:00, 4.50it/s, train/loss=1.040]\nEpoch 0: | | 614/? [02:16<00:00, 4.50it/s, train/loss=12.10]\nEpoch 0: | | 615/? [02:16<00:00, 4.50it/s, train/loss=12.10]\nEpoch 0: | | 615/? [02:16<00:00, 4.50it/s, train/loss=1.030]\nEpoch 0: | | 616/? [02:16<00:00, 4.50it/s, train/loss=1.030]\nEpoch 0: | | 616/? [02:16<00:00, 4.50it/s, train/loss=43.70]\nEpoch 0: | | 617/? [02:16<00:00, 4.51it/s, train/loss=43.70]\nEpoch 0: | | 617/? [02:16<00:00, 4.51it/s, train/loss=1.050]\nEpoch 0: | | 618/? [02:17<00:00, 4.51it/s, train/loss=1.050]\nEpoch 0: | | 618/? [02:17<00:00, 4.51it/s, train/loss=19.50]\nEpoch 0: | | 619/? [02:17<00:00, 4.51it/s, train/loss=19.50]\nEpoch 0: | | 619/? [02:17<00:00, 4.51it/s, train/loss=1.090]\nEpoch 0: | | 620/? [02:17<00:00, 4.51it/s, train/loss=1.090]\nEpoch 0: | | 620/? [02:17<00:00, 4.51it/s, train/loss=31.00]\nEpoch 0: | | 621/? [02:17<00:00, 4.52it/s, train/loss=31.00]\nEpoch 0: | | 621/? [02:17<00:00, 4.52it/s, train/loss=1.130]\nEpoch 0: | | 622/? [02:17<00:00, 4.52it/s, train/loss=1.130]\nEpoch 0: | | 622/? [02:17<00:00, 4.52it/s, train/loss=18.60]\nEpoch 0: | | 623/? [02:17<00:00, 4.52it/s, train/loss=18.60]\nEpoch 0: | | 623/? [02:17<00:00, 4.52it/s, train/loss=1.170]\nEpoch 0: | | 624/? [02:18<00:00, 4.52it/s, train/loss=1.170]\nEpoch 0: | | 624/? [02:18<00:00, 4.52it/s, train/loss=16.00]\nEpoch 0: | | 625/? [02:18<00:00, 4.53it/s, train/loss=16.00]\nEpoch 0: | | 625/? [02:18<00:00, 4.53it/s, train/loss=1.190]\nEpoch 0: | | 626/? [02:18<00:00, 4.52it/s, train/loss=1.190]\nEpoch 0: | | 626/? [02:18<00:00, 4.52it/s, train/loss=38.30]\nEpoch 0: | | 627/? [02:18<00:00, 4.53it/s, train/loss=38.30]\nEpoch 0: | | 627/? [02:18<00:00, 4.53it/s, train/loss=1.220]\nEpoch 0: | | 628/? [02:18<00:00, 4.53it/s, train/loss=1.220]\nEpoch 0: | | 628/? [02:18<00:00, 4.53it/s, train/loss=27.00]\nEpoch 0: | | 629/? [02:18<00:00, 4.53it/s, train/loss=27.00]\nEpoch 0: | | 629/? [02:18<00:00, 4.53it/s, train/loss=1.220]\nEpoch 0: | | 630/? [02:18<00:00, 4.53it/s, train/loss=1.220]\nEpoch 0: | | 630/? [02:18<00:00, 4.53it/s, train/loss=23.60]\nEpoch 0: | | 631/? [02:19<00:00, 4.54it/s, train/loss=23.60]\nEpoch 0: | | 631/? [02:19<00:00, 4.54it/s, train/loss=1.170]\nEpoch 0: | | 632/? [02:19<00:00, 4.54it/s, train/loss=1.170]\nEpoch 0: | | 632/? [02:19<00:00, 4.54it/s, train/loss=9.630]\nEpoch 0: | | 633/? [02:19<00:00, 4.54it/s, train/loss=9.630]\nEpoch 0: | | 633/? [02:19<00:00, 4.54it/s, train/loss=1.140]\nEpoch 0: | | 634/? [02:19<00:00, 4.54it/s, train/loss=1.140]\nEpoch 0: | | 634/? [02:19<00:00, 4.54it/s, train/loss=78.00]\nEpoch 0: | | 635/? [02:19<00:00, 4.55it/s, train/loss=78.00]\nEpoch 0: | | 635/? [02:19<00:00, 4.55it/s, train/loss=1.120]\nEpoch 0: | | 636/? [02:19<00:00, 4.55it/s, train/loss=1.120]\nEpoch 0: | | 636/? [02:19<00:00, 4.55it/s, train/loss=11.30]\nEpoch 0: | | 637/? [02:19<00:00, 4.55it/s, train/loss=11.30]\nEpoch 0: | | 637/? [02:19<00:00, 4.55it/s, train/loss=1.110]\nEpoch 0: | | 638/? [02:20<00:00, 4.55it/s, train/loss=1.110]\nEpoch 0: | | 638/? [02:20<00:00, 4.55it/s, train/loss=18.90]\nEpoch 0: | | 639/? [02:20<00:00, 4.56it/s, train/loss=18.90]\nEpoch 0: | | 639/? [02:20<00:00, 4.56it/s, train/loss=1.110]\nEpoch 0: | | 640/? [02:20<00:00, 4.55it/s, train/loss=1.110]\nEpoch 0: | | 640/? [02:20<00:00, 4.55it/s, train/loss=26.10]\nEpoch 0: | | 641/? [02:20<00:00, 4.56it/s, train/loss=26.10]\nEpoch 0: | | 641/? [02:20<00:00, 4.56it/s, train/loss=1.100]\nEpoch 0: | | 642/? [02:21<00:00, 4.55it/s, train/loss=1.100]\nEpoch 0: | | 642/? [02:21<00:00, 4.55it/s, train/loss=14.20]\nEpoch 0: | | 643/? [02:21<00:00, 4.56it/s, train/loss=14.20]\nEpoch 0: | | 643/? [02:21<00:00, 4.56it/s, train/loss=1.080]\nEpoch 0: | | 644/? [02:21<00:00, 4.55it/s, train/loss=1.080]\nEpoch 0: | | 644/? [02:21<00:00, 4.55it/s, train/loss=40.70]\nEpoch 0: | | 645/? [02:21<00:00, 4.56it/s, train/loss=40.70]\nEpoch 0: | | 645/? [02:21<00:00, 4.56it/s, train/loss=1.070]\nEpoch 0: | | 646/? [02:21<00:00, 4.55it/s, train/loss=1.070]\nEpoch 0: | | 646/? [02:21<00:00, 4.55it/s, train/loss=32.30]\nEpoch 0: | | 647/? [02:21<00:00, 4.56it/s, train/loss=32.30]\nEpoch 0: | | 647/? [02:21<00:00, 4.56it/s, train/loss=1.080]\nEpoch 0: | | 648/? [02:22<00:00, 4.56it/s, train/loss=1.080]\nEpoch 0: | | 648/? [02:22<00:00, 4.56it/s, train/loss=38.60]\nEpoch 0: | | 649/? [02:22<00:00, 4.56it/s, train/loss=38.60]\nEpoch 0: | | 649/? [02:22<00:00, 4.56it/s, train/loss=1.080]\nEpoch 0: | | 650/? [02:22<00:00, 4.56it/s, train/loss=1.080]\nEpoch 0: | | 650/? [02:22<00:00, 4.56it/s, train/loss=26.00]\nEpoch 0: | | 651/? [02:22<00:00, 4.57it/s, train/loss=26.00]\nEpoch 0: | | 651/? [02:22<00:00, 4.57it/s, train/loss=1.080]\nEpoch 0: | | 652/? [02:22<00:00, 4.57it/s, train/loss=1.080]\nEpoch 0: | | 652/? [02:22<00:00, 4.57it/s, train/loss=40.00]\nEpoch 0: | | 653/? [02:22<00:00, 4.57it/s, train/loss=40.00]\nEpoch 0: | | 653/? [02:22<00:00, 4.57it/s, train/loss=1.080]\nEpoch 0: | | 654/? [02:23<00:00, 4.57it/s, train/loss=1.080]\nEpoch 0: | | 654/? [02:23<00:00, 4.57it/s, train/loss=32.60]\nEpoch 0: | | 655/? [02:23<00:00, 4.58it/s, train/loss=32.60]\nEpoch 0: | | 655/? [02:23<00:00, 4.58it/s, train/loss=1.110]\nEpoch 0: | | 656/? [02:23<00:00, 4.57it/s, train/loss=1.110]\nEpoch 0: | | 656/? [02:23<00:00, 4.57it/s, train/loss=13.30]\nEpoch 0: | | 657/? [02:23<00:00, 4.58it/s, train/loss=13.30]\nEpoch 0: | | 657/? [02:23<00:00, 4.58it/s, train/loss=1.140]\nEpoch 0: | | 658/? [02:23<00:00, 4.58it/s, train/loss=1.140]\nEpoch 0: | | 658/? [02:23<00:00, 4.58it/s, train/loss=41.00]\nEpoch 0: | | 659/? [02:23<00:00, 4.58it/s, train/loss=41.00]\nEpoch 0: | | 659/? [02:23<00:00, 4.58it/s, train/loss=1.150]\nEpoch 0: | | 660/? [02:24<00:00, 4.58it/s, train/loss=1.150]\nEpoch 0: | | 660/? [02:24<00:00, 4.58it/s, train/loss=13.90]\nEpoch 0: | | 661/? [02:24<00:00, 4.59it/s, train/loss=13.90]\nEpoch 0: | | 661/? [02:24<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 662/? [02:24<00:00, 4.59it/s, train/loss=1.170]\nEpoch 0: | | 662/? [02:24<00:00, 4.59it/s, train/loss=81.40]\nEpoch 0: | | 663/? [02:24<00:00, 4.59it/s, train/loss=81.40]\nEpoch 0: | | 663/? [02:24<00:00, 4.59it/s, train/loss=1.220]\nEpoch 0: | | 664/? [02:24<00:00, 4.59it/s, train/loss=1.220]\nEpoch 0: | | 664/? [02:24<00:00, 4.59it/s, train/loss=12.20]\nEpoch 0: | | 665/? [02:24<00:00, 4.60it/s, train/loss=12.20]\nEpoch 0: | | 665/? [02:24<00:00, 4.60it/s, train/loss=1.240]\nEpoch 0: | | 666/? [02:24<00:00, 4.59it/s, train/loss=1.240]\nEpoch 0: | | 666/? [02:24<00:00, 4.59it/s, train/loss=26.10]\nEpoch 0: | | 667/? [02:24<00:00, 4.60it/s, train/loss=26.10]\nEpoch 0: | | 667/? [02:24<00:00, 4.60it/s, train/loss=1.150]\nEpoch 0: | | 668/? [02:25<00:00, 4.60it/s, train/loss=1.150]\nEpoch 0: | | 668/? [02:25<00:00, 4.60it/s, train/loss=38.30]\nEpoch 0: | | 669/? [02:25<00:00, 4.60it/s, train/loss=38.30]\nEpoch 0: | | 669/? [02:25<00:00, 4.60it/s, train/loss=1.090]\nEpoch 0: | | 670/? [02:25<00:00, 4.60it/s, train/loss=1.090]\nEpoch 0: | | 670/? [02:25<00:00, 4.60it/s, train/loss=25.60]\nEpoch 0: | | 671/? [02:25<00:00, 4.61it/s, train/loss=25.60]\nEpoch 0: | | 671/? [02:25<00:00, 4.61it/s, train/loss=1.060]\nEpoch 0: | | 672/? [02:25<00:00, 4.61it/s, train/loss=1.060]\nEpoch 0: | | 672/? [02:25<00:00, 4.61it/s, train/loss=14.40]\nEpoch 0: | | 673/? [02:25<00:00, 4.61it/s, train/loss=14.40]\nEpoch 0: | | 673/? [02:25<00:00, 4.61it/s, train/loss=1.060]\nEpoch 0: | | 674/? [02:26<00:00, 4.61it/s, train/loss=1.060]\nEpoch 0: | | 674/? [02:26<00:00, 4.61it/s, train/loss=20.00]\nEpoch 0: | | 675/? [02:26<00:00, 4.62it/s, train/loss=20.00]\nEpoch 0: | | 675/? [02:26<00:00, 4.62it/s, train/loss=1.060]\nEpoch 0: | | 676/? [02:26<00:00, 4.61it/s, train/loss=1.060]\nEpoch 0: | | 676/? [02:26<00:00, 4.61it/s, train/loss=18.30]\nEpoch 0: | | 677/? [02:26<00:00, 4.62it/s, train/loss=18.30]\nEpoch 0: | | 677/? [02:26<00:00, 4.62it/s, train/loss=1.060]\nEpoch 0: | | 678/? [02:26<00:00, 4.62it/s, train/loss=1.060]\nEpoch 0: | | 678/? [02:26<00:00, 4.62it/s, train/loss=46.40]\nEpoch 0: | | 679/? [02:26<00:00, 4.62it/s, train/loss=46.40]\nEpoch 0: | | 679/? [02:26<00:00, 4.62it/s, train/loss=1.050]\nEpoch 0: | | 680/? [02:27<00:00, 4.62it/s, train/loss=1.050]\nEpoch 0: | | 680/? [02:27<00:00, 4.62it/s, train/loss=14.70]\nEpoch 0: | | 681/? [02:27<00:00, 4.63it/s, train/loss=14.70]\nEpoch 0: | | 681/? [02:27<00:00, 4.63it/s, train/loss=1.050]\nEpoch 0: | | 682/? [02:27<00:00, 4.63it/s, train/loss=1.050]\nEpoch 0: | | 682/? [02:27<00:00, 4.63it/s, train/loss=29.90]\nEpoch 0: | | 683/? [02:27<00:00, 4.63it/s, train/loss=29.90]\nEpoch 0: | | 683/? [02:27<00:00, 4.63it/s, train/loss=1.050]\nEpoch 0: | | 684/? [02:27<00:00, 4.63it/s, train/loss=1.050]\nEpoch 0: | | 684/? [02:27<00:00, 4.63it/s, train/loss=20.00]\nEpoch 0: | | 685/? [02:27<00:00, 4.64it/s, train/loss=20.00]\nEpoch 0: | | 685/? [02:27<00:00, 4.64it/s, train/loss=1.030]\nEpoch 0: | | 686/? [02:28<00:00, 4.63it/s, train/loss=1.030]\nEpoch 0: | | 686/? [02:28<00:00, 4.63it/s, train/loss=23.60]\nEpoch 0: | | 687/? [02:28<00:00, 4.64it/s, train/loss=23.60]\nEpoch 0: | | 687/? [02:28<00:00, 4.64it/s, train/loss=1.010]\nEpoch 0: | | 688/? [02:28<00:00, 4.64it/s, train/loss=1.010]\nEpoch 0: | | 688/? [02:28<00:00, 4.64it/s, train/loss=18.60]\nEpoch 0: | | 689/? [02:28<00:00, 4.64it/s, train/loss=18.60]\nEpoch 0: | | 689/? [02:28<00:00, 4.64it/s, train/loss=0.995]\nEpoch 0: | | 690/? [02:28<00:00, 4.64it/s, train/loss=0.995]\nEpoch 0: | | 690/? [02:28<00:00, 4.64it/s, train/loss=21.90]\nEpoch 0: | | 691/? [02:28<00:00, 4.65it/s, train/loss=21.90]\nEpoch 0: | | 691/? [02:28<00:00, 4.65it/s, train/loss=0.975]\nEpoch 0: | | 692/? [02:28<00:00, 4.65it/s, train/loss=0.975]\nEpoch 0: | | 692/? [02:28<00:00, 4.65it/s, train/loss=37.90]\nEpoch 0: | | 693/? [02:28<00:00, 4.65it/s, train/loss=37.90]\nEpoch 0: | | 693/? [02:28<00:00, 4.65it/s, train/loss=0.958]\nEpoch 0: | | 694/? [02:29<00:00, 4.65it/s, train/loss=0.958]\nEpoch 0: | | 694/? [02:29<00:00, 4.65it/s, train/loss=23.10]\nEpoch 0: | | 695/? [02:29<00:00, 4.66it/s, train/loss=23.10]\nEpoch 0: | | 695/? [02:29<00:00, 4.66it/s, train/loss=0.954]\nEpoch 0: | | 696/? [02:29<00:00, 4.65it/s, train/loss=0.954]\nEpoch 0: | | 696/? [02:29<00:00, 4.65it/s, train/loss=32.60]\nEpoch 0: | | 697/? [02:29<00:00, 4.66it/s, train/loss=32.60]\nEpoch 0: | | 697/? [02:29<00:00, 4.66it/s, train/loss=0.965]\nEpoch 0: | | 698/? [02:29<00:00, 4.66it/s, train/loss=0.965]\nEpoch 0: | | 698/? [02:29<00:00, 4.66it/s, train/loss=23.20]\nEpoch 0: | | 699/? [02:29<00:00, 4.66it/s, train/loss=23.20]\nEpoch 0: | | 699/? [02:29<00:00, 4.66it/s, train/loss=0.967]\nEpoch 0: | | 700/? [02:30<00:00, 4.66it/s, train/loss=0.967]\nEpoch 0: | | 700/? [02:30<00:00, 4.66it/s, train/loss=41.20]\nEpoch 0: | | 701/? [02:30<00:00, 4.67it/s, train/loss=41.20]\nEpoch 0: | | 701/? [02:30<00:00, 4.67it/s, train/loss=0.955]\nEpoch 0: | | 702/? [02:30<00:00, 4.67it/s, train/loss=0.955]\nEpoch 0: | | 702/? [02:30<00:00, 4.67it/s, train/loss=24.60]\nEpoch 0: | | 703/? [02:30<00:00, 4.67it/s, train/loss=24.60]\nEpoch 0: | | 703/? [02:30<00:00, 4.67it/s, train/loss=0.931]\nEpoch 0: | | 704/? [02:30<00:00, 4.67it/s, train/loss=0.931]\nEpoch 0: | | 704/? [02:30<00:00, 4.67it/s, train/loss=8.580]\nEpoch 0: | | 705/? [02:30<00:00, 4.68it/s, train/loss=8.580]\nEpoch 0: | | 705/? [02:30<00:00, 4.68it/s, train/loss=0.905]\nEpoch 0: | | 706/? [02:31<00:00, 4.67it/s, train/loss=0.905]\nEpoch 0: | | 706/? [02:31<00:00, 4.67it/s, train/loss=20.60]\nEpoch 0: | | 707/? [02:31<00:00, 4.68it/s, train/loss=20.60]\nEpoch 0: | | 707/? [02:31<00:00, 4.68it/s, train/loss=0.894]\nEpoch 0: | | 708/? [02:31<00:00, 4.68it/s, train/loss=0.894]\nEpoch 0: | | 708/? [02:31<00:00, 4.68it/s, train/loss=23.60]\nEpoch 0: | | 709/? [02:31<00:00, 4.68it/s, train/loss=23.60]\nEpoch 0: | | 709/? [02:31<00:00, 4.68it/s, train/loss=0.883]\nEpoch 0: | | 710/? [02:31<00:00, 4.68it/s, train/loss=0.883]\nEpoch 0: | | 710/? [02:31<00:00, 4.68it/s, train/loss=14.50]\nEpoch 0: | | 711/? [02:31<00:00, 4.68it/s, train/loss=14.50]\nEpoch 0: | | 711/? [02:31<00:00, 4.68it/s, train/loss=0.874]\nEpoch 0: | | 712/? [02:32<00:00, 4.68it/s, train/loss=0.874]\nEpoch 0: | | 712/? [02:32<00:00, 4.68it/s, train/loss=16.80]\nEpoch 0: | | 713/? [02:32<00:00, 4.68it/s, train/loss=16.80]\nEpoch 0: | | 713/? [02:32<00:00, 4.68it/s, train/loss=0.883]\nEpoch 0: | | 714/? [02:32<00:00, 4.68it/s, train/loss=0.883]\nEpoch 0: | | 714/? [02:32<00:00, 4.68it/s, train/loss=28.60]\nEpoch 0: | | 715/? [02:32<00:00, 4.68it/s, train/loss=28.60]\nEpoch 0: | | 715/? [02:32<00:00, 4.68it/s, train/loss=0.896]\nEpoch 0: | | 716/? [02:33<00:00, 4.68it/s, train/loss=0.896]\nEpoch 0: | | 716/? [02:33<00:00, 4.68it/s, train/loss=13.50]\nEpoch 0: | | 717/? [02:33<00:00, 4.68it/s, train/loss=13.50]\nEpoch 0: | | 717/? [02:33<00:00, 4.68it/s, train/loss=0.912]\nEpoch 0: | | 718/? [02:33<00:00, 4.68it/s, train/loss=0.912]\nEpoch 0: | | 718/? [02:33<00:00, 4.68it/s, train/loss=24.30]\nEpoch 0: | | 719/? [02:33<00:00, 4.69it/s, train/loss=24.30]\nEpoch 0: | | 719/? [02:33<00:00, 4.69it/s, train/loss=0.939]\nEpoch 0: | | 720/? [02:33<00:00, 4.68it/s, train/loss=0.939]\nEpoch 0: | | 720/? [02:33<00:00, 4.68it/s, train/loss=27.00]\nEpoch 0: | | 721/? [02:33<00:00, 4.69it/s, train/loss=27.00]\nEpoch 0: | | 721/? [02:33<00:00, 4.69it/s, train/loss=0.974]\nEpoch 0: | | 722/? [02:34<00:00, 4.69it/s, train/loss=0.974]\nEpoch 0: | | 722/? [02:34<00:00, 4.69it/s, train/loss=36.20]\nEpoch 0: | | 723/? [02:34<00:00, 4.69it/s, train/loss=36.20]\nEpoch 0: | | 723/? [02:34<00:00, 4.69it/s, train/loss=0.974]\nEpoch 0: | | 724/? [02:34<00:00, 4.69it/s, train/loss=0.974]\nEpoch 0: | | 724/? [02:34<00:00, 4.69it/s, train/loss=20.80]\nEpoch 0: | | 725/? [02:34<00:00, 4.70it/s, train/loss=20.80]\nEpoch 0: | | 725/? [02:34<00:00, 4.70it/s, train/loss=0.970]\nEpoch 0: | | 726/? [02:34<00:00, 4.69it/s, train/loss=0.970]\nEpoch 0: | | 726/? [02:34<00:00, 4.69it/s, train/loss=20.00]\nEpoch 0: | | 727/? [02:34<00:00, 4.70it/s, train/loss=20.00]\nEpoch 0: | | 727/? [02:34<00:00, 4.70it/s, train/loss=0.968]\nEpoch 0: | | 728/? [02:34<00:00, 4.70it/s, train/loss=0.968]\nEpoch 0: | | 728/? [02:34<00:00, 4.70it/s, train/loss=12.10]\nEpoch 0: | | 729/? [02:34<00:00, 4.70it/s, train/loss=12.10]\nEpoch 0: | | 729/? [02:34<00:00, 4.70it/s, train/loss=0.960]\nEpoch 0: | | 730/? [02:35<00:00, 4.70it/s, train/loss=0.960]\nEpoch 0: | | 730/? [02:35<00:00, 4.70it/s, train/loss=19.20]\nEpoch 0: | | 731/? [02:35<00:00, 4.71it/s, train/loss=19.20]\nEpoch 0: | | 731/? [02:35<00:00, 4.71it/s, train/loss=0.948]\nEpoch 0: | | 732/? [02:35<00:00, 4.71it/s, train/loss=0.948]\nEpoch 0: | | 732/? [02:35<00:00, 4.71it/s, train/loss=18.60]\nEpoch 0: | | 733/? [02:35<00:00, 4.71it/s, train/loss=18.60]\nEpoch 0: | | 733/? [02:35<00:00, 4.71it/s, train/loss=0.951]\nEpoch 0: | | 734/? [02:35<00:00, 4.71it/s, train/loss=0.951]\nEpoch 0: | | 734/? [02:35<00:00, 4.71it/s, train/loss=12.20]\nEpoch 0: | | 735/? [02:35<00:00, 4.71it/s, train/loss=12.20]\nEpoch 0: | | 735/? [02:35<00:00, 4.71it/s, train/loss=0.977]\nEpoch 0: | | 736/? [02:36<00:00, 4.71it/s, train/loss=0.977]\nEpoch 0: | | 736/? [02:36<00:00, 4.71it/s, train/loss=37.10]\nEpoch 0: | | 737/? [02:36<00:00, 4.72it/s, train/loss=37.10]\nEpoch 0: | | 737/? [02:36<00:00, 4.72it/s, train/loss=1.170]\nEpoch 0: | | 738/? [02:36<00:00, 4.72it/s, train/loss=1.170]\nEpoch 0: | | 738/? [02:36<00:00, 4.72it/s, train/loss=22.80]\nEpoch 0: | | 739/? [02:36<00:00, 4.72it/s, train/loss=22.80]\nEpoch 0: | | 739/? [02:36<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 740/? [02:36<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 740/? [02:36<00:00, 4.72it/s, train/loss=29.60]\nEpoch 0: | | 741/? [02:36<00:00, 4.72it/s, train/loss=29.60]\nEpoch 0: | | 741/? [02:36<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 742/? [02:37<00:00, 4.72it/s, train/loss=1.210]\nEpoch 0: | | 742/? [02:37<00:00, 4.72it/s, train/loss=35.50]\nEpoch 0: | | 743/? [02:37<00:00, 4.73it/s, train/loss=35.50]\nEpoch 0: | | 743/? [02:37<00:00, 4.73it/s, train/loss=1.200]\nEpoch 0: | | 744/? [02:37<00:00, 4.73it/s, train/loss=1.200]\nEpoch 0: | | 744/? [02:37<00:00, 4.73it/s, train/loss=42.00]\nEpoch 0: | | 745/? [02:37<00:00, 4.73it/s, train/loss=42.00]\nEpoch 0: | | 745/? [02:37<00:00, 4.73it/s, train/loss=1.180]\nEpoch 0: | | 746/? [02:37<00:00, 4.73it/s, train/loss=1.180]\nEpoch 0: | | 746/? [02:37<00:00, 4.73it/s, train/loss=34.50]\nEpoch 0: | | 747/? [02:37<00:00, 4.74it/s, train/loss=34.50]\nEpoch 0: | | 747/? [02:37<00:00, 4.74it/s, train/loss=1.170]\nEpoch 0: | | 748/? [02:38<00:00, 4.73it/s, train/loss=1.170]\nEpoch 0: | | 748/? [02:38<00:00, 4.73it/s, train/loss=29.70]\nEpoch 0: | | 749/? [02:38<00:00, 4.74it/s, train/loss=29.70]\nEpoch 0: | | 749/? [02:38<00:00, 4.74it/s, train/loss=1.180]\nEpoch 0: | | 750/? [02:38<00:00, 4.74it/s, train/loss=1.180]\nEpoch 0: | | 750/? [02:38<00:00, 4.74it/s, train/loss=29.00]\nEpoch 0: | | 751/? [02:38<00:00, 4.74it/s, train/loss=29.00]\nEpoch 0: | | 751/? [02:38<00:00, 4.74it/s, train/loss=1.190]\nEpoch 0: | | 752/? [02:38<00:00, 4.74it/s, train/loss=1.190]\nEpoch 0: | | 752/? [02:38<00:00, 4.74it/s, train/loss=17.00]\nEpoch 0: | | 753/? [02:38<00:00, 4.75it/s, train/loss=17.00]\nEpoch 0: | | 753/? [02:38<00:00, 4.75it/s, train/loss=1.210]\nEpoch 0: | | 754/? [02:38<00:00, 4.74it/s, train/loss=1.210]\nEpoch 0: | | 754/? [02:38<00:00, 4.74it/s, train/loss=7.800]\nEpoch 0: | | 755/? [02:38<00:00, 4.75it/s, train/loss=7.800]\nEpoch 0: | | 755/? [02:38<00:00, 4.75it/s, train/loss=1.220]\nEpoch 0: | | 756/? [02:39<00:00, 4.75it/s, train/loss=1.220]\nEpoch 0: | | 756/? [02:39<00:00, 4.75it/s, train/loss=35.00]\nEpoch 0: | | 757/? [02:39<00:00, 4.75it/s, train/loss=35.00]\nEpoch 0: | | 757/? [02:39<00:00, 4.75it/s, train/loss=1.220]\nEpoch 0: | | 758/? [02:39<00:00, 4.75it/s, train/loss=1.220]\nEpoch 0: | | 758/? [02:39<00:00, 4.75it/s, train/loss=15.80]\nEpoch 0: | | 759/? [02:39<00:00, 4.76it/s, train/loss=15.80]\nEpoch 0: | | 759/? [02:39<00:00, 4.76it/s, train/loss=1.210]\nEpoch 0: | | 760/? [02:39<00:00, 4.75it/s, train/loss=1.210]\nEpoch 0: | | 760/? [02:39<00:00, 4.75it/s, train/loss=19.90]\nEpoch 0: | | 761/? [02:39<00:00, 4.76it/s, train/loss=19.90]\nEpoch 0: | | 761/? [02:39<00:00, 4.76it/s, train/loss=1.190]\nEpoch 0: | | 762/? [02:40<00:00, 4.76it/s, train/loss=1.190]\nEpoch 0: | | 762/? [02:40<00:00, 4.76it/s, train/loss=27.10]\nEpoch 0: | | 763/? [02:40<00:00, 4.76it/s, train/loss=27.10]\nEpoch 0: | | 763/? [02:40<00:00, 4.76it/s, train/loss=1.160]\nEpoch 0: | | 764/? [02:40<00:00, 4.76it/s, train/loss=1.160]\nEpoch 0: | | 764/? [02:40<00:00, 4.76it/s, train/loss=19.60]\nEpoch 0: | | 765/? [02:40<00:00, 4.77it/s, train/loss=19.60]\nEpoch 0: | | 765/? [02:40<00:00, 4.77it/s, train/loss=1.150]\nEpoch 0: | | 766/? [02:40<00:00, 4.76it/s, train/loss=1.150]\nEpoch 0: | | 766/? [02:40<00:00, 4.76it/s, train/loss=23.80]\nEpoch 0: | | 767/? [02:40<00:00, 4.77it/s, train/loss=23.80]\nEpoch 0: | | 767/? [02:40<00:00, 4.77it/s, train/loss=1.170]\nEpoch 0: | | 768/? [02:41<00:00, 4.77it/s, train/loss=1.170]\nEpoch 0: | | 768/? [02:41<00:00, 4.77it/s, train/loss=35.60]\nEpoch 0: | | 769/? [02:41<00:00, 4.77it/s, train/loss=35.60]\nEpoch 0: | | 769/? [02:41<00:00, 4.77it/s, train/loss=1.140]\nEpoch 0: | | 770/? [02:41<00:00, 4.77it/s, train/loss=1.140]\nEpoch 0: | | 770/? [02:41<00:00, 4.77it/s, train/loss=41.80]\nEpoch 0: | | 771/? [02:41<00:00, 4.78it/s, train/loss=41.80]\nEpoch 0: | | 771/? [02:41<00:00, 4.78it/s, train/loss=1.090]\nEpoch 0: | | 772/? [02:41<00:00, 4.77it/s, train/loss=1.090]\nEpoch 0: | | 772/? [02:41<00:00, 4.77it/s, train/loss=15.80]\nEpoch 0: | | 773/? [02:41<00:00, 4.78it/s, train/loss=15.80]\nEpoch 0: | | 773/? [02:41<00:00, 4.78it/s, train/loss=1.070]\nEpoch 0: | | 774/? [02:42<00:00, 4.78it/s, train/loss=1.070]\nEpoch 0: | | 774/? [02:42<00:00, 4.78it/s, train/loss=16.30]\nEpoch 0: | | 775/? [02:42<00:00, 4.78it/s, train/loss=16.30]\nEpoch 0: | | 775/? [02:42<00:00, 4.78it/s, train/loss=1.070]\nEpoch 0: | | 776/? [02:42<00:00, 4.78it/s, train/loss=1.070]\nEpoch 0: | | 776/? [02:42<00:00, 4.78it/s, train/loss=22.50]\nEpoch 0: | | 777/? [02:42<00:00, 4.79it/s, train/loss=22.50]\nEpoch 0: | | 777/? [02:42<00:00, 4.79it/s, train/loss=1.070]\nEpoch 0: | | 778/? [02:42<00:00, 4.78it/s, train/loss=1.070]\nEpoch 0: | | 778/? [02:42<00:00, 4.78it/s, train/loss=15.30]\nEpoch 0: | | 779/? [02:42<00:00, 4.78it/s, train/loss=15.30]\nEpoch 0: | | 779/? [02:42<00:00, 4.78it/s, train/loss=1.080]\nEpoch 0: | | 780/? [02:43<00:00, 4.78it/s, train/loss=1.080]\nEpoch 0: | | 780/? [02:43<00:00, 4.78it/s, train/loss=7.950]\nEpoch 0: | | 781/? [02:43<00:00, 4.78it/s, train/loss=7.950]\nEpoch 0: | | 781/? [02:43<00:00, 4.78it/s, train/loss=1.080]\nEpoch 0: | | 782/? [02:43<00:00, 4.78it/s, train/loss=1.080]\nEpoch 0: | | 782/? [02:43<00:00, 4.78it/s, train/loss=11.60]\nEpoch 0: | | 783/? [02:43<00:00, 4.79it/s, train/loss=11.60]\nEpoch 0: | | 783/? [02:43<00:00, 4.79it/s, train/loss=1.090]\nEpoch 0: | | 784/? [02:43<00:00, 4.78it/s, train/loss=1.090]\nEpoch 0: | | 784/? [02:43<00:00, 4.78it/s, train/loss=52.90]\nEpoch 0: | | 785/? [02:43<00:00, 4.79it/s, train/loss=52.90]\nEpoch 0: | | 785/? [02:43<00:00, 4.79it/s, train/loss=1.100]\nEpoch 0: | | 786/? [02:44<00:00, 4.79it/s, train/loss=1.100]\nEpoch 0: | | 786/? [02:44<00:00, 4.79it/s, train/loss=25.70]\nEpoch 0: | | 787/? [02:44<00:00, 4.79it/s, train/loss=25.70]\nEpoch 0: | | 787/? [02:44<00:00, 4.79it/s, train/loss=1.110]\nEpoch 0: | | 788/? [02:44<00:00, 4.79it/s, train/loss=1.110]\nEpoch 0: | | 788/? [02:44<00:00, 4.79it/s, train/loss=15.70]\nEpoch 0: | | 789/? [02:44<00:00, 4.79it/s, train/loss=15.70]\nEpoch 0: | | 789/? [02:44<00:00, 4.79it/s, train/loss=1.110]\nEpoch 0: | | 790/? [02:44<00:00, 4.79it/s, train/loss=1.110]\nEpoch 0: | | 790/? [02:44<00:00, 4.79it/s, train/loss=15.20]\nEpoch 0: | | 791/? [02:44<00:00, 4.80it/s, train/loss=15.20]\nEpoch 0: | | 791/? [02:44<00:00, 4.80it/s, train/loss=1.100]\nEpoch 0: | | 792/? [02:45<00:00, 4.79it/s, train/loss=1.100]\nEpoch 0: | | 792/? [02:45<00:00, 4.79it/s, train/loss=21.60]\nEpoch 0: | | 793/? [02:45<00:00, 4.80it/s, train/loss=21.60]\nEpoch 0: | | 793/? [02:45<00:00, 4.80it/s, train/loss=1.090]\nEpoch 0: | | 794/? [02:45<00:00, 4.80it/s, train/loss=1.090]\nEpoch 0: | | 794/? [02:45<00:00, 4.80it/s, train/loss=11.20]\nEpoch 0: | | 795/? [02:45<00:00, 4.80it/s, train/loss=11.20]\nEpoch 0: | | 795/? [02:45<00:00, 4.80it/s, train/loss=1.090]\nEpoch 0: | | 796/? [02:45<00:00, 4.80it/s, train/loss=1.090]\nEpoch 0: | | 796/? [02:45<00:00, 4.80it/s, train/loss=8.000]\nEpoch 0: | | 797/? [02:45<00:00, 4.80it/s, train/loss=8.000]\nEpoch 0: | | 797/? [02:45<00:00, 4.80it/s, train/loss=1.060]\nEpoch 0: | | 798/? [02:46<00:00, 4.80it/s, train/loss=1.060]\nEpoch 0: | | 798/? [02:46<00:00, 4.80it/s, train/loss=19.90]\nEpoch 0: | | 799/? [02:46<00:00, 4.81it/s, train/loss=19.90]\nEpoch 0: | | 799/? [02:46<00:00, 4.81it/s, train/loss=1.020]\nEpoch 0: | | 800/? [02:46<00:00, 4.81it/s, train/loss=1.020]\nEpoch 0: | | 800/? [02:46<00:00, 4.81it/s, train/loss=19.30]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:06, 6.44it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:05, 6.56it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:05, 6.62it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:05, 6.57it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:05, 6.47it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:05, 6.49it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:05, 6.51it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:01<00:04, 6.51it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:04, 6.53it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:04, 6.56it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:04, 6.57it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:04, 6.58it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:04, 6.59it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:02<00:03, 6.61it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:02<00:03, 6.61it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:02<00:03, 6.56it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:02<00:03, 6.52it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:03, 6.49it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:03, 6.47it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:03<00:03, 6.48it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:03<00:02, 6.48it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:03<00:02, 6.49it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:03<00:02, 6.51it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:03<00:02, 6.52it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:03<00:02, 6.53it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:03<00:02, 6.54it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:04<00:01, 6.56it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:04<00:01, 6.57it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:04<00:01, 6.57it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:04<00:01, 6.57it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:04<00:01, 6.58it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:04<00:01, 6.59it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:05<00:01, 6.60it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:05<00:00, 6.60it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:05<00:00, 6.59it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:05<00:00, 6.60it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:05<00:00, 6.60it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:05<00:00, 6.58it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:05<00:00, 6.59it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:06<00:00, 6.59it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30]\n`Trainer.fit` stopped: `max_steps=800` reached.\nEpoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30]\nEpoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30]\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3])\n[INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\nTesting: | | 0/? [00:00<?, ?it/s]\nTesting: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 1%| | 1/120 [00:00<00:18, 6.41it/s]\nTesting DataLoader 0: 2%|▏ | 2/120 [00:00<00:18, 6.53it/s]\nTesting DataLoader 0: 2%|▎ | 3/120 [00:00<00:18, 6.50it/s]\nTesting DataLoader 0: 3%|▎ | 4/120 [00:00<00:17, 6.57it/s]\nTesting DataLoader 0: 4%|▍ | 5/120 [00:00<00:17, 6.61it/s]\nTesting DataLoader 0: 5%|▌ | 6/120 [00:00<00:17, 6.63it/s]\nTesting DataLoader 0: 6%|▌ | 7/120 [00:01<00:17, 6.64it/s]\nTesting DataLoader 0: 7%|▋ | 8/120 [00:01<00:16, 6.65it/s]\nTesting DataLoader 0: 8%|▊ | 9/120 [00:01<00:16, 6.66it/s]\nTesting DataLoader 0: 8%|▊ | 10/120 [00:01<00:16, 6.65it/s]\nTesting DataLoader 0: 9%|▉ | 11/120 [00:01<00:16, 6.65it/s]\nTesting DataLoader 0: 10%|█ | 12/120 [00:01<00:16, 6.63it/s]\nTesting DataLoader 0: 11%|█ | 13/120 [00:01<00:16, 6.65it/s]\nTesting DataLoader 0: 12%|█▏ | 14/120 [00:02<00:16, 6.62it/s]\nTesting DataLoader 0: 12%|█▎ | 15/120 [00:02<00:15, 6.60it/s]\nTesting DataLoader 0: 13%|█▎ | 16/120 [00:02<00:15, 6.61it/s]\nTesting DataLoader 0: 14%|█▍ | 17/120 [00:02<00:15, 6.61it/s]\nTesting DataLoader 0: 15%|█▌ | 18/120 [00:02<00:15, 6.61it/s]\nTesting DataLoader 0: 16%|█▌ | 19/120 [00:02<00:15, 6.60it/s]\nTesting DataLoader 0: 17%|█▋ | 20/120 [00:03<00:15, 6.60it/s]\nTesting DataLoader 0: 18%|█▊ | 21/120 [00:03<00:14, 6.61it/s]\nTesting DataLoader 0: 18%|█▊ | 22/120 [00:03<00:14, 6.61it/s]\nTesting DataLoader 0: 19%|█▉ | 23/120 [00:03<00:14, 6.60it/s]\nTesting DataLoader 0: 20%|██ | 24/120 [00:03<00:14, 6.58it/s]\nTesting DataLoader 0: 21%|██ | 25/120 [00:03<00:14, 6.57it/s]\nTesting DataLoader 0: 22%|██▏ | 26/120 [00:03<00:14, 6.56it/s]\nTesting DataLoader 0: 22%|██▎ | 27/120 [00:04<00:14, 6.55it/s]\nTesting DataLoader 0: 23%|██▎ | 28/120 [00:04<00:14, 6.55it/s]\nTesting DataLoader 0: 24%|██▍ | 29/120 [00:04<00:13, 6.55it/s]\nTesting DataLoader 0: 25%|██▌ | 30/120 [00:04<00:13, 6.54it/s]\nTesting DataLoader 0: 26%|██▌ | 31/120 [00:04<00:13, 6.55it/s]\nTesting DataLoader 0: 27%|██▋ | 32/120 [00:04<00:13, 6.53it/s]\nTesting DataLoader 0: 28%|██▊ | 33/120 [00:05<00:13, 6.54it/s]\nTesting DataLoader 0: 28%|██▊ | 34/120 [00:05<00:13, 6.55it/s]\nTesting DataLoader 0: 29%|██▉ | 35/120 [00:05<00:12, 6.55it/s]\nTesting DataLoader 0: 30%|███ | 36/120 [00:05<00:12, 6.55it/s]\nTesting DataLoader 0: 31%|███ | 37/120 [00:05<00:12, 6.56it/s]\nTesting DataLoader 0: 32%|███▏ | 38/120 [00:05<00:12, 6.56it/s]\nTesting DataLoader 0: 32%|███▎ | 39/120 [00:05<00:12, 6.57it/s]\nTesting DataLoader 0: 33%|███▎ | 40/120 [00:06<00:12, 6.57it/s]\nTesting DataLoader 0: 34%|███▍ | 41/120 [00:06<00:12, 6.57it/s]\nTesting DataLoader 0: 35%|███▌ | 42/120 [00:06<00:11, 6.57it/s]\nTesting DataLoader 0: 36%|███▌ | 43/120 [00:06<00:11, 6.56it/s]\nTesting DataLoader 0: 37%|███▋ | 44/120 [00:06<00:11, 6.57it/s]\nTesting DataLoader 0: 38%|███▊ | 45/120 [00:06<00:11, 6.57it/s]\nTesting DataLoader 0: 38%|███▊ | 46/120 [00:06<00:11, 6.57it/s]\nTesting DataLoader 0: 39%|███▉ | 47/120 [00:07<00:11, 6.57it/s]\nTesting DataLoader 0: 40%|████ | 48/120 [00:07<00:10, 6.58it/s]\nTesting DataLoader 0: 41%|████ | 49/120 [00:07<00:10, 6.58it/s]\nTesting DataLoader 0: 42%|████▏ | 50/120 [00:07<00:10, 6.59it/s]\nTesting DataLoader 0: 42%|████▎ | 51/120 [00:07<00:10, 6.59it/s]\nTesting DataLoader 0: 43%|████▎ | 52/120 [00:07<00:10, 6.59it/s]\nTesting DataLoader 0: 44%|████▍ | 53/120 [00:08<00:10, 6.59it/s]\nTesting DataLoader 0: 45%|████▌ | 54/120 [00:08<00:10, 6.59it/s]\nTesting DataLoader 0: 46%|████▌ | 55/120 [00:08<00:09, 6.60it/s]\nTesting DataLoader 0: 47%|████▋ | 56/120 [00:08<00:09, 6.60it/s]\nTesting DataLoader 0: 48%|████▊ | 57/120 [00:08<00:09, 6.60it/s]\nTesting DataLoader 0: 48%|████▊ | 58/120 [00:08<00:09, 6.60it/s]\nTesting DataLoader 0: 49%|████▉ | 59/120 [00:08<00:09, 6.61it/s]\nTesting DataLoader 0: 50%|█████ | 60/120 [00:09<00:09, 6.61it/s]\nTesting DataLoader 0: 51%|█████ | 61/120 [00:09<00:08, 6.61it/s]\nTesting DataLoader 0: 52%|█████▏ | 62/120 [00:09<00:08, 6.61it/s]\nTesting DataLoader 0: 52%|█████▎ | 63/120 [00:09<00:08, 6.61it/s]\nTesting DataLoader 0: 53%|█████▎ | 64/120 [00:09<00:08, 6.62it/s]\nTesting DataLoader 0: 54%|█████▍ | 65/120 [00:09<00:08, 6.62it/s]\nTesting DataLoader 0: 55%|█████▌ | 66/120 [00:09<00:08, 6.62it/s]\nTesting DataLoader 0: 56%|█████▌ | 67/120 [00:10<00:08, 6.62it/s]\nTesting DataLoader 0: 57%|█████▋ | 68/120 [00:10<00:07, 6.62it/s]\nTesting DataLoader 0: 57%|█████▊ | 69/120 [00:10<00:07, 6.62it/s]\nTesting DataLoader 0: 58%|█████▊ | 70/120 [00:10<00:07, 6.63it/s]\nTesting DataLoader 0: 59%|█████▉ | 71/120 [00:10<00:07, 6.63it/s]\nTesting DataLoader 0: 60%|██████ | 72/120 [00:10<00:07, 6.63it/s]\nTesting DataLoader 0: 61%|██████ | 73/120 [00:10<00:07, 6.64it/s]\nTesting DataLoader 0: 62%|██████▏ | 74/120 [00:11<00:06, 6.63it/s]\nTesting DataLoader 0: 62%|██████▎ | 75/120 [00:11<00:06, 6.62it/s]\nTesting DataLoader 0: 63%|██████▎ | 76/120 [00:11<00:06, 6.61it/s]\nTesting DataLoader 0: 64%|██████▍ | 77/120 [00:11<00:06, 6.60it/s]\nTesting DataLoader 0: 65%|██████▌ | 78/120 [00:11<00:06, 6.59it/s]\nTesting DataLoader 0: 66%|██████▌ | 79/120 [00:11<00:06, 6.59it/s]\nTesting DataLoader 0: 67%|██████▋ | 80/120 [00:12<00:06, 6.59it/s]\nTesting DataLoader 0: 68%|██████▊ | 81/120 [00:12<00:05, 6.59it/s]\nTesting DataLoader 0: 68%|██████▊ | 82/120 [00:12<00:05, 6.58it/s]\nTesting DataLoader 0: 69%|██████▉ | 83/120 [00:12<00:05, 6.58it/s]\nTesting DataLoader 0: 70%|███████ | 84/120 [00:12<00:05, 6.59it/s]\nTesting DataLoader 0: 71%|███████ | 85/120 [00:12<00:05, 6.59it/s]\nTesting DataLoader 0: 72%|███████▏ | 86/120 [00:13<00:05, 6.59it/s]\nTesting DataLoader 0: 72%|███████▎ | 87/120 [00:13<00:05, 6.59it/s]\nTesting DataLoader 0: 73%|███████▎ | 88/120 [00:13<00:04, 6.60it/s]\nTesting DataLoader 0: 74%|███████▍ | 89/120 [00:13<00:04, 6.60it/s]\nTesting DataLoader 0: 75%|███████▌ | 90/120 [00:13<00:04, 6.60it/s]\nTesting DataLoader 0: 76%|███████▌ | 91/120 [00:13<00:04, 6.60it/s]\nTesting DataLoader 0: 77%|███████▋ | 92/120 [00:13<00:04, 6.60it/s]\nTesting DataLoader 0: 78%|███████▊ | 93/120 [00:14<00:04, 6.61it/s]\nTesting DataLoader 0: 78%|███████▊ | 94/120 [00:14<00:03, 6.61it/s]\nTesting DataLoader 0: 79%|███████▉ | 95/120 [00:14<00:03, 6.60it/s]\nTesting DataLoader 0: 80%|████████ | 96/120 [00:14<00:03, 6.60it/s]\nTesting DataLoader 0: 81%|████████ | 97/120 [00:14<00:03, 6.60it/s]\nTesting DataLoader 0: 82%|████████▏ | 98/120 [00:14<00:03, 6.61it/s]\nTesting DataLoader 0: 82%|████████▎ | 99/120 [00:14<00:03, 6.61it/s]\nTesting DataLoader 0: 83%|████████▎ | 100/120 [00:15<00:03, 6.61it/s]\nTesting DataLoader 0: 84%|████████▍ | 101/120 [00:15<00:02, 6.61it/s]\nTesting DataLoader 0: 85%|████████▌ | 102/120 [00:15<00:02, 6.61it/s]\nTesting DataLoader 0: 86%|████████▌ | 103/120 [00:15<00:02, 6.61it/s]\nTesting DataLoader 0: 87%|████████▋ | 104/120 [00:15<00:02, 6.61it/s]\nTesting DataLoader 0: 88%|████████▊ | 105/120 [00:15<00:02, 6.62it/s]\nTesting DataLoader 0: 88%|████████▊ | 106/120 [00:16<00:02, 6.62it/s]\nTesting DataLoader 0: 89%|████████▉ | 107/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 90%|█████████ | 108/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 91%|█████████ | 109/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 92%|█████████▏| 110/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 92%|█████████▎| 111/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 93%|█████████▎| 112/120 [00:16<00:01, 6.62it/s]\nTesting DataLoader 0: 94%|█████████▍| 113/120 [00:17<00:01, 6.62it/s]\nTesting DataLoader 0: 95%|█████████▌| 114/120 [00:17<00:00, 6.61it/s]\nTesting DataLoader 0: 96%|█████████▌| 115/120 [00:17<00:00, 6.61it/s]\nTesting DataLoader 0: 97%|█████████▋| 116/120 [00:17<00:00, 6.61it/s]\nTesting DataLoader 0: 98%|█████████▊| 117/120 [00:17<00:00, 6.61it/s]\nTesting DataLoader 0: 98%|█████████▊| 118/120 [00:17<00:00, 6.61it/s]\nTesting DataLoader 0: 99%|█████████▉| 119/120 [00:18<00:00, 6.61it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:18<00:00, 6.60it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:19<00:00, 6.17it/s]\nTest results saved to outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/save\nRunning step 3: geometry refinement\n{'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800},\n'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}},\n'data_type': 'dreamcraft3d-single-image-datamodule',\n'description': '',\n'exp_dir': 'outputs/dreamcraft3d-geometry',\n'exp_root_dir': 'outputs',\n'n_gpus': 1,\n'name': 'dreamcraft3d-geometry',\n 'resume': None,\n'seed': 0,\n'system': {'stage': 'geometry', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': 0.02, 'max_step_percent': 0.5}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'accumulate', 'no_diff_steps': 0, 'guidance_eval': 0, 'n_rgb': 4}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_normal_consistency': 10.0, 'lambda_laplacian_smoothness': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'lr': 0.005, 'betas': [0.9, 0.99], 'eps': 1e-15}}, 'geometry_convert_from': 'outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/ckpts/last.ckpt'},\n'system_type': 'dreamcraft3d-system',\n'tag': 'replicate_user',\n'timestamp': '@20240222-134756',\n'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32},\n'trial_dir': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756',\n'trial_name': 'replicate_user@20240222-134756',\n'use_timestamp': True}\nInitializing geometry from a given checkpoint ...\nLoading Deep Floyd ...\nCouldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d7509e-6347b4da73b31fa229296b6e;25483ae6-ebc7-4a7b-ac33-672d284154c2)\nCannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0.\nRepo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it..\nWill try to load from local cache.\nLoading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s]\nLoading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 5.14it/s]\nLoading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 13.15it/s]\nLoaded Deep Floyd!\nLoading Stable Zero123 ...\nget obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion\nLatentDiffusion: Running in eps-prediction mode\nDiffusionWrapper has 859.53 M params.\nKeeping EMAs of 688.\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\nLoaded Stable Zero123!\nUsing prompt [A green leafy plant in a striped terracotta pot] and negative prompt []\nUsing view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view]\nloaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth\nGPU available: True (cuda), used: True\nTPU available: False, using: 0 TPU cores\nIPU available: False, using: 0 IPUs\nHPU available: False, using: 0 HPUs\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n| Name | Type | Params\n----------------------------------------------------\n0 | geometry | TetrahedraSDFGrid | 13.7 M\n1 | material | NoMaterial | 0\n2 | background | SolidColorBackground | 0\n3 | renderer | NVDiffRasterizer | 0\n----------------------------------------------------\n13.7 M Trainable params\n0 Non-trainable params\n13.7 M Total params\n54.847 Total estimated model params size (MB)\nValidation results will be saved to outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/save\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\nTraining: | | 0/? [00:00<?, ?it/s]\nTraining: | | 0/? [00:00<?, ?it/s]\nEpoch 0: | | 0/? [00:00<?, ?it/s] \nEpoch 0: | | 1/? [00:00<00:00, 7.59it/s]\nEpoch 0: | | 1/? [00:00<00:00, 7.51it/s, train/loss=21.80]\nEpoch 0: | | 2/? [00:00<00:00, 3.74it/s, train/loss=21.80]\nEpoch 0: | | 2/? [00:00<00:00, 3.73it/s, train/loss=32.90]\nEpoch 0: | | 3/? [00:00<00:00, 3.50it/s, train/loss=32.90]\nEpoch 0: | | 3/? [00:00<00:00, 3.49it/s, train/loss=48.70]\nEpoch 0: | | 4/? [00:01<00:00, 3.36it/s, train/loss=48.70]\nEpoch 0: | | 4/? [00:01<00:00, 3.36it/s, train/loss=23.90]\nEpoch 0: | | 5/? [00:01<00:00, 3.28it/s, train/loss=23.90]\nEpoch 0: | | 5/? [00:01<00:00, 3.28it/s, train/loss=35.10]\nEpoch 0: | | 6/? [00:01<00:00, 3.26it/s, train/loss=35.10]\nEpoch 0: | | 6/? [00:01<00:00, 3.25it/s, train/loss=23.40]\nEpoch 0: | | 7/? [00:02<00:00, 3.22it/s, train/loss=23.40]\nEpoch 0: | | 7/? [00:02<00:00, 3.22it/s, train/loss=15.90]\nEpoch 0: | | 8/? [00:02<00:00, 3.21it/s, train/loss=15.90]\nEpoch 0: | | 8/? [00:02<00:00, 3.21it/s, train/loss=19.40]\nEpoch 0: | | 9/? [00:02<00:00, 3.19it/s, train/loss=19.40]\nEpoch 0: | | 9/? [00:02<00:00, 3.18it/s, train/loss=31.50]\nEpoch 0: | | 10/? [00:03<00:00, 3.18it/s, train/loss=31.50]\nEpoch 0: | | 10/? [00:03<00:00, 3.18it/s, train/loss=13.20]\nEpoch 0: | | 11/? [00:03<00:00, 3.17it/s, train/loss=13.20]\nEpoch 0: | | 11/? [00:03<00:00, 3.17it/s, train/loss=19.80]\nEpoch 0: | | 12/? [00:03<00:00, 3.17it/s, train/loss=19.80]\nEpoch 0: | | 12/? [00:03<00:00, 3.17it/s, train/loss=42.70]\nEpoch 0: | | 13/? [00:04<00:00, 3.15it/s, train/loss=42.70]\nEpoch 0: | | 13/? [00:04<00:00, 3.15it/s, train/loss=59.50]\nEpoch 0: | | 14/? [00:04<00:00, 3.15it/s, train/loss=59.50]\nEpoch 0: | | 14/? [00:04<00:00, 3.15it/s, train/loss=20.30]\nEpoch 0: | | 15/? [00:04<00:00, 3.15it/s, train/loss=20.30]\nEpoch 0: | | 15/? [00:04<00:00, 3.15it/s, train/loss=17.40]\nEpoch 0: | | 16/? [00:05<00:00, 3.15it/s, train/loss=17.40]\nEpoch 0: | | 16/? [00:05<00:00, 3.14it/s, train/loss=34.70]\nEpoch 0: | | 17/? [00:05<00:00, 3.14it/s, train/loss=34.70]\nEpoch 0: | | 17/? [00:05<00:00, 3.14it/s, train/loss=23.60]\nEpoch 0: | | 18/? [00:05<00:00, 3.14it/s, train/loss=23.60]\nEpoch 0: | | 18/? [00:05<00:00, 3.13it/s, train/loss=14.50]\nEpoch 0: | | 19/? [00:06<00:00, 3.13it/s, train/loss=14.50]\nEpoch 0: | | 19/? [00:06<00:00, 3.13it/s, train/loss=26.20]\nEpoch 0: | | 20/? [00:06<00:00, 3.13it/s, train/loss=26.20]\nEpoch 0: | | 20/? [00:06<00:00, 3.13it/s, train/loss=38.50]\nEpoch 0: | | 21/? [00:06<00:00, 3.12it/s, train/loss=38.50]\nEpoch 0: | | 21/? [00:06<00:00, 3.12it/s, train/loss=43.40]\nEpoch 0: | | 22/? [00:07<00:00, 3.12it/s, train/loss=43.40]\nEpoch 0: | | 22/? [00:07<00:00, 3.12it/s, train/loss=31.60]\nEpoch 0: | | 23/? [00:07<00:00, 3.12it/s, train/loss=31.60]\nEpoch 0: | | 23/? [00:07<00:00, 3.12it/s, train/loss=82.20]\nEpoch 0: | | 24/? [00:07<00:00, 3.12it/s, train/loss=82.20]\nEpoch 0: | | 24/? [00:07<00:00, 3.12it/s, train/loss=9.930]\nEpoch 0: | | 25/? [00:08<00:00, 3.11it/s, train/loss=9.930]\nEpoch 0: | | 25/? [00:08<00:00, 3.11it/s, train/loss=35.30]\nEpoch 0: | | 26/? [00:08<00:00, 3.11it/s, train/loss=35.30]\nEpoch 0: | | 26/? [00:08<00:00, 3.11it/s, train/loss=20.50]\nEpoch 0: | | 27/? [00:08<00:00, 3.11it/s, train/loss=20.50]\nEpoch 0: | | 27/? [00:08<00:00, 3.11it/s, train/loss=31.80]\nEpoch 0: | | 28/? [00:08<00:00, 3.11it/s, train/loss=31.80]\nEpoch 0: | | 28/? [00:08<00:00, 3.11it/s, train/loss=24.90]\nEpoch 0: | | 29/? [00:09<00:00, 3.11it/s, train/loss=24.90]\nEpoch 0: | | 29/? [00:09<00:00, 3.11it/s, train/loss=51.90]\nEpoch 0: | | 30/? [00:09<00:00, 3.11it/s, train/loss=51.90]\nEpoch 0: | | 30/? [00:09<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 31/? [00:09<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 31/? [00:09<00:00, 3.11it/s, train/loss=20.10]\nEpoch 0: | | 32/? [00:10<00:00, 3.11it/s, train/loss=20.10]\nEpoch 0: | | 32/? [00:10<00:00, 3.11it/s, train/loss=24.10]\nEpoch 0: | | 33/? [00:10<00:00, 3.11it/s, train/loss=24.10]\nEpoch 0: | | 33/? [00:10<00:00, 3.11it/s, train/loss=40.80]\nEpoch 0: | | 34/? [00:10<00:00, 3.11it/s, train/loss=40.80]\nEpoch 0: | | 34/? [00:10<00:00, 3.11it/s, train/loss=10.70]\nEpoch 0: | | 35/? [00:11<00:00, 3.11it/s, train/loss=10.70]\nEpoch 0: | | 35/? [00:11<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 36/? [00:11<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 36/? [00:11<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 37/? [00:11<00:00, 3.11it/s, train/loss=20.80]\nEpoch 0: | | 37/? [00:11<00:00, 3.11it/s, train/loss=35.00]\nEpoch 0: | | 38/? [00:12<00:00, 3.11it/s, train/loss=35.00]\nEpoch 0: | | 38/? [00:12<00:00, 3.11it/s, train/loss=15.10]\nEpoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=15.10]\nEpoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=8.780]\nEpoch 0: | | 40/? [00:12<00:00, 3.11it/s, train/loss=8.780]\nEpoch 0: | | 40/? [00:12<00:00, 3.11it/s, train/loss=19.80]\nEpoch 0: | | 41/? [00:13<00:00, 3.10it/s, train/loss=19.80]\nEpoch 0: | | 41/? [00:13<00:00, 3.10it/s, train/loss=30.00]\nEpoch 0: | | 42/? [00:13<00:00, 3.11it/s, train/loss=30.00]\nEpoch 0: | | 42/? [00:13<00:00, 3.11it/s, train/loss=17.70]\nEpoch 0: | | 43/? [00:13<00:00, 3.11it/s, train/loss=17.70]\nEpoch 0: | | 43/? [00:13<00:00, 3.11it/s, train/loss=8.890]\nEpoch 0: | | 44/? [00:14<00:00, 3.11it/s, train/loss=8.890]\nEpoch 0: | | 44/? [00:14<00:00, 3.11it/s, train/loss=10.90]\nEpoch 0: | | 45/? [00:14<00:00, 3.11it/s, train/loss=10.90]\nEpoch 0: | | 45/? [00:14<00:00, 3.11it/s, train/loss=24.40]\nEpoch 0: | | 46/? [00:14<00:00, 3.11it/s, train/loss=24.40]\nEpoch 0: | | 46/? [00:14<00:00, 3.11it/s, train/loss=39.40]\nEpoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=39.40]\nEpoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=31.50]\nEpoch 0: | | 48/? [00:15<00:00, 3.10it/s, train/loss=31.50]\nEpoch 0: | | 48/? [00:15<00:00, 3.10it/s, train/loss=21.20]\nEpoch 0: | | 49/? [00:15<00:00, 3.10it/s, train/loss=21.20]\nEpoch 0: | | 49/? [00:15<00:00, 3.10it/s, train/loss=35.10]\nEpoch 0: | | 50/? [00:16<00:00, 3.10it/s, train/loss=35.10]\nEpoch 0: | | 50/? [00:16<00:00, 3.10it/s, train/loss=30.50]\nEpoch 0: | | 51/? [00:16<00:00, 3.10it/s, train/loss=30.50]\nEpoch 0: | | 51/? [00:16<00:00, 3.10it/s, train/loss=11.50]\nEpoch 0: | | 52/? [00:16<00:00, 3.10it/s, train/loss=11.50]\nEpoch 0: | | 52/? [00:16<00:00, 3.10it/s, train/loss=31.30]\nEpoch 0: | | 53/? [00:17<00:00, 3.10it/s, train/loss=31.30]\nEpoch 0: | | 53/? [00:17<00:00, 3.10it/s, train/loss=50.10]\nEpoch 0: | | 54/? [00:17<00:00, 3.10it/s, train/loss=50.10]\nEpoch 0: | | 54/? [00:17<00:00, 3.10it/s, train/loss=11.20]\nEpoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=11.20]\nEpoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=26.00]\nEpoch 0: | | 56/? [00:18<00:00, 3.10it/s, train/loss=26.00]\nEpoch 0: | | 56/? [00:18<00:00, 3.10it/s, train/loss=25.00]\nEpoch 0: | | 57/? [00:18<00:00, 3.10it/s, train/loss=25.00]\nEpoch 0: | | 57/? [00:18<00:00, 3.10it/s, train/loss=22.20]\nEpoch 0: | | 58/? [00:18<00:00, 3.10it/s, train/loss=22.20]\nEpoch 0: | | 58/? [00:18<00:00, 3.10it/s, train/loss=14.50]\nEpoch 0: | | 59/? [00:19<00:00, 3.10it/s, train/loss=14.50]\nEpoch 0: | | 59/? [00:19<00:00, 3.10it/s, train/loss=16.70]\nEpoch 0: | | 60/? [00:19<00:00, 3.10it/s, train/loss=16.70]\nEpoch 0: | | 60/? [00:19<00:00, 3.10it/s, train/loss=37.50]\nEpoch 0: | | 61/? [00:19<00:00, 3.10it/s, train/loss=37.50]\nEpoch 0: | | 61/? [00:19<00:00, 3.10it/s, train/loss=36.60]\nEpoch 0: | | 62/? [00:20<00:00, 3.10it/s, train/loss=36.60]\nEpoch 0: | | 62/? [00:20<00:00, 3.10it/s, train/loss=62.90]\nEpoch 0: | | 63/? [00:20<00:00, 3.10it/s, train/loss=62.90]\nEpoch 0: | | 63/? [00:20<00:00, 3.10it/s, train/loss=31.40]\nEpoch 0: | | 64/? [00:20<00:00, 3.10it/s, train/loss=31.40]\nEpoch 0: | | 64/? [00:20<00:00, 3.10it/s, train/loss=23.80]\nEpoch 0: | | 65/? [00:20<00:00, 3.10it/s, train/loss=23.80]\nEpoch 0: | | 65/? [00:20<00:00, 3.10it/s, train/loss=32.90]\nEpoch 0: | | 66/? [00:21<00:00, 3.10it/s, train/loss=32.90]\nEpoch 0: | | 66/? [00:21<00:00, 3.10it/s, train/loss=23.90]\nEpoch 0: | | 67/? [00:21<00:00, 3.10it/s, train/loss=23.90]\nEpoch 0: | | 67/? [00:21<00:00, 3.10it/s, train/loss=14.50]\nEpoch 0: | | 68/? [00:21<00:00, 3.10it/s, train/loss=14.50]\nEpoch 0: | | 68/? [00:21<00:00, 3.10it/s, train/loss=29.40]\nEpoch 0: | | 69/? [00:22<00:00, 3.10it/s, train/loss=29.40]\nEpoch 0: | | 69/? [00:22<00:00, 3.10it/s, train/loss=38.10]\nEpoch 0: | | 70/? [00:22<00:00, 3.10it/s, train/loss=38.10]\nEpoch 0: | | 70/? [00:22<00:00, 3.10it/s, train/loss=39.80]\nEpoch 0: | | 71/? [00:22<00:00, 3.10it/s, train/loss=39.80]\nEpoch 0: | | 71/? [00:22<00:00, 3.10it/s, train/loss=22.10]\nEpoch 0: | | 72/? [00:23<00:00, 3.10it/s, train/loss=22.10]\nEpoch 0: | | 72/? [00:23<00:00, 3.10it/s, train/loss=25.50]\nEpoch 0: | | 73/? [00:23<00:00, 3.10it/s, train/loss=25.50]\nEpoch 0: | | 73/? [00:23<00:00, 3.10it/s, train/loss=25.70]\nEpoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=25.70]\nEpoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=18.70]\nEpoch 0: | | 75/? [00:24<00:00, 3.10it/s, train/loss=18.70]\nEpoch 0: | | 75/? [00:24<00:00, 3.10it/s, train/loss=25.40]\nEpoch 0: | | 76/? [00:24<00:00, 3.10it/s, train/loss=25.40]\nEpoch 0: | | 76/? [00:24<00:00, 3.10it/s, train/loss=22.10]\nEpoch 0: | | 77/? [00:24<00:00, 3.10it/s, train/loss=22.10]\nEpoch 0: | | 77/? [00:24<00:00, 3.10it/s, train/loss=33.50]\nEpoch 0: | | 78/? [00:25<00:00, 3.08it/s, train/loss=33.50]\nEpoch 0: | | 78/? [00:25<00:00, 3.08it/s, train/loss=13.40]\nEpoch 0: | | 79/? [00:25<00:00, 3.06it/s, train/loss=13.40]\nEpoch 0: | | 79/? [00:25<00:00, 3.06it/s, train/loss=9.540]\nEpoch 0: | | 80/? [00:26<00:00, 3.05it/s, train/loss=9.540]\nEpoch 0: | | 80/? [00:26<00:00, 3.05it/s, train/loss=13.70]\nEpoch 0: | | 81/? [00:26<00:00, 3.04it/s, train/loss=13.70]\nEpoch 0: | | 81/? [00:26<00:00, 3.04it/s, train/loss=32.00]\nEpoch 0: | | 82/? [00:26<00:00, 3.04it/s, train/loss=32.00]\nEpoch 0: | | 82/? [00:26<00:00, 3.04it/s, train/loss=23.60]\nEpoch 0: | | 83/? [00:27<00:00, 3.05it/s, train/loss=23.60]\nEpoch 0: | | 83/? [00:27<00:00, 3.05it/s, train/loss=27.50]\nEpoch 0: | | 84/? [00:27<00:00, 3.05it/s, train/loss=27.50]\nEpoch 0: | | 84/? [00:27<00:00, 3.05it/s, train/loss=41.20]\nEpoch 0: | | 85/? [00:27<00:00, 3.04it/s, train/loss=41.20]\nEpoch 0: | | 85/? [00:27<00:00, 3.04it/s, train/loss=31.90]\nEpoch 0: | | 86/? [00:28<00:00, 3.05it/s, train/loss=31.90]\nEpoch 0: | | 86/? [00:28<00:00, 3.05it/s, train/loss=10.30]\nEpoch 0: | | 87/? [00:28<00:00, 3.05it/s, train/loss=10.30]\nEpoch 0: | | 87/? [00:28<00:00, 3.05it/s, train/loss=30.40]\nEpoch 0: | | 88/? [00:28<00:00, 3.05it/s, train/loss=30.40]\nEpoch 0: | | 88/? [00:28<00:00, 3.05it/s, train/loss=27.20]\nEpoch 0: | | 89/? [00:29<00:00, 3.05it/s, train/loss=27.20]\nEpoch 0: | | 89/? [00:29<00:00, 3.05it/s, train/loss=36.90]\nEpoch 0: | | 90/? [00:29<00:00, 3.04it/s, train/loss=36.90]\nEpoch 0: | | 90/? [00:29<00:00, 3.04it/s, train/loss=15.30]\nEpoch 0: | | 91/? [00:29<00:00, 3.04it/s, train/loss=15.30]\nEpoch 0: | | 91/? [00:29<00:00, 3.04it/s, train/loss=25.40]\nEpoch 0: | | 92/? [00:30<00:00, 3.04it/s, train/loss=25.40]\nEpoch 0: | | 92/? [00:30<00:00, 3.04it/s, train/loss=18.00]\nEpoch 0: | | 93/? [00:30<00:00, 3.04it/s, train/loss=18.00]\nEpoch 0: | | 93/? [00:30<00:00, 3.04it/s, train/loss=30.60]\nEpoch 0: | | 94/? [00:30<00:00, 3.04it/s, train/loss=30.60]\nEpoch 0: | | 94/? [00:30<00:00, 3.04it/s, train/loss=22.00]\nEpoch 0: | | 95/? [00:31<00:00, 3.04it/s, train/loss=22.00]\nEpoch 0: | | 95/? [00:31<00:00, 3.04it/s, train/loss=13.20]\nEpoch 0: | | 96/? [00:31<00:00, 3.05it/s, train/loss=13.20]\nEpoch 0: | | 96/? [00:31<00:00, 3.05it/s, train/loss=28.90]\nEpoch 0: | | 97/? [00:31<00:00, 3.04it/s, train/loss=28.90]\nEpoch 0: | | 97/? [00:31<00:00, 3.04it/s, train/loss=43.10]\nEpoch 0: | | 98/? [00:32<00:00, 3.04it/s, train/loss=43.10]\nEpoch 0: | | 98/? [00:32<00:00, 3.04it/s, train/loss=24.10]\nEpoch 0: | | 99/? [00:32<00:00, 3.04it/s, train/loss=24.10]\nEpoch 0: | | 99/? [00:32<00:00, 3.04it/s, train/loss=35.90]\nEpoch 0: | | 100/? [00:32<00:00, 3.04it/s, train/loss=35.90]\nEpoch 0: | | 100/? [00:32<00:00, 3.04it/s, train/loss=54.40]\nEpoch 0: | | 101/? [00:33<00:00, 3.04it/s, train/loss=54.40]\nEpoch 0: | | 101/? [00:33<00:00, 3.04it/s, train/loss=39.20]\nEpoch 0: | | 102/? [00:33<00:00, 3.02it/s, train/loss=39.20]\nEpoch 0: | | 102/? [00:33<00:00, 3.02it/s, train/loss=26.30]\nEpoch 0: | | 103/? [00:34<00:00, 3.01it/s, train/loss=26.30]\nEpoch 0: | | 103/? [00:34<00:00, 3.01it/s, train/loss=11.30]\nEpoch 0: | | 104/? [00:34<00:00, 3.00it/s, train/loss=11.30]\nEpoch 0: | | 104/? [00:34<00:00, 3.00it/s, train/loss=16.80]\nEpoch 0: | | 105/? [00:35<00:00, 2.99it/s, train/loss=16.80]\nEpoch 0: | | 105/? [00:35<00:00, 2.99it/s, train/loss=28.70]\nEpoch 0: | | 106/? [00:35<00:00, 2.98it/s, train/loss=28.70]\nEpoch 0: | | 106/? [00:35<00:00, 2.98it/s, train/loss=24.10]\nEpoch 0: | | 107/? [00:36<00:00, 2.97it/s, train/loss=24.10]\nEpoch 0: | | 107/? [00:36<00:00, 2.97it/s, train/loss=25.80]\nEpoch 0: | | 108/? [00:36<00:00, 2.95it/s, train/loss=25.80]\nEpoch 0: | | 108/? [00:36<00:00, 2.95it/s, train/loss=35.10]\nEpoch 0: | | 109/? [00:37<00:00, 2.94it/s, train/loss=35.10]\nEpoch 0: | | 109/? [00:37<00:00, 2.94it/s, train/loss=34.00]\nEpoch 0: | | 110/? [00:37<00:00, 2.95it/s, train/loss=34.00]\nEpoch 0: | | 110/? [00:37<00:00, 2.95it/s, train/loss=10.00]\nEpoch 0: | | 111/? [00:37<00:00, 2.95it/s, train/loss=10.00]\nEpoch 0: | | 111/? [00:37<00:00, 2.95it/s, train/loss=18.90]\nEpoch 0: | | 112/? [00:37<00:00, 2.95it/s, train/loss=18.90]\nEpoch 0: | | 112/? [00:37<00:00, 2.95it/s, train/loss=16.30]\nEpoch 0: | | 113/? [00:38<00:00, 2.95it/s, train/loss=16.30]\nEpoch 0: | | 113/? [00:38<00:00, 2.95it/s, train/loss=26.50]\nEpoch 0: | | 114/? [00:38<00:00, 2.95it/s, train/loss=26.50]\nEpoch 0: | | 114/? [00:38<00:00, 2.95it/s, train/loss=23.80]\nEpoch 0: | | 115/? [00:38<00:00, 2.95it/s, train/loss=23.80]\nEpoch 0: | | 115/? [00:38<00:00, 2.95it/s, train/loss=19.70]\nEpoch 0: | | 116/? [00:39<00:00, 2.95it/s, train/loss=19.70]\nEpoch 0: | | 116/? [00:39<00:00, 2.95it/s, train/loss=28.20]\nEpoch 0: | | 117/? [00:39<00:00, 2.95it/s, train/loss=28.20]\nEpoch 0: | | 117/? [00:39<00:00, 2.95it/s, train/loss=26.90]\nEpoch 0: | | 118/? [00:39<00:00, 2.95it/s, train/loss=26.90]\nEpoch 0: | | 118/? [00:39<00:00, 2.95it/s, train/loss=12.40]\nEpoch 0: | | 119/? [00:40<00:00, 2.95it/s, train/loss=12.40]\nEpoch 0: | | 119/? [00:40<00:00, 2.95it/s, train/loss=25.70]\nEpoch 0: | | 120/? [00:40<00:00, 2.96it/s, train/loss=25.70]\nEpoch 0: | | 120/? [00:40<00:00, 2.96it/s, train/loss=15.50]\nEpoch 0: | | 121/? [00:40<00:00, 2.96it/s, train/loss=15.50]\nEpoch 0: | | 121/? [00:40<00:00, 2.96it/s, train/loss=33.20]\nEpoch 0: | | 122/? [00:41<00:00, 2.96it/s, train/loss=33.20]\nEpoch 0: | | 122/? [00:41<00:00, 2.96it/s, train/loss=29.20]\nEpoch 0: | | 123/? [00:41<00:00, 2.96it/s, train/loss=29.20]\nEpoch 0: | | 123/? [00:41<00:00, 2.96it/s, train/loss=14.80]\nEpoch 0: | | 124/? [00:41<00:00, 2.96it/s, train/loss=14.80]\nEpoch 0: | | 124/? [00:41<00:00, 2.96it/s, train/loss=19.00]\nEpoch 0: | | 125/? [00:42<00:00, 2.96it/s, train/loss=19.00]\nEpoch 0: | | 125/? [00:42<00:00, 2.96it/s, train/loss=35.50]\nEpoch 0: | | 126/? [00:42<00:00, 2.96it/s, train/loss=35.50]\nEpoch 0: | | 126/? [00:42<00:00, 2.96it/s, train/loss=30.20]\nEpoch 0: | | 127/? [00:42<00:00, 2.96it/s, train/loss=30.20]\nEpoch 0: | | 127/? [00:42<00:00, 2.96it/s, train/loss=11.70]\nEpoch 0: | | 128/? [00:43<00:00, 2.96it/s, train/loss=11.70]\nEpoch 0: | | 128/? [00:43<00:00, 2.96it/s, train/loss=33.50]\nEpoch 0: | | 129/? [00:43<00:00, 2.96it/s, train/loss=33.50]\nEpoch 0: | | 129/? [00:43<00:00, 2.96it/s, train/loss=21.60]\nEpoch 0: | | 130/? [00:43<00:00, 2.96it/s, train/loss=21.60]\nEpoch 0: | | 130/? [00:43<00:00, 2.96it/s, train/loss=31.00]\nEpoch 0: | | 131/? [00:44<00:00, 2.96it/s, train/loss=31.00]\nEpoch 0: | | 131/? [00:44<00:00, 2.96it/s, train/loss=7.040]\nEpoch 0: | | 132/? [00:44<00:00, 2.96it/s, train/loss=7.040]\nEpoch 0: | | 132/? [00:44<00:00, 2.96it/s, train/loss=18.30]\nEpoch 0: | | 133/? [00:44<00:00, 2.96it/s, train/loss=18.30]\nEpoch 0: | | 133/? [00:44<00:00, 2.96it/s, train/loss=50.90]\nEpoch 0: | | 134/? [00:45<00:00, 2.96it/s, train/loss=50.90]\nEpoch 0: | | 134/? [00:45<00:00, 2.96it/s, train/loss=36.30]\nEpoch 0: | | 135/? [00:45<00:00, 2.96it/s, train/loss=36.30]\nEpoch 0: | | 135/? [00:45<00:00, 2.96it/s, train/loss=16.50]\nEpoch 0: | | 136/? [00:45<00:00, 2.96it/s, train/loss=16.50]\nEpoch 0: | | 136/? [00:45<00:00, 2.96it/s, train/loss=37.00]\nEpoch 0: | | 137/? [00:46<00:00, 2.96it/s, train/loss=37.00]\nEpoch 0: | | 137/? [00:46<00:00, 2.96it/s, train/loss=30.50]\nEpoch 0: | | 138/? [00:46<00:00, 2.96it/s, train/loss=30.50]\nEpoch 0: | | 138/? [00:46<00:00, 2.96it/s, train/loss=9.030]\nEpoch 0: | | 139/? [00:46<00:00, 2.96it/s, train/loss=9.030]\nEpoch 0: | | 139/? [00:46<00:00, 2.96it/s, train/loss=64.00]\nEpoch 0: | | 140/? [00:47<00:00, 2.97it/s, train/loss=64.00]\nEpoch 0: | | 140/? [00:47<00:00, 2.97it/s, train/loss=21.90]\nEpoch 0: | | 141/? [00:47<00:00, 2.97it/s, train/loss=21.90]\nEpoch 0: | | 141/? [00:47<00:00, 2.97it/s, train/loss=20.40]\nEpoch 0: | | 142/? [00:47<00:00, 2.97it/s, train/loss=20.40]\nEpoch 0: | | 142/? [00:47<00:00, 2.97it/s, train/loss=23.60]\nEpoch 0: | | 143/? [00:48<00:00, 2.97it/s, train/loss=23.60]\nEpoch 0: | | 143/? [00:48<00:00, 2.97it/s, train/loss=9.380]\nEpoch 0: | | 144/? [00:48<00:00, 2.97it/s, train/loss=9.380]\nEpoch 0: | | 144/? [00:48<00:00, 2.97it/s, train/loss=28.20]\nEpoch 0: | | 145/? [00:48<00:00, 2.97it/s, train/loss=28.20]\nEpoch 0: | | 145/? [00:48<00:00, 2.97it/s, train/loss=49.70]\nEpoch 0: | | 146/? [00:49<00:00, 2.97it/s, train/loss=49.70]\nEpoch 0: | | 146/? [00:49<00:00, 2.97it/s, train/loss=22.60]\nEpoch 0: | | 147/? [00:49<00:00, 2.97it/s, train/loss=22.60]\nEpoch 0: | | 147/? [00:49<00:00, 2.97it/s, train/loss=31.20]\nEpoch 0: | | 148/? [00:49<00:00, 2.97it/s, train/loss=31.20]\nEpoch 0: | | 148/? [00:49<00:00, 2.97it/s, train/loss=12.40]\nEpoch 0: | | 149/? [00:50<00:00, 2.97it/s, train/loss=12.40]\nEpoch 0: | | 149/? [00:50<00:00, 2.97it/s, train/loss=26.90]\nEpoch 0: | | 150/? [00:50<00:00, 2.97it/s, train/loss=26.90]\nEpoch 0: | | 150/? [00:50<00:00, 2.97it/s, train/loss=29.40]\nEpoch 0: | | 151/? [00:50<00:00, 2.97it/s, train/loss=29.40]\nEpoch 0: | | 151/? [00:50<00:00, 2.97it/s, train/loss=15.90]\nEpoch 0: | | 152/? [00:51<00:00, 2.97it/s, train/loss=15.90]\nEpoch 0: | | 152/? [00:51<00:00, 2.97it/s, train/loss=34.20]\nEpoch 0: | | 153/? [00:51<00:00, 2.97it/s, train/loss=34.20]\nEpoch 0: | | 153/? [00:51<00:00, 2.97it/s, train/loss=27.00]\nEpoch 0: | | 154/? [00:51<00:00, 2.97it/s, train/loss=27.00]\nEpoch 0: | | 154/? [00:51<00:00, 2.97it/s, train/loss=20.90]\nEpoch 0: | | 155/? [00:52<00:00, 2.97it/s, train/loss=20.90]\nEpoch 0: | | 155/? [00:52<00:00, 2.97it/s, train/loss=28.60]\nEpoch 0: | | 156/? [00:52<00:00, 2.97it/s, train/loss=28.60]\nEpoch 0: | | 156/? [00:52<00:00, 2.97it/s, train/loss=15.00]\nEpoch 0: | | 157/? [00:52<00:00, 2.97it/s, train/loss=15.00]\nEpoch 0: | | 157/? [00:52<00:00, 2.97it/s, train/loss=18.70]\nEpoch 0: | | 158/? [00:53<00:00, 2.98it/s, train/loss=18.70]\nEpoch 0: | | 158/? [00:53<00:00, 2.98it/s, train/loss=21.40]\nEpoch 0: | | 159/? [00:53<00:00, 2.98it/s, train/loss=21.40]\nEpoch 0: | | 159/? [00:53<00:00, 2.98it/s, train/loss=37.80]\nEpoch 0: | | 160/? [00:53<00:00, 2.98it/s, train/loss=37.80]\nEpoch 0: | | 160/? [00:53<00:00, 2.98it/s, train/loss=16.10]\nEpoch 0: | | 161/? [00:54<00:00, 2.98it/s, train/loss=16.10]\nEpoch 0: | | 161/? [00:54<00:00, 2.98it/s, train/loss=29.40]\nEpoch 0: | | 162/? [00:54<00:00, 2.98it/s, train/loss=29.40]\nEpoch 0: | | 162/? [00:54<00:00, 2.98it/s, train/loss=27.00]\nEpoch 0: | | 163/? [00:54<00:00, 2.98it/s, train/loss=27.00]\nEpoch 0: | | 163/? [00:54<00:00, 2.98it/s, train/loss=30.00]\nEpoch 0: | | 164/? [00:55<00:00, 2.98it/s, train/loss=30.00]\nEpoch 0: | | 164/? [00:55<00:00, 2.98it/s, train/loss=23.00]\nEpoch 0: | | 165/? [00:55<00:00, 2.98it/s, train/loss=23.00]\nEpoch 0: | | 165/? [00:55<00:00, 2.98it/s, train/loss=19.30]\nEpoch 0: | | 166/? [00:55<00:00, 2.98it/s, train/loss=19.30]\nEpoch 0: | | 166/? [00:55<00:00, 2.98it/s, train/loss=7.840]\nEpoch 0: | | 167/? [00:56<00:00, 2.98it/s, train/loss=7.840]\nEpoch 0: | | 167/? [00:56<00:00, 2.98it/s, train/loss=23.30]\nEpoch 0: | | 168/? [00:56<00:00, 2.98it/s, train/loss=23.30]\nEpoch 0: | | 168/? [00:56<00:00, 2.98it/s, train/loss=28.90]\nEpoch 0: | | 169/? [00:56<00:00, 2.98it/s, train/loss=28.90]\nEpoch 0: | | 169/? [00:56<00:00, 2.98it/s, train/loss=41.70]\nEpoch 0: | | 170/? [00:57<00:00, 2.98it/s, train/loss=41.70]\nEpoch 0: | | 170/? [00:57<00:00, 2.98it/s, train/loss=25.60]\nEpoch 0: | | 171/? [00:57<00:00, 2.98it/s, train/loss=25.60]\nEpoch 0: | | 171/? [00:57<00:00, 2.98it/s, train/loss=9.550]\nEpoch 0: | | 172/? [00:57<00:00, 2.98it/s, train/loss=9.550]\nEpoch 0: | | 172/? [00:57<00:00, 2.98it/s, train/loss=8.980]\nEpoch 0: | | 173/? [00:58<00:00, 2.98it/s, train/loss=8.980]\nEpoch 0: | | 173/? [00:58<00:00, 2.98it/s, train/loss=41.40]\nEpoch 0: | | 174/? [00:58<00:00, 2.97it/s, train/loss=41.40]\nEpoch 0: | | 174/? [00:58<00:00, 2.97it/s, train/loss=14.10]\nEpoch 0: | | 175/? [00:58<00:00, 2.97it/s, train/loss=14.10]\nEpoch 0: | | 175/? [00:58<00:00, 2.97it/s, train/loss=42.50]\nEpoch 0: | | 176/? [00:59<00:00, 2.97it/s, train/loss=42.50]\nEpoch 0: | | 176/? [00:59<00:00, 2.97it/s, train/loss=18.90]\nEpoch 0: | | 177/? [00:59<00:00, 2.97it/s, train/loss=18.90]\nEpoch 0: | | 177/? [00:59<00:00, 2.97it/s, train/loss=52.70]\nEpoch 0: | | 178/? [00:59<00:00, 2.97it/s, train/loss=52.70]\nEpoch 0: | | 178/? [00:59<00:00, 2.97it/s, train/loss=21.30]\nEpoch 0: | | 179/? [01:00<00:00, 2.97it/s, train/loss=21.30]\nEpoch 0: | | 179/? [01:00<00:00, 2.97it/s, train/loss=26.90]\nEpoch 0: | | 180/? [01:00<00:00, 2.97it/s, train/loss=26.90]\nEpoch 0: | | 180/? [01:00<00:00, 2.97it/s, train/loss=43.90]\nEpoch 0: | | 181/? [01:00<00:00, 2.97it/s, train/loss=43.90]\nEpoch 0: | | 181/? [01:00<00:00, 2.97it/s, train/loss=30.30]\nEpoch 0: | | 182/? [01:01<00:00, 2.97it/s, train/loss=30.30]\nEpoch 0: | | 182/? [01:01<00:00, 2.97it/s, train/loss=14.80]\nEpoch 0: | | 183/? [01:01<00:00, 2.97it/s, train/loss=14.80]\nEpoch 0: | | 183/? [01:01<00:00, 2.97it/s, train/loss=9.860]\nEpoch 0: | | 184/? [01:01<00:00, 2.97it/s, train/loss=9.860]\nEpoch 0: | | 184/? [01:01<00:00, 2.97it/s, train/loss=40.60]\nEpoch 0: | | 185/? [01:02<00:00, 2.97it/s, train/loss=40.60]\nEpoch 0: | | 185/? [01:02<00:00, 2.97it/s, train/loss=17.30]\nEpoch 0: | | 186/? [01:02<00:00, 2.97it/s, train/loss=17.30]\nEpoch 0: | | 186/? [01:02<00:00, 2.97it/s, train/loss=17.20]\nEpoch 0: | | 187/? [01:02<00:00, 2.97it/s, train/loss=17.20]\nEpoch 0: | | 187/? [01:02<00:00, 2.97it/s, train/loss=30.70]\nEpoch 0: | | 188/? [01:03<00:00, 2.97it/s, train/loss=30.70]\nEpoch 0: | | 188/? [01:03<00:00, 2.97it/s, train/loss=30.50]\nEpoch 0: | | 189/? [01:03<00:00, 2.97it/s, train/loss=30.50]\nEpoch 0: | | 189/? [01:03<00:00, 2.97it/s, train/loss=34.40]\nEpoch 0: | | 190/? [01:03<00:00, 2.97it/s, train/loss=34.40]\nEpoch 0: | | 190/? [01:03<00:00, 2.97it/s, train/loss=18.50]\nEpoch 0: | | 191/? [01:04<00:00, 2.97it/s, train/loss=18.50]\nEpoch 0: | | 191/? [01:04<00:00, 2.97it/s, train/loss=10.70]\nEpoch 0: | | 192/? [01:04<00:00, 2.98it/s, train/loss=10.70]\nEpoch 0: | | 192/? [01:04<00:00, 2.98it/s, train/loss=10.90]\nEpoch 0: | | 193/? [01:04<00:00, 2.98it/s, train/loss=10.90]\nEpoch 0: | | 193/? [01:04<00:00, 2.98it/s, train/loss=42.30]\nEpoch 0: | | 194/? [01:05<00:00, 2.98it/s, train/loss=42.30]\nEpoch 0: | | 194/? [01:05<00:00, 2.98it/s, train/loss=15.00]\nEpoch 0: | | 195/? [01:05<00:00, 2.98it/s, train/loss=15.00]\nEpoch 0: | | 195/? [01:05<00:00, 2.98it/s, train/loss=24.30]\nEpoch 0: | | 196/? [01:05<00:00, 2.98it/s, train/loss=24.30]\nEpoch 0: | | 196/? [01:05<00:00, 2.98it/s, train/loss=23.80]\nEpoch 0: | | 197/? [01:06<00:00, 2.98it/s, train/loss=23.80]\nEpoch 0: | | 197/? [01:06<00:00, 2.98it/s, train/loss=23.20]\nEpoch 0: | | 198/? [01:06<00:00, 2.98it/s, train/loss=23.20]\nEpoch 0: | | 198/? [01:06<00:00, 2.98it/s, train/loss=9.060]\nEpoch 0: | | 199/? [01:06<00:00, 2.98it/s, train/loss=9.060]\nEpoch 0: | | 199/? [01:06<00:00, 2.98it/s, train/loss=24.10]\nEpoch 0: | | 200/? [01:07<00:00, 2.98it/s, train/loss=24.10]\nEpoch 0: | | 200/? [01:07<00:00, 2.98it/s, train/loss=19.50]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 9.75it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 10.64it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 10.96it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.13it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.22it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.32it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.34it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.39it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.38it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.46it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.53it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.59it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.56it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.57it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.60it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.61it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:01, 11.63it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.64it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.65it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.66it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.65it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.67it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:01<00:01, 11.68it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.66it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.65it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.64it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.64it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.63it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.65it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.67it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.67it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.66it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.67it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.66it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.64it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.62it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.60it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.59it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.58it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.57it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 200/? [01:14<00:00, 2.70it/s, train/loss=19.50]\nEpoch 0: | | 201/? [01:15<00:00, 2.68it/s, train/loss=19.50]\nEpoch 0: | | 201/? [01:15<00:00, 2.68it/s, train/loss=18.40]\nEpoch 0: | | 202/? [01:15<00:00, 2.68it/s, train/loss=18.40]\nEpoch 0: | | 202/? [01:15<00:00, 2.68it/s, train/loss=21.90]\nEpoch 0: | | 203/? [01:15<00:00, 2.68it/s, train/loss=21.90]\nEpoch 0: | | 203/? [01:15<00:00, 2.68it/s, train/loss=24.70]\nEpoch 0: | | 204/? [01:16<00:00, 2.68it/s, train/loss=24.70]\nEpoch 0: | | 204/? [01:16<00:00, 2.68it/s, train/loss=20.40]\nEpoch 0: | | 205/? [01:16<00:00, 2.68it/s, train/loss=20.40]\nEpoch 0: | | 205/? [01:16<00:00, 2.68it/s, train/loss=24.10]\nEpoch 0: | | 206/? [01:16<00:00, 2.68it/s, train/loss=24.10]\nEpoch 0: | | 206/? [01:16<00:00, 2.68it/s, train/loss=29.90]\nEpoch 0: | | 207/? [01:17<00:00, 2.68it/s, train/loss=29.90]\nEpoch 0: | | 207/? [01:17<00:00, 2.68it/s, train/loss=9.750]\nEpoch 0: | | 208/? [01:17<00:00, 2.68it/s, train/loss=9.750]\nEpoch 0: | | 208/? [01:17<00:00, 2.68it/s, train/loss=20.60]\nEpoch 0: | | 209/? [01:17<00:00, 2.68it/s, train/loss=20.60]\nEpoch 0: | | 209/? [01:17<00:00, 2.68it/s, train/loss=31.50]\nEpoch 0: | | 210/? [01:18<00:00, 2.69it/s, train/loss=31.50]\nEpoch 0: | | 210/? [01:18<00:00, 2.69it/s, train/loss=26.50]\nEpoch 0: | | 211/? [01:18<00:00, 2.69it/s, train/loss=26.50]\nEpoch 0: | | 211/? [01:18<00:00, 2.69it/s, train/loss=44.80]\nEpoch 0: | | 212/? [01:18<00:00, 2.69it/s, train/loss=44.80]\nEpoch 0: | | 212/? [01:18<00:00, 2.69it/s, train/loss=12.50]\nEpoch 0: | | 213/? [01:19<00:00, 2.69it/s, train/loss=12.50]\nEpoch 0: | | 213/? [01:19<00:00, 2.69it/s, train/loss=22.50]\nEpoch 0: | | 214/? [01:19<00:00, 2.69it/s, train/loss=22.50]\nEpoch 0: | | 214/? [01:19<00:00, 2.69it/s, train/loss=22.90]\nEpoch 0: | | 215/? [01:19<00:00, 2.69it/s, train/loss=22.90]\nEpoch 0: | | 215/? [01:19<00:00, 2.69it/s, train/loss=12.00]\nEpoch 0: | | 216/? [01:20<00:00, 2.70it/s, train/loss=12.00]\nEpoch 0: | | 216/? [01:20<00:00, 2.70it/s, train/loss=22.50]\nEpoch 0: | | 217/? [01:20<00:00, 2.70it/s, train/loss=22.50]\nEpoch 0: | | 217/? [01:20<00:00, 2.70it/s, train/loss=22.90]\nEpoch 0: | | 218/? [01:20<00:00, 2.70it/s, train/loss=22.90]\nEpoch 0: | | 218/? [01:20<00:00, 2.70it/s, train/loss=26.30]\nEpoch 0: | | 219/? [01:21<00:00, 2.70it/s, train/loss=26.30]\nEpoch 0: | | 219/? [01:21<00:00, 2.70it/s, train/loss=12.70]\nEpoch 0: | | 220/? [01:21<00:00, 2.70it/s, train/loss=12.70]\nEpoch 0: | | 220/? [01:21<00:00, 2.70it/s, train/loss=12.20]\nEpoch 0: | | 221/? [01:21<00:00, 2.70it/s, train/loss=12.20]\nEpoch 0: | | 221/? [01:21<00:00, 2.70it/s, train/loss=33.90]\nEpoch 0: | | 222/? [01:22<00:00, 2.70it/s, train/loss=33.90]\nEpoch 0: | | 222/? [01:22<00:00, 2.70it/s, train/loss=21.90]\nEpoch 0: | | 223/? [01:22<00:00, 2.70it/s, train/loss=21.90]\nEpoch 0: | | 223/? [01:22<00:00, 2.70it/s, train/loss=9.470]\nEpoch 0: | | 224/? [01:22<00:00, 2.70it/s, train/loss=9.470]\nEpoch 0: | | 224/? [01:22<00:00, 2.70it/s, train/loss=29.10]\nEpoch 0: | | 225/? [01:23<00:00, 2.70it/s, train/loss=29.10]\nEpoch 0: | | 225/? [01:23<00:00, 2.70it/s, train/loss=34.40]\nEpoch 0: | | 226/? [01:23<00:00, 2.71it/s, train/loss=34.40]\nEpoch 0: | | 226/? [01:23<00:00, 2.71it/s, train/loss=17.00]\nEpoch 0: | | 227/? [01:23<00:00, 2.71it/s, train/loss=17.00]\nEpoch 0: | | 227/? [01:23<00:00, 2.71it/s, train/loss=23.90]\nEpoch 0: | | 228/? [01:24<00:00, 2.71it/s, train/loss=23.90]\nEpoch 0: | | 228/? [01:24<00:00, 2.71it/s, train/loss=12.90]\nEpoch 0: | | 229/? [01:24<00:00, 2.70it/s, train/loss=12.90]\nEpoch 0: | | 229/? [01:24<00:00, 2.70it/s, train/loss=27.10]\nEpoch 0: | | 230/? [01:25<00:00, 2.70it/s, train/loss=27.10]\nEpoch 0: | | 230/? [01:25<00:00, 2.70it/s, train/loss=18.10]\nEpoch 0: | | 231/? [01:25<00:00, 2.70it/s, train/loss=18.10]\nEpoch 0: | | 231/? [01:25<00:00, 2.70it/s, train/loss=23.10]\nEpoch 0: | | 232/? [01:25<00:00, 2.70it/s, train/loss=23.10]\nEpoch 0: | | 232/? [01:25<00:00, 2.70it/s, train/loss=32.00]\nEpoch 0: | | 233/? [01:26<00:00, 2.70it/s, train/loss=32.00]\nEpoch 0: | | 233/? [01:26<00:00, 2.70it/s, train/loss=39.00]\nEpoch 0: | | 234/? [01:26<00:00, 2.70it/s, train/loss=39.00]\nEpoch 0: | | 234/? [01:26<00:00, 2.70it/s, train/loss=17.50]\nEpoch 0: | | 235/? [01:27<00:00, 2.70it/s, train/loss=17.50]\nEpoch 0: | | 235/? [01:27<00:00, 2.70it/s, train/loss=27.30]\nEpoch 0: | | 236/? [01:27<00:00, 2.70it/s, train/loss=27.30]\nEpoch 0: | | 236/? [01:27<00:00, 2.70it/s, train/loss=17.20]\nEpoch 0: | | 237/? [01:27<00:00, 2.70it/s, train/loss=17.20]\nEpoch 0: | | 237/? [01:27<00:00, 2.70it/s, train/loss=21.60]\nEpoch 0: | | 238/? [01:28<00:00, 2.70it/s, train/loss=21.60]\nEpoch 0: | | 238/? [01:28<00:00, 2.70it/s, train/loss=27.00]\nEpoch 0: | | 239/? [01:28<00:00, 2.70it/s, train/loss=27.00]\nEpoch 0: | | 239/? [01:28<00:00, 2.70it/s, train/loss=24.70]\nEpoch 0: | | 240/? [01:28<00:00, 2.71it/s, train/loss=24.70]\nEpoch 0: | | 240/? [01:28<00:00, 2.71it/s, train/loss=19.30]\nEpoch 0: | | 241/? [01:29<00:00, 2.71it/s, train/loss=19.30]\nEpoch 0: | | 241/? [01:29<00:00, 2.71it/s, train/loss=31.30]\nEpoch 0: | | 242/? [01:29<00:00, 2.71it/s, train/loss=31.30]\nEpoch 0: | | 242/? [01:29<00:00, 2.71it/s, train/loss=33.00]\nEpoch 0: | | 243/? [01:29<00:00, 2.71it/s, train/loss=33.00]\nEpoch 0: | | 243/? [01:29<00:00, 2.71it/s, train/loss=36.70]\nEpoch 0: | | 244/? [01:29<00:00, 2.71it/s, train/loss=36.70]\nEpoch 0: | | 244/? [01:29<00:00, 2.71it/s, train/loss=11.30]\nEpoch 0: | | 245/? [01:30<00:00, 2.71it/s, train/loss=11.30]\nEpoch 0: | | 245/? [01:30<00:00, 2.71it/s, train/loss=29.30]\nEpoch 0: | | 246/? [01:30<00:00, 2.71it/s, train/loss=29.30]\nEpoch 0: | | 246/? [01:30<00:00, 2.71it/s, train/loss=29.50]\nEpoch 0: | | 247/? [01:30<00:00, 2.72it/s, train/loss=29.50]\nEpoch 0: | | 247/? [01:30<00:00, 2.71it/s, train/loss=38.30]\nEpoch 0: | | 248/? [01:31<00:00, 2.72it/s, train/loss=38.30]\nEpoch 0: | | 248/? [01:31<00:00, 2.72it/s, train/loss=31.60]\nEpoch 0: | | 249/? [01:31<00:00, 2.72it/s, train/loss=31.60]\nEpoch 0: | | 249/? [01:31<00:00, 2.72it/s, train/loss=25.80]\nEpoch 0: | | 250/? [01:31<00:00, 2.72it/s, train/loss=25.80]\nEpoch 0: | | 250/? [01:31<00:00, 2.72it/s, train/loss=22.20]\nEpoch 0: | | 251/? [01:32<00:00, 2.72it/s, train/loss=22.20]\nEpoch 0: | | 251/? [01:32<00:00, 2.72it/s, train/loss=20.50]\nEpoch 0: | | 252/? [01:32<00:00, 2.72it/s, train/loss=20.50]\nEpoch 0: | | 252/? [01:32<00:00, 2.72it/s, train/loss=12.90]\nEpoch 0: | | 253/? [01:32<00:00, 2.72it/s, train/loss=12.90]\nEpoch 0: | | 253/? [01:32<00:00, 2.72it/s, train/loss=34.50]\nEpoch 0: | | 254/? [01:33<00:00, 2.72it/s, train/loss=34.50]\nEpoch 0: | | 254/? [01:33<00:00, 2.72it/s, train/loss=21.40]\nEpoch 0: | | 255/? [01:33<00:00, 2.72it/s, train/loss=21.40]\nEpoch 0: | | 255/? [01:33<00:00, 2.72it/s, train/loss=20.10]\nEpoch 0: | | 256/? [01:33<00:00, 2.73it/s, train/loss=20.10]\nEpoch 0: | | 256/? [01:33<00:00, 2.73it/s, train/loss=9.920]\nEpoch 0: | | 257/? [01:34<00:00, 2.73it/s, train/loss=9.920]\nEpoch 0: | | 257/? [01:34<00:00, 2.73it/s, train/loss=26.10]\nEpoch 0: | | 258/? [01:34<00:00, 2.73it/s, train/loss=26.10]\nEpoch 0: | | 258/? [01:34<00:00, 2.73it/s, train/loss=22.30]\nEpoch 0: | | 259/? [01:34<00:00, 2.73it/s, train/loss=22.30]\nEpoch 0: | | 259/? [01:34<00:00, 2.73it/s, train/loss=22.70]\nEpoch 0: | | 260/? [01:35<00:00, 2.73it/s, train/loss=22.70]\nEpoch 0: | | 260/? [01:35<00:00, 2.73it/s, train/loss=10.50]\nEpoch 0: | | 261/? [01:35<00:00, 2.73it/s, train/loss=10.50]\nEpoch 0: | | 261/? [01:35<00:00, 2.73it/s, train/loss=19.80]\nEpoch 0: | | 262/? [01:35<00:00, 2.73it/s, train/loss=19.80]\nEpoch 0: | | 262/? [01:35<00:00, 2.73it/s, train/loss=26.50]\nEpoch 0: | | 263/? [01:36<00:00, 2.73it/s, train/loss=26.50]\nEpoch 0: | | 263/? [01:36<00:00, 2.73it/s, train/loss=15.90]\nEpoch 0: | | 264/? [01:36<00:00, 2.73it/s, train/loss=15.90]\nEpoch 0: | | 264/? [01:36<00:00, 2.73it/s, train/loss=83.00]\nEpoch 0: | | 265/? [01:36<00:00, 2.73it/s, train/loss=83.00]\nEpoch 0: | | 265/? [01:36<00:00, 2.73it/s, train/loss=19.80]\nEpoch 0: | | 266/? [01:37<00:00, 2.74it/s, train/loss=19.80]\nEpoch 0: | | 266/? [01:37<00:00, 2.74it/s, train/loss=27.80]\nEpoch 0: | | 267/? [01:37<00:00, 2.74it/s, train/loss=27.80]\nEpoch 0: | | 267/? [01:37<00:00, 2.74it/s, train/loss=12.90]\nEpoch 0: | | 268/? [01:37<00:00, 2.74it/s, train/loss=12.90]\nEpoch 0: | | 268/? [01:37<00:00, 2.74it/s, train/loss=37.60]\nEpoch 0: | | 269/? [01:38<00:00, 2.74it/s, train/loss=37.60]\nEpoch 0: | | 269/? [01:38<00:00, 2.74it/s, train/loss=18.00]\nEpoch 0: | | 270/? [01:38<00:00, 2.74it/s, train/loss=18.00]\nEpoch 0: | | 270/? [01:38<00:00, 2.74it/s, train/loss=30.10]\nEpoch 0: | | 271/? [01:38<00:00, 2.74it/s, train/loss=30.10]\nEpoch 0: | | 271/? [01:38<00:00, 2.74it/s, train/loss=26.90]\nEpoch 0: | | 272/? [01:39<00:00, 2.74it/s, train/loss=26.90]\nEpoch 0: | | 272/? [01:39<00:00, 2.74it/s, train/loss=24.70]\nEpoch 0: | | 273/? [01:39<00:00, 2.74it/s, train/loss=24.70]\nEpoch 0: | | 273/? [01:39<00:00, 2.74it/s, train/loss=30.30]\nEpoch 0: | | 274/? [01:40<00:00, 2.73it/s, train/loss=30.30]\nEpoch 0: | | 274/? [01:40<00:00, 2.73it/s, train/loss=23.30]\nEpoch 0: | | 275/? [01:40<00:00, 2.74it/s, train/loss=23.30]\nEpoch 0: | | 275/? [01:40<00:00, 2.74it/s, train/loss=19.70]\nEpoch 0: | | 276/? [01:40<00:00, 2.74it/s, train/loss=19.70]\nEpoch 0: | | 276/? [01:40<00:00, 2.74it/s, train/loss=25.70]\nEpoch 0: | | 277/? [01:41<00:00, 2.74it/s, train/loss=25.70]\nEpoch 0: | | 277/? [01:41<00:00, 2.74it/s, train/loss=43.30]\nEpoch 0: | | 278/? [01:41<00:00, 2.74it/s, train/loss=43.30]\nEpoch 0: | | 278/? [01:41<00:00, 2.74it/s, train/loss=29.50]\nEpoch 0: | | 279/? [01:41<00:00, 2.74it/s, train/loss=29.50]\nEpoch 0: | | 279/? [01:41<00:00, 2.74it/s, train/loss=25.80]\nEpoch 0: | | 280/? [01:42<00:00, 2.74it/s, train/loss=25.80]\nEpoch 0: | | 280/? [01:42<00:00, 2.74it/s, train/loss=73.00]\nEpoch 0: | | 281/? [01:42<00:00, 2.74it/s, train/loss=73.00]\nEpoch 0: | | 281/? [01:42<00:00, 2.74it/s, train/loss=34.10]\nEpoch 0: | | 282/? [01:42<00:00, 2.74it/s, train/loss=34.10]\nEpoch 0: | | 282/? [01:42<00:00, 2.74it/s, train/loss=16.80]\nEpoch 0: | | 283/? [01:43<00:00, 2.74it/s, train/loss=16.80]\nEpoch 0: | | 283/? [01:43<00:00, 2.74it/s, train/loss=23.70]\nEpoch 0: | | 284/? [01:43<00:00, 2.73it/s, train/loss=23.70]\nEpoch 0: | | 284/? [01:43<00:00, 2.73it/s, train/loss=42.90]\nEpoch 0: | | 285/? [01:44<00:00, 2.74it/s, train/loss=42.90]\nEpoch 0: | | 285/? [01:44<00:00, 2.73it/s, train/loss=18.10]\nEpoch 0: | | 286/? [01:44<00:00, 2.74it/s, train/loss=18.10]\nEpoch 0: | | 286/? [01:44<00:00, 2.74it/s, train/loss=16.30]\nEpoch 0: | | 287/? [01:44<00:00, 2.74it/s, train/loss=16.30]\nEpoch 0: | | 287/? [01:44<00:00, 2.74it/s, train/loss=24.40]\nEpoch 0: | | 288/? [01:45<00:00, 2.74it/s, train/loss=24.40]\nEpoch 0: | | 288/? [01:45<00:00, 2.74it/s, train/loss=18.90]\nEpoch 0: | | 289/? [01:45<00:00, 2.74it/s, train/loss=18.90]\nEpoch 0: | | 289/? [01:45<00:00, 2.74it/s, train/loss=29.20]\nEpoch 0: | | 290/? [01:45<00:00, 2.74it/s, train/loss=29.20]\nEpoch 0: | | 290/? [01:45<00:00, 2.74it/s, train/loss=15.30]\nEpoch 0: | | 291/? [01:46<00:00, 2.74it/s, train/loss=15.30]\nEpoch 0: | | 291/? [01:46<00:00, 2.74it/s, train/loss=48.50]\nEpoch 0: | | 292/? [01:46<00:00, 2.74it/s, train/loss=48.50]\nEpoch 0: | | 292/? [01:46<00:00, 2.74it/s, train/loss=17.30]\nEpoch 0: | | 293/? [01:46<00:00, 2.74it/s, train/loss=17.30]\nEpoch 0: | | 293/? [01:46<00:00, 2.74it/s, train/loss=32.00]\nEpoch 0: | | 294/? [01:47<00:00, 2.74it/s, train/loss=32.00]\nEpoch 0: | | 294/? [01:47<00:00, 2.74it/s, train/loss=15.80]\nEpoch 0: | | 295/? [01:47<00:00, 2.74it/s, train/loss=15.80]\nEpoch 0: | | 295/? [01:47<00:00, 2.74it/s, train/loss=11.20]\nEpoch 0: | | 296/? [01:48<00:00, 2.74it/s, train/loss=11.20]\nEpoch 0: | | 296/? [01:48<00:00, 2.74it/s, train/loss=13.20]\nEpoch 0: | | 297/? [01:48<00:00, 2.74it/s, train/loss=13.20]\nEpoch 0: | | 297/? [01:48<00:00, 2.74it/s, train/loss=17.20]\nEpoch 0: | | 298/? [01:48<00:00, 2.74it/s, train/loss=17.20]\nEpoch 0: | | 298/? [01:48<00:00, 2.74it/s, train/loss=16.80]\nEpoch 0: | | 299/? [01:49<00:00, 2.74it/s, train/loss=16.80]\nEpoch 0: | | 299/? [01:49<00:00, 2.74it/s, train/loss=20.00]\nEpoch 0: | | 300/? [01:49<00:00, 2.74it/s, train/loss=20.00]\nEpoch 0: | | 300/? [01:49<00:00, 2.74it/s, train/loss=17.50]\nEpoch 0: | | 301/? [01:49<00:00, 2.74it/s, train/loss=17.50]\nEpoch 0: | | 301/? [01:49<00:00, 2.74it/s, train/loss=31.60]\nEpoch 0: | | 302/? [01:50<00:00, 2.74it/s, train/loss=31.60]\nEpoch 0: | | 302/? [01:50<00:00, 2.74it/s, train/loss=17.70]\nEpoch 0: | | 303/? [01:50<00:00, 2.74it/s, train/loss=17.70]\nEpoch 0: | | 303/? [01:50<00:00, 2.74it/s, train/loss=6.190]\nEpoch 0: | | 304/? [01:50<00:00, 2.74it/s, train/loss=6.190]\nEpoch 0: | | 304/? [01:50<00:00, 2.74it/s, train/loss=22.80]\nEpoch 0: | | 305/? [01:51<00:00, 2.74it/s, train/loss=22.80]\nEpoch 0: | | 305/? [01:51<00:00, 2.74it/s, train/loss=20.90]\nEpoch 0: | | 306/? [01:51<00:00, 2.74it/s, train/loss=20.90]\nEpoch 0: | | 306/? [01:51<00:00, 2.74it/s, train/loss=26.30]\nEpoch 0: | | 307/? [01:51<00:00, 2.74it/s, train/loss=26.30]\nEpoch 0: | | 307/? [01:51<00:00, 2.74it/s, train/loss=24.20]\nEpoch 0: | | 308/? [01:52<00:00, 2.74it/s, train/loss=24.20]\nEpoch 0: | | 308/? [01:52<00:00, 2.74it/s, train/loss=14.50]\nEpoch 0: | | 309/? [01:52<00:00, 2.74it/s, train/loss=14.50]\nEpoch 0: | | 309/? [01:52<00:00, 2.74it/s, train/loss=28.30]\nEpoch 0: | | 310/? [01:52<00:00, 2.74it/s, train/loss=28.30]\nEpoch 0: | | 310/? [01:52<00:00, 2.74it/s, train/loss=28.40]\nEpoch 0: | | 311/? [01:53<00:00, 2.74it/s, train/loss=28.40]\nEpoch 0: | | 311/? [01:53<00:00, 2.74it/s, train/loss=25.70]\nEpoch 0: | | 312/? [01:53<00:00, 2.75it/s, train/loss=25.70]\nEpoch 0: | | 312/? [01:53<00:00, 2.75it/s, train/loss=43.80]\nEpoch 0: | | 313/? [01:53<00:00, 2.75it/s, train/loss=43.80]\nEpoch 0: | | 313/? [01:53<00:00, 2.75it/s, train/loss=20.80]\nEpoch 0: | | 314/? [01:54<00:00, 2.75it/s, train/loss=20.80]\nEpoch 0: | | 314/? [01:54<00:00, 2.75it/s, train/loss=41.50]\nEpoch 0: | | 315/? [01:54<00:00, 2.75it/s, train/loss=41.50]\nEpoch 0: | | 315/? [01:54<00:00, 2.75it/s, train/loss=18.30]\nEpoch 0: | | 316/? [01:54<00:00, 2.75it/s, train/loss=18.30]\nEpoch 0: | | 316/? [01:54<00:00, 2.75it/s, train/loss=16.40]\nEpoch 0: | | 317/? [01:55<00:00, 2.75it/s, train/loss=16.40]\nEpoch 0: | | 317/? [01:55<00:00, 2.75it/s, train/loss=21.20]\nEpoch 0: | | 318/? [01:55<00:00, 2.75it/s, train/loss=21.20]\nEpoch 0: | | 318/? [01:55<00:00, 2.75it/s, train/loss=32.10]\nEpoch 0: | | 319/? [01:55<00:00, 2.75it/s, train/loss=32.10]\nEpoch 0: | | 319/? [01:55<00:00, 2.75it/s, train/loss=21.10]\nEpoch 0: | | 320/? [01:56<00:00, 2.75it/s, train/loss=21.10]\nEpoch 0: | | 320/? [01:56<00:00, 2.75it/s, train/loss=17.00]\nEpoch 0: | | 321/? [01:56<00:00, 2.75it/s, train/loss=17.00]\nEpoch 0: | | 321/? [01:56<00:00, 2.75it/s, train/loss=23.70]\nEpoch 0: | | 322/? [01:56<00:00, 2.75it/s, train/loss=23.70]\nEpoch 0: | | 322/? [01:56<00:00, 2.75it/s, train/loss=26.10]\nEpoch 0: | | 323/? [01:57<00:00, 2.76it/s, train/loss=26.10]\nEpoch 0: | | 323/? [01:57<00:00, 2.76it/s, train/loss=24.10]\nEpoch 0: | | 324/? [01:57<00:00, 2.76it/s, train/loss=24.10]\nEpoch 0: | | 324/? [01:57<00:00, 2.76it/s, train/loss=17.70]\nEpoch 0: | | 325/? [01:57<00:00, 2.76it/s, train/loss=17.70]\nEpoch 0: | | 325/? [01:57<00:00, 2.76it/s, train/loss=33.40]\nEpoch 0: | | 326/? [01:58<00:00, 2.76it/s, train/loss=33.40]\nEpoch 0: | | 326/? [01:58<00:00, 2.76it/s, train/loss=22.60]\nEpoch 0: | | 327/? [01:58<00:00, 2.76it/s, train/loss=22.60]\nEpoch 0: | | 327/? [01:58<00:00, 2.76it/s, train/loss=14.40]\nEpoch 0: | | 328/? [01:58<00:00, 2.76it/s, train/loss=14.40]\nEpoch 0: | | 328/? [01:58<00:00, 2.76it/s, train/loss=23.20]\nEpoch 0: | | 329/? [01:59<00:00, 2.76it/s, train/loss=23.20]\nEpoch 0: | | 329/? [01:59<00:00, 2.76it/s, train/loss=32.80]\nEpoch 0: | | 330/? [01:59<00:00, 2.76it/s, train/loss=32.80]\nEpoch 0: | | 330/? [01:59<00:00, 2.76it/s, train/loss=25.70]\nEpoch 0: | | 331/? [01:59<00:00, 2.76it/s, train/loss=25.70]\nEpoch 0: | | 331/? [01:59<00:00, 2.76it/s, train/loss=10.00]\nEpoch 0: | | 332/? [02:00<00:00, 2.76it/s, train/loss=10.00]\nEpoch 0: | | 332/? [02:00<00:00, 2.76it/s, train/loss=13.80]\nEpoch 0: | | 333/? [02:00<00:00, 2.76it/s, train/loss=13.80]\nEpoch 0: | | 333/? [02:00<00:00, 2.76it/s, train/loss=14.90]\nEpoch 0: | | 334/? [02:00<00:00, 2.76it/s, train/loss=14.90]\nEpoch 0: | | 334/? [02:00<00:00, 2.76it/s, train/loss=25.70]\nEpoch 0: | | 335/? [02:01<00:00, 2.77it/s, train/loss=25.70]\nEpoch 0: | | 335/? [02:01<00:00, 2.77it/s, train/loss=28.00]\nEpoch 0: | | 336/? [02:01<00:00, 2.77it/s, train/loss=28.00]\nEpoch 0: | | 336/? [02:01<00:00, 2.77it/s, train/loss=8.200]\nEpoch 0: | | 337/? [02:01<00:00, 2.77it/s, train/loss=8.200]\nEpoch 0: | | 337/? [02:01<00:00, 2.77it/s, train/loss=28.30]\nEpoch 0: | | 338/? [02:02<00:00, 2.77it/s, train/loss=28.30]\nEpoch 0: | | 338/? [02:02<00:00, 2.77it/s, train/loss=18.60]\nEpoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=18.60]\nEpoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=31.30]\nEpoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=31.30]\nEpoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=33.80]\nEpoch 0: | | 341/? [02:03<00:00, 2.77it/s, train/loss=33.80]\nEpoch 0: | | 341/? [02:03<00:00, 2.77it/s, train/loss=27.80]\nEpoch 0: | | 342/? [02:03<00:00, 2.77it/s, train/loss=27.80]\nEpoch 0: | | 342/? [02:03<00:00, 2.77it/s, train/loss=25.80]\nEpoch 0: | | 343/? [02:03<00:00, 2.77it/s, train/loss=25.80]\nEpoch 0: | | 343/? [02:03<00:00, 2.77it/s, train/loss=10.80]\nEpoch 0: | | 344/? [02:04<00:00, 2.77it/s, train/loss=10.80]\nEpoch 0: | | 344/? [02:04<00:00, 2.77it/s, train/loss=21.40]\nEpoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=21.40]\nEpoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=27.50]\nEpoch 0: | | 346/? [02:04<00:00, 2.77it/s, train/loss=27.50]\nEpoch 0: | | 346/? [02:04<00:00, 2.77it/s, train/loss=26.90]\nEpoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=26.90]\nEpoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=9.160]\nEpoch 0: | | 348/? [02:05<00:00, 2.78it/s, train/loss=9.160]\nEpoch 0: | | 348/? [02:05<00:00, 2.78it/s, train/loss=16.30]\nEpoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=16.30]\nEpoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=18.30]\nEpoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=18.30]\nEpoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=27.30]\nEpoch 0: | | 351/? [02:06<00:00, 2.78it/s, train/loss=27.30]\nEpoch 0: | | 351/? [02:06<00:00, 2.78it/s, train/loss=20.10]\nEpoch 0: | | 352/? [02:06<00:00, 2.78it/s, train/loss=20.10]\nEpoch 0: | | 352/? [02:06<00:00, 2.78it/s, train/loss=10.80]\nEpoch 0: | | 353/? [02:07<00:00, 2.78it/s, train/loss=10.80]\nEpoch 0: | | 353/? [02:07<00:00, 2.78it/s, train/loss=39.30]\nEpoch 0: | | 354/? [02:07<00:00, 2.78it/s, train/loss=39.30]\nEpoch 0: | | 354/? [02:07<00:00, 2.78it/s, train/loss=38.70]\nEpoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=38.70]\nEpoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=32.30]\nEpoch 0: | | 356/? [02:08<00:00, 2.78it/s, train/loss=32.30]\nEpoch 0: | | 356/? [02:08<00:00, 2.78it/s, train/loss=16.10]\nEpoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=16.10]\nEpoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=33.00]\nEpoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=33.00]\nEpoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=28.10]\nEpoch 0: | | 359/? [02:08<00:00, 2.78it/s, train/loss=28.10]\nEpoch 0: | | 359/? [02:08<00:00, 2.78it/s, train/loss=9.550]\nEpoch 0: | | 360/? [02:09<00:00, 2.78it/s, train/loss=9.550]\nEpoch 0: | | 360/? [02:09<00:00, 2.78it/s, train/loss=16.10]\nEpoch 0: | | 361/? [02:09<00:00, 2.78it/s, train/loss=16.10]\nEpoch 0: | | 361/? [02:09<00:00, 2.78it/s, train/loss=33.40]\nEpoch 0: | | 362/? [02:09<00:00, 2.79it/s, train/loss=33.40]\nEpoch 0: | | 362/? [02:09<00:00, 2.79it/s, train/loss=12.90]\nEpoch 0: | | 363/? [02:10<00:00, 2.79it/s, train/loss=12.90]\nEpoch 0: | | 363/? [02:10<00:00, 2.79it/s, train/loss=7.820]\nEpoch 0: | | 364/? [02:10<00:00, 2.79it/s, train/loss=7.820]\nEpoch 0: | | 364/? [02:10<00:00, 2.79it/s, train/loss=31.80]\nEpoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=31.80]\nEpoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=23.70]\nEpoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=23.70]\nEpoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=30.10]\nEpoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=30.10]\nEpoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=60.60]\nEpoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=60.60]\nEpoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=17.70]\nEpoch 0: | | 369/? [02:12<00:00, 2.79it/s, train/loss=17.70]\nEpoch 0: | | 369/? [02:12<00:00, 2.79it/s, train/loss=22.10]\nEpoch 0: | | 370/? [02:12<00:00, 2.78it/s, train/loss=22.10]\nEpoch 0: | | 370/? [02:12<00:00, 2.78it/s, train/loss=32.60]\nEpoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=32.60]\nEpoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=19.20]\nEpoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=19.20]\nEpoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=21.30]\nEpoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=21.30]\nEpoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=56.40]\nEpoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=56.40]\nEpoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=7.560]\nEpoch 0: | | 375/? [02:14<00:00, 2.79it/s, train/loss=7.560]\nEpoch 0: | | 375/? [02:14<00:00, 2.79it/s, train/loss=25.50]\nEpoch 0: | | 376/? [02:14<00:00, 2.79it/s, train/loss=25.50]\nEpoch 0: | | 376/? [02:14<00:00, 2.79it/s, train/loss=12.80]\nEpoch 0: | | 377/? [02:15<00:00, 2.79it/s, train/loss=12.80]\nEpoch 0: | | 377/? [02:15<00:00, 2.79it/s, train/loss=71.40]\nEpoch 0: | | 378/? [02:15<00:00, 2.79it/s, train/loss=71.40]\nEpoch 0: | | 378/? [02:15<00:00, 2.79it/s, train/loss=49.30]\nEpoch 0: | | 379/? [02:15<00:00, 2.79it/s, train/loss=49.30]\nEpoch 0: | | 379/? [02:15<00:00, 2.79it/s, train/loss=35.50]\nEpoch 0: | | 380/? [02:16<00:00, 2.79it/s, train/loss=35.50]\nEpoch 0: | | 380/? [02:16<00:00, 2.79it/s, train/loss=8.540]\nEpoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=8.540]\nEpoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=16.60]\nEpoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=16.60]\nEpoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=19.50]\nEpoch 0: | | 383/? [02:17<00:00, 2.79it/s, train/loss=19.50]\nEpoch 0: | | 383/? [02:17<00:00, 2.79it/s, train/loss=10.60]\nEpoch 0: | | 384/? [02:17<00:00, 2.79it/s, train/loss=10.60]\nEpoch 0: | | 384/? [02:17<00:00, 2.79it/s, train/loss=25.00]\nEpoch 0: | | 385/? [02:17<00:00, 2.79it/s, train/loss=25.00]\nEpoch 0: | | 385/? [02:17<00:00, 2.79it/s, train/loss=31.50]\nEpoch 0: | | 386/? [02:18<00:00, 2.79it/s, train/loss=31.50]\nEpoch 0: | | 386/? [02:18<00:00, 2.79it/s, train/loss=34.80]\nEpoch 0: | | 387/? [02:18<00:00, 2.79it/s, train/loss=34.80]\nEpoch 0: | | 387/? [02:18<00:00, 2.79it/s, train/loss=9.860]\nEpoch 0: | | 388/? [02:18<00:00, 2.80it/s, train/loss=9.860]\nEpoch 0: | | 388/? [02:18<00:00, 2.80it/s, train/loss=19.40]\nEpoch 0: | | 389/? [02:19<00:00, 2.80it/s, train/loss=19.40]\nEpoch 0: | | 389/? [02:19<00:00, 2.80it/s, train/loss=23.50]\nEpoch 0: | | 390/? [02:19<00:00, 2.80it/s, train/loss=23.50]\nEpoch 0: | | 390/? [02:19<00:00, 2.80it/s, train/loss=10.40]\nEpoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=10.40]\nEpoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=13.90]\nEpoch 0: | | 392/? [02:20<00:00, 2.80it/s, train/loss=13.90]\nEpoch 0: | | 392/? [02:20<00:00, 2.80it/s, train/loss=13.50]\nEpoch 0: | | 393/? [02:20<00:00, 2.80it/s, train/loss=13.50]\nEpoch 0: | | 393/? [02:20<00:00, 2.80it/s, train/loss=27.80]\nEpoch 0: | | 394/? [02:20<00:00, 2.80it/s, train/loss=27.80]\nEpoch 0: | | 394/? [02:20<00:00, 2.80it/s, train/loss=15.40]\nEpoch 0: | | 395/? [02:21<00:00, 2.80it/s, train/loss=15.40]\nEpoch 0: | | 395/? [02:21<00:00, 2.80it/s, train/loss=36.60]\nEpoch 0: | | 396/? [02:21<00:00, 2.80it/s, train/loss=36.60]\nEpoch 0: | | 396/? [02:21<00:00, 2.80it/s, train/loss=37.40]\nEpoch 0: | | 397/? [02:21<00:00, 2.80it/s, train/loss=37.40]\nEpoch 0: | | 397/? [02:21<00:00, 2.80it/s, train/loss=25.60]\nEpoch 0: | | 398/? [02:22<00:00, 2.80it/s, train/loss=25.60]\nEpoch 0: | | 398/? [02:22<00:00, 2.80it/s, train/loss=30.60]\nEpoch 0: | | 399/? [02:22<00:00, 2.80it/s, train/loss=30.60]\nEpoch 0: | | 399/? [02:22<00:00, 2.80it/s, train/loss=33.70]\nEpoch 0: | | 400/? [02:22<00:00, 2.80it/s, train/loss=33.70]\nEpoch 0: | | 400/? [02:22<00:00, 2.80it/s, train/loss=13.20]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 11.05it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 10.99it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 10.82it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 10.85it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.03it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.14it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.13it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.05it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.07it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.11it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.18it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.28it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.35it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.39it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.06it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.03it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 11.08it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.13it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.17it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.22it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.26it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.30it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 11.33it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.36it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.39it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.41it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.45it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.48it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.48it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.49it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.52it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.54it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.56it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.58it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.57it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.58it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.48it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.36it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.31it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.32it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 400/? [02:29<00:00, 2.67it/s, train/loss=13.20]\nEpoch 0: | | 401/? [02:30<00:00, 2.66it/s, train/loss=13.20]\nEpoch 0: | | 401/? [02:30<00:00, 2.66it/s, train/loss=30.60]\nEpoch 0: | | 402/? [02:31<00:00, 2.66it/s, train/loss=30.60]\nEpoch 0: | | 402/? [02:31<00:00, 2.66it/s, train/loss=26.40]\nEpoch 0: | | 403/? [02:31<00:00, 2.66it/s, train/loss=26.40]\nEpoch 0: | | 403/? [02:31<00:00, 2.66it/s, train/loss=13.50]\nEpoch 0: | | 404/? [02:31<00:00, 2.66it/s, train/loss=13.50]\nEpoch 0: | | 404/? [02:31<00:00, 2.66it/s, train/loss=16.60]\nEpoch 0: | | 405/? [02:32<00:00, 2.66it/s, train/loss=16.60]\nEpoch 0: | | 405/? [02:32<00:00, 2.66it/s, train/loss=27.20]\nEpoch 0: | | 406/? [02:32<00:00, 2.66it/s, train/loss=27.20]\nEpoch 0: | | 406/? [02:32<00:00, 2.66it/s, train/loss=18.70]\nEpoch 0: | | 407/? [02:32<00:00, 2.66it/s, train/loss=18.70]\nEpoch 0: | | 407/? [02:32<00:00, 2.66it/s, train/loss=27.70]\nEpoch 0: | | 408/? [02:33<00:00, 2.66it/s, train/loss=27.70]\nEpoch 0: | | 408/? [02:33<00:00, 2.66it/s, train/loss=30.20]\nEpoch 0: | | 409/? [02:33<00:00, 2.66it/s, train/loss=30.20]\nEpoch 0: | | 409/? [02:33<00:00, 2.66it/s, train/loss=51.20]\nEpoch 0: | | 410/? [02:33<00:00, 2.66it/s, train/loss=51.20]\nEpoch 0: | | 410/? [02:33<00:00, 2.66it/s, train/loss=16.80]\nEpoch 0: | | 411/? [02:34<00:00, 2.67it/s, train/loss=16.80]\nEpoch 0: | | 411/? [02:34<00:00, 2.67it/s, train/loss=18.90]\nEpoch 0: | | 412/? [02:34<00:00, 2.67it/s, train/loss=18.90]\nEpoch 0: | | 412/? [02:34<00:00, 2.67it/s, train/loss=58.30]\nEpoch 0: | | 413/? [02:34<00:00, 2.67it/s, train/loss=58.30]\nEpoch 0: | | 413/? [02:34<00:00, 2.67it/s, train/loss=42.70]\nEpoch 0: | | 414/? [02:35<00:00, 2.67it/s, train/loss=42.70]\nEpoch 0: | | 414/? [02:35<00:00, 2.67it/s, train/loss=64.70]\nEpoch 0: | | 415/? [02:35<00:00, 2.67it/s, train/loss=64.70]\nEpoch 0: | | 415/? [02:35<00:00, 2.67it/s, train/loss=19.50]\nEpoch 0: | | 416/? [02:35<00:00, 2.67it/s, train/loss=19.50]\nEpoch 0: | | 416/? [02:35<00:00, 2.67it/s, train/loss=24.70]\nEpoch 0: | | 417/? [02:36<00:00, 2.67it/s, train/loss=24.70]\nEpoch 0: | | 417/? [02:36<00:00, 2.67it/s, train/loss=18.20]\nEpoch 0: | | 418/? [02:36<00:00, 2.67it/s, train/loss=18.20]\nEpoch 0: | | 418/? [02:36<00:00, 2.67it/s, train/loss=17.60]\nEpoch 0: | | 419/? [02:36<00:00, 2.67it/s, train/loss=17.60]\nEpoch 0: | | 419/? [02:36<00:00, 2.67it/s, train/loss=17.90]\nEpoch 0: | | 420/? [02:37<00:00, 2.67it/s, train/loss=17.90]\nEpoch 0: | | 420/? [02:37<00:00, 2.67it/s, train/loss=18.60]\nEpoch 0: | | 421/? [02:37<00:00, 2.67it/s, train/loss=18.60]\nEpoch 0: | | 421/? [02:37<00:00, 2.67it/s, train/loss=24.80]\nEpoch 0: | | 422/? [02:37<00:00, 2.67it/s, train/loss=24.80]\nEpoch 0: | | 422/? [02:37<00:00, 2.67it/s, train/loss=16.30]\nEpoch 0: | | 423/? [02:38<00:00, 2.67it/s, train/loss=16.30]\nEpoch 0: | | 423/? [02:38<00:00, 2.67it/s, train/loss=30.70]\nEpoch 0: | | 424/? [02:38<00:00, 2.67it/s, train/loss=30.70]\nEpoch 0: | | 424/? [02:38<00:00, 2.67it/s, train/loss=20.60]\nEpoch 0: | | 425/? [02:38<00:00, 2.67it/s, train/loss=20.60]\nEpoch 0: | | 425/? [02:38<00:00, 2.67it/s, train/loss=52.60]\nEpoch 0: | | 426/? [02:39<00:00, 2.68it/s, train/loss=52.60]\nEpoch 0: | | 426/? [02:39<00:00, 2.68it/s, train/loss=13.80]\nEpoch 0: | | 427/? [02:39<00:00, 2.68it/s, train/loss=13.80]\nEpoch 0: | | 427/? [02:39<00:00, 2.68it/s, train/loss=21.80]\nEpoch 0: | | 428/? [02:39<00:00, 2.68it/s, train/loss=21.80]\nEpoch 0: | | 428/? [02:39<00:00, 2.68it/s, train/loss=15.70]\nEpoch 0: | | 429/? [02:40<00:00, 2.68it/s, train/loss=15.70]\nEpoch 0: | | 429/? [02:40<00:00, 2.68it/s, train/loss=33.00]\nEpoch 0: | | 430/? [02:40<00:00, 2.68it/s, train/loss=33.00]\nEpoch 0: | | 430/? [02:40<00:00, 2.68it/s, train/loss=13.50]\nEpoch 0: | | 431/? [02:40<00:00, 2.68it/s, train/loss=13.50]\nEpoch 0: | | 431/? [02:40<00:00, 2.68it/s, train/loss=12.40]\nEpoch 0: | | 432/? [02:41<00:00, 2.68it/s, train/loss=12.40]\nEpoch 0: | | 432/? [02:41<00:00, 2.68it/s, train/loss=30.90]\nEpoch 0: | | 433/? [02:41<00:00, 2.68it/s, train/loss=30.90]\nEpoch 0: | | 433/? [02:41<00:00, 2.68it/s, train/loss=26.90]\nEpoch 0: | | 434/? [02:41<00:00, 2.68it/s, train/loss=26.90]\nEpoch 0: | | 434/? [02:41<00:00, 2.68it/s, train/loss=17.60]\nEpoch 0: | | 435/? [02:42<00:00, 2.68it/s, train/loss=17.60]\nEpoch 0: | | 435/? [02:42<00:00, 2.68it/s, train/loss=16.60]\nEpoch 0: | | 436/? [02:42<00:00, 2.68it/s, train/loss=16.60]\nEpoch 0: | | 436/? [02:42<00:00, 2.68it/s, train/loss=14.60]\nEpoch 0: | | 437/? [02:42<00:00, 2.68it/s, train/loss=14.60]\nEpoch 0: | | 437/? [02:42<00:00, 2.68it/s, train/loss=25.70]\nEpoch 0: | | 438/? [02:43<00:00, 2.68it/s, train/loss=25.70]\nEpoch 0: | | 438/? [02:43<00:00, 2.68it/s, train/loss=9.540]\nEpoch 0: | | 439/? [02:43<00:00, 2.68it/s, train/loss=9.540]\nEpoch 0: | | 439/? [02:43<00:00, 2.68it/s, train/loss=8.600]\nEpoch 0: | | 440/? [02:43<00:00, 2.69it/s, train/loss=8.600]\nEpoch 0: | | 440/? [02:43<00:00, 2.69it/s, train/loss=35.50]\nEpoch 0: | | 441/? [02:44<00:00, 2.69it/s, train/loss=35.50]\nEpoch 0: | | 441/? [02:44<00:00, 2.69it/s, train/loss=35.10]\nEpoch 0: | | 442/? [02:44<00:00, 2.69it/s, train/loss=35.10]\nEpoch 0: | | 442/? [02:44<00:00, 2.69it/s, train/loss=17.60]\nEpoch 0: | | 443/? [02:44<00:00, 2.69it/s, train/loss=17.60]\nEpoch 0: | | 443/? [02:44<00:00, 2.69it/s, train/loss=23.50]\nEpoch 0: | | 444/? [02:45<00:00, 2.69it/s, train/loss=23.50]\nEpoch 0: | | 444/? [02:45<00:00, 2.69it/s, train/loss=7.570]\nEpoch 0: | | 445/? [02:45<00:00, 2.69it/s, train/loss=7.570]\nEpoch 0: | | 445/? [02:45<00:00, 2.69it/s, train/loss=40.90]\nEpoch 0: | | 446/? [02:45<00:00, 2.69it/s, train/loss=40.90]\nEpoch 0: | | 446/? [02:45<00:00, 2.69it/s, train/loss=12.80]\nEpoch 0: | | 447/? [02:46<00:00, 2.69it/s, train/loss=12.80]\nEpoch 0: | | 447/? [02:46<00:00, 2.69it/s, train/loss=17.70]\nEpoch 0: | | 448/? [02:46<00:00, 2.69it/s, train/loss=17.70]\nEpoch 0: | | 448/? [02:46<00:00, 2.69it/s, train/loss=6.630]\nEpoch 0: | | 449/? [02:46<00:00, 2.69it/s, train/loss=6.630]\nEpoch 0: | | 449/? [02:46<00:00, 2.69it/s, train/loss=36.00]\nEpoch 0: | | 450/? [02:47<00:00, 2.69it/s, train/loss=36.00]\nEpoch 0: | | 450/? [02:47<00:00, 2.69it/s, train/loss=18.80]\nEpoch 0: | | 451/? [02:47<00:00, 2.69it/s, train/loss=18.80]\nEpoch 0: | | 451/? [02:47<00:00, 2.69it/s, train/loss=14.00]\nEpoch 0: | | 452/? [02:47<00:00, 2.69it/s, train/loss=14.00]\nEpoch 0: | | 452/? [02:47<00:00, 2.69it/s, train/loss=83.80]\nEpoch 0: | | 453/? [02:48<00:00, 2.69it/s, train/loss=83.80]\nEpoch 0: | | 453/? [02:48<00:00, 2.69it/s, train/loss=43.40]\nEpoch 0: | | 454/? [02:48<00:00, 2.70it/s, train/loss=43.40]\nEpoch 0: | | 454/? [02:48<00:00, 2.70it/s, train/loss=20.80]\nEpoch 0: | | 455/? [02:48<00:00, 2.70it/s, train/loss=20.80]\nEpoch 0: | | 455/? [02:48<00:00, 2.70it/s, train/loss=9.980]\nEpoch 0: | | 456/? [02:49<00:00, 2.70it/s, train/loss=9.980]\nEpoch 0: | | 456/? [02:49<00:00, 2.70it/s, train/loss=17.70]\nEpoch 0: | | 457/? [02:49<00:00, 2.70it/s, train/loss=17.70]\nEpoch 0: | | 457/? [02:49<00:00, 2.70it/s, train/loss=30.30]\nEpoch 0: | | 458/? [02:49<00:00, 2.70it/s, train/loss=30.30]\nEpoch 0: | | 458/? [02:49<00:00, 2.70it/s, train/loss=46.60]\nEpoch 0: | | 459/? [02:50<00:00, 2.70it/s, train/loss=46.60]\nEpoch 0: | | 459/? [02:50<00:00, 2.70it/s, train/loss=34.10]\nEpoch 0: | | 460/? [02:50<00:00, 2.70it/s, train/loss=34.10]\nEpoch 0: | | 460/? [02:50<00:00, 2.70it/s, train/loss=17.40]\nEpoch 0: | | 461/? [02:50<00:00, 2.70it/s, train/loss=17.40]\nEpoch 0: | | 461/? [02:50<00:00, 2.70it/s, train/loss=47.60]\nEpoch 0: | | 462/? [02:51<00:00, 2.70it/s, train/loss=47.60]\nEpoch 0: | | 462/? [02:51<00:00, 2.70it/s, train/loss=28.80]\nEpoch 0: | | 463/? [02:51<00:00, 2.70it/s, train/loss=28.80]\nEpoch 0: | | 463/? [02:51<00:00, 2.70it/s, train/loss=17.10]\nEpoch 0: | | 464/? [02:51<00:00, 2.70it/s, train/loss=17.10]\nEpoch 0: | | 464/? [02:51<00:00, 2.70it/s, train/loss=9.830]\nEpoch 0: | | 465/? [02:52<00:00, 2.70it/s, train/loss=9.830]\nEpoch 0: | | 465/? [02:52<00:00, 2.70it/s, train/loss=44.80]\nEpoch 0: | | 466/? [02:52<00:00, 2.70it/s, train/loss=44.80]\nEpoch 0: | | 466/? [02:52<00:00, 2.70it/s, train/loss=7.480]\nEpoch 0: | | 467/? [02:52<00:00, 2.70it/s, train/loss=7.480]\nEpoch 0: | | 467/? [02:52<00:00, 2.70it/s, train/loss=9.460]\nEpoch 0: | | 468/? [02:53<00:00, 2.70it/s, train/loss=9.460]\nEpoch 0: | | 468/? [02:53<00:00, 2.70it/s, train/loss=12.20]\nEpoch 0: | | 469/? [02:53<00:00, 2.70it/s, train/loss=12.20]\nEpoch 0: | | 469/? [02:53<00:00, 2.70it/s, train/loss=51.10]\nEpoch 0: | | 470/? [02:53<00:00, 2.70it/s, train/loss=51.10]\nEpoch 0: | | 470/? [02:53<00:00, 2.70it/s, train/loss=27.10]\nEpoch 0: | | 471/? [02:54<00:00, 2.70it/s, train/loss=27.10]\nEpoch 0: | | 471/? [02:54<00:00, 2.70it/s, train/loss=44.90]\nEpoch 0: | | 472/? [02:54<00:00, 2.70it/s, train/loss=44.90]\nEpoch 0: | | 472/? [02:54<00:00, 2.70it/s, train/loss=16.30]\nEpoch 0: | | 473/? [02:54<00:00, 2.70it/s, train/loss=16.30]\nEpoch 0: | | 473/? [02:54<00:00, 2.70it/s, train/loss=41.40]\nEpoch 0: | | 474/? [02:55<00:00, 2.70it/s, train/loss=41.40]\nEpoch 0: | | 474/? [02:55<00:00, 2.70it/s, train/loss=14.00]\nEpoch 0: | | 475/? [02:55<00:00, 2.71it/s, train/loss=14.00]\nEpoch 0: | | 475/? [02:55<00:00, 2.71it/s, train/loss=8.040]\nEpoch 0: | | 476/? [02:55<00:00, 2.71it/s, train/loss=8.040]\nEpoch 0: | | 476/? [02:55<00:00, 2.71it/s, train/loss=29.40]\nEpoch 0: | | 477/? [02:56<00:00, 2.71it/s, train/loss=29.40]\nEpoch 0: | | 477/? [02:56<00:00, 2.71it/s, train/loss=49.00]\nEpoch 0: | | 478/? [02:56<00:00, 2.71it/s, train/loss=49.00]\nEpoch 0: | | 478/? [02:56<00:00, 2.71it/s, train/loss=18.30]\nEpoch 0: | | 479/? [02:56<00:00, 2.71it/s, train/loss=18.30]\nEpoch 0: | | 479/? [02:56<00:00, 2.71it/s, train/loss=10.50]\nEpoch 0: | | 480/? [02:57<00:00, 2.71it/s, train/loss=10.50]\nEpoch 0: | | 480/? [02:57<00:00, 2.71it/s, train/loss=29.50]\nEpoch 0: | | 481/? [02:57<00:00, 2.71it/s, train/loss=29.50]\nEpoch 0: | | 481/? [02:57<00:00, 2.71it/s, train/loss=14.10]\nEpoch 0: | | 482/? [02:57<00:00, 2.71it/s, train/loss=14.10]\nEpoch 0: | | 482/? [02:57<00:00, 2.71it/s, train/loss=24.80]\nEpoch 0: | | 483/? [02:58<00:00, 2.71it/s, train/loss=24.80]\nEpoch 0: | | 483/? [02:58<00:00, 2.71it/s, train/loss=8.920]\nEpoch 0: | | 484/? [02:58<00:00, 2.71it/s, train/loss=8.920]\nEpoch 0: | | 484/? [02:58<00:00, 2.71it/s, train/loss=26.50]\nEpoch 0: | | 485/? [02:58<00:00, 2.71it/s, train/loss=26.50]\nEpoch 0: | | 485/? [02:58<00:00, 2.71it/s, train/loss=29.00]\nEpoch 0: | | 486/? [02:59<00:00, 2.71it/s, train/loss=29.00]\nEpoch 0: | | 486/? [02:59<00:00, 2.71it/s, train/loss=27.30]\nEpoch 0: | | 487/? [02:59<00:00, 2.71it/s, train/loss=27.30]\nEpoch 0: | | 487/? [02:59<00:00, 2.71it/s, train/loss=14.50]\nEpoch 0: | | 488/? [02:59<00:00, 2.71it/s, train/loss=14.50]\nEpoch 0: | | 488/? [02:59<00:00, 2.71it/s, train/loss=15.10]\nEpoch 0: | | 489/? [03:00<00:00, 2.71it/s, train/loss=15.10]\nEpoch 0: | | 489/? [03:00<00:00, 2.71it/s, train/loss=42.50]\nEpoch 0: | | 490/? [03:00<00:00, 2.71it/s, train/loss=42.50]\nEpoch 0: | | 490/? [03:00<00:00, 2.71it/s, train/loss=16.70]\nEpoch 0: | | 491/? [03:00<00:00, 2.72it/s, train/loss=16.70]\nEpoch 0: | | 491/? [03:00<00:00, 2.72it/s, train/loss=15.50]\nEpoch 0: | | 492/? [03:01<00:00, 2.72it/s, train/loss=15.50]\nEpoch 0: | | 492/? [03:01<00:00, 2.72it/s, train/loss=14.40]\nEpoch 0: | | 493/? [03:01<00:00, 2.72it/s, train/loss=14.40]\nEpoch 0: | | 493/? [03:01<00:00, 2.72it/s, train/loss=44.80]\nEpoch 0: | | 494/? [03:01<00:00, 2.72it/s, train/loss=44.80]\nEpoch 0: | | 494/? [03:01<00:00, 2.72it/s, train/loss=22.20]\nEpoch 0: | | 495/? [03:02<00:00, 2.72it/s, train/loss=22.20]\nEpoch 0: | | 495/? [03:02<00:00, 2.72it/s, train/loss=17.40]\nEpoch 0: | | 496/? [03:02<00:00, 2.72it/s, train/loss=17.40]\nEpoch 0: | | 496/? [03:02<00:00, 2.72it/s, train/loss=25.70]\nEpoch 0: | | 497/? [03:02<00:00, 2.72it/s, train/loss=25.70]\nEpoch 0: | | 497/? [03:02<00:00, 2.72it/s, train/loss=29.50]\nEpoch 0: | | 498/? [03:03<00:00, 2.72it/s, train/loss=29.50]\nEpoch 0: | | 498/? [03:03<00:00, 2.72it/s, train/loss=37.70]\nEpoch 0: | | 499/? [03:03<00:00, 2.72it/s, train/loss=37.70]\nEpoch 0: | | 499/? [03:03<00:00, 2.72it/s, train/loss=7.640]\nEpoch 0: | | 500/? [03:03<00:00, 2.72it/s, train/loss=7.640]\nEpoch 0: | | 500/? [03:03<00:00, 2.72it/s, train/loss=14.00]\nEpoch 0: | | 501/? [03:04<00:00, 2.72it/s, train/loss=14.00]\nEpoch 0: | | 501/? [03:04<00:00, 2.72it/s, train/loss=40.30]\nEpoch 0: | | 502/? [03:04<00:00, 2.72it/s, train/loss=40.30]\nEpoch 0: | | 502/? [03:04<00:00, 2.72it/s, train/loss=32.80]\nEpoch 0: | | 503/? [03:04<00:00, 2.72it/s, train/loss=32.80]\nEpoch 0: | | 503/? [03:04<00:00, 2.72it/s, train/loss=20.80]\nEpoch 0: | | 504/? [03:05<00:00, 2.72it/s, train/loss=20.80]\nEpoch 0: | | 504/? [03:05<00:00, 2.72it/s, train/loss=39.40]\nEpoch 0: | | 505/? [03:05<00:00, 2.72it/s, train/loss=39.40]\nEpoch 0: | | 505/? [03:05<00:00, 2.72it/s, train/loss=22.80]\nEpoch 0: | | 506/? [03:05<00:00, 2.72it/s, train/loss=22.80]\nEpoch 0: | | 506/? [03:05<00:00, 2.72it/s, train/loss=22.80]\nEpoch 0: | | 507/? [03:06<00:00, 2.72it/s, train/loss=22.80]\nEpoch 0: | | 507/? [03:06<00:00, 2.72it/s, train/loss=21.10]\nEpoch 0: | | 508/? [03:06<00:00, 2.72it/s, train/loss=21.10]\nEpoch 0: | | 508/? [03:06<00:00, 2.72it/s, train/loss=8.100]\nEpoch 0: | | 509/? [03:06<00:00, 2.73it/s, train/loss=8.100]\nEpoch 0: | | 509/? [03:06<00:00, 2.73it/s, train/loss=21.00]\nEpoch 0: | | 510/? [03:07<00:00, 2.73it/s, train/loss=21.00]\nEpoch 0: | | 510/? [03:07<00:00, 2.73it/s, train/loss=10.50]\nEpoch 0: | | 511/? [03:07<00:00, 2.73it/s, train/loss=10.50]\nEpoch 0: | | 511/? [03:07<00:00, 2.73it/s, train/loss=32.80]\nEpoch 0: | | 512/? [03:07<00:00, 2.73it/s, train/loss=32.80]\nEpoch 0: | | 512/? [03:07<00:00, 2.73it/s, train/loss=10.10]\nEpoch 0: | | 513/? [03:08<00:00, 2.73it/s, train/loss=10.10]\nEpoch 0: | | 513/? [03:08<00:00, 2.73it/s, train/loss=34.70]\nEpoch 0: | | 514/? [03:08<00:00, 2.73it/s, train/loss=34.70]\nEpoch 0: | | 514/? [03:08<00:00, 2.73it/s, train/loss=12.70]\nEpoch 0: | | 515/? [03:08<00:00, 2.73it/s, train/loss=12.70]\nEpoch 0: | | 515/? [03:08<00:00, 2.73it/s, train/loss=8.430]\nEpoch 0: | | 516/? [03:09<00:00, 2.73it/s, train/loss=8.430]\nEpoch 0: | | 516/? [03:09<00:00, 2.73it/s, train/loss=16.00]\nEpoch 0: | | 517/? [03:09<00:00, 2.73it/s, train/loss=16.00]\nEpoch 0: | | 517/? [03:09<00:00, 2.73it/s, train/loss=25.90]\nEpoch 0: | | 518/? [03:09<00:00, 2.73it/s, train/loss=25.90]\nEpoch 0: | | 518/? [03:09<00:00, 2.73it/s, train/loss=13.20]\nEpoch 0: | | 519/? [03:10<00:00, 2.73it/s, train/loss=13.20]\nEpoch 0: | | 519/? [03:10<00:00, 2.73it/s, train/loss=30.10]\nEpoch 0: | | 520/? [03:10<00:00, 2.73it/s, train/loss=30.10]\nEpoch 0: | | 520/? [03:10<00:00, 2.73it/s, train/loss=26.40]\nEpoch 0: | | 521/? [03:10<00:00, 2.73it/s, train/loss=26.40]\nEpoch 0: | | 521/? [03:10<00:00, 2.73it/s, train/loss=28.50]\nEpoch 0: | | 522/? [03:11<00:00, 2.73it/s, train/loss=28.50]\nEpoch 0: | | 522/? [03:11<00:00, 2.73it/s, train/loss=29.50]\nEpoch 0: | | 523/? [03:11<00:00, 2.73it/s, train/loss=29.50]\nEpoch 0: | | 523/? [03:11<00:00, 2.73it/s, train/loss=23.70]\nEpoch 0: | | 524/? [03:11<00:00, 2.73it/s, train/loss=23.70]\nEpoch 0: | | 524/? [03:11<00:00, 2.73it/s, train/loss=14.50]\nEpoch 0: | | 525/? [03:12<00:00, 2.73it/s, train/loss=14.50]\nEpoch 0: | | 525/? [03:12<00:00, 2.73it/s, train/loss=25.00]\nEpoch 0: | | 526/? [03:12<00:00, 2.73it/s, train/loss=25.00]\nEpoch 0: | | 526/? [03:12<00:00, 2.73it/s, train/loss=35.40]\nEpoch 0: | | 527/? [03:12<00:00, 2.73it/s, train/loss=35.40]\nEpoch 0: | | 527/? [03:12<00:00, 2.73it/s, train/loss=29.80]\nEpoch 0: | | 528/? [03:13<00:00, 2.73it/s, train/loss=29.80]\nEpoch 0: | | 528/? [03:13<00:00, 2.73it/s, train/loss=24.20]\nEpoch 0: | | 529/? [03:13<00:00, 2.73it/s, train/loss=24.20]\nEpoch 0: | | 529/? [03:13<00:00, 2.73it/s, train/loss=28.20]\nEpoch 0: | | 530/? [03:13<00:00, 2.73it/s, train/loss=28.20]\nEpoch 0: | | 530/? [03:13<00:00, 2.73it/s, train/loss=19.10]\nEpoch 0: | | 531/? [03:14<00:00, 2.74it/s, train/loss=19.10]\nEpoch 0: | | 531/? [03:14<00:00, 2.74it/s, train/loss=20.40]\nEpoch 0: | | 532/? [03:14<00:00, 2.74it/s, train/loss=20.40]\nEpoch 0: | | 532/? [03:14<00:00, 2.74it/s, train/loss=30.20]\nEpoch 0: | | 533/? [03:14<00:00, 2.74it/s, train/loss=30.20]\nEpoch 0: | | 533/? [03:14<00:00, 2.74it/s, train/loss=19.40]\nEpoch 0: | | 534/? [03:15<00:00, 2.74it/s, train/loss=19.40]\nEpoch 0: | | 534/? [03:15<00:00, 2.74it/s, train/loss=21.10]\nEpoch 0: | | 535/? [03:15<00:00, 2.74it/s, train/loss=21.10]\nEpoch 0: | | 535/? [03:15<00:00, 2.74it/s, train/loss=15.40]\nEpoch 0: | | 536/? [03:15<00:00, 2.74it/s, train/loss=15.40]\nEpoch 0: | | 536/? [03:15<00:00, 2.74it/s, train/loss=27.50]\nEpoch 0: | | 537/? [03:16<00:00, 2.74it/s, train/loss=27.50]\nEpoch 0: | | 537/? [03:16<00:00, 2.74it/s, train/loss=20.20]\nEpoch 0: | | 538/? [03:16<00:00, 2.74it/s, train/loss=20.20]\nEpoch 0: | | 538/? [03:16<00:00, 2.74it/s, train/loss=9.040]\nEpoch 0: | | 539/? [03:16<00:00, 2.74it/s, train/loss=9.040]\nEpoch 0: | | 539/? [03:16<00:00, 2.74it/s, train/loss=19.20]\nEpoch 0: | | 540/? [03:17<00:00, 2.74it/s, train/loss=19.20]\nEpoch 0: | | 540/? [03:17<00:00, 2.74it/s, train/loss=23.50]\nEpoch 0: | | 541/? [03:17<00:00, 2.74it/s, train/loss=23.50]\nEpoch 0: | | 541/? [03:17<00:00, 2.74it/s, train/loss=18.80]\nEpoch 0: | | 542/? [03:17<00:00, 2.74it/s, train/loss=18.80]\nEpoch 0: | | 542/? [03:17<00:00, 2.74it/s, train/loss=12.30]\nEpoch 0: | | 543/? [03:18<00:00, 2.74it/s, train/loss=12.30]\nEpoch 0: | | 543/? [03:18<00:00, 2.74it/s, train/loss=31.00]\nEpoch 0: | | 544/? [03:18<00:00, 2.74it/s, train/loss=31.00]\nEpoch 0: | | 544/? [03:18<00:00, 2.74it/s, train/loss=12.90]\nEpoch 0: | | 545/? [03:18<00:00, 2.74it/s, train/loss=12.90]\nEpoch 0: | | 545/? [03:18<00:00, 2.74it/s, train/loss=16.30]\nEpoch 0: | | 546/? [03:19<00:00, 2.74it/s, train/loss=16.30]\nEpoch 0: | | 546/? [03:19<00:00, 2.74it/s, train/loss=18.80]\nEpoch 0: | | 547/? [03:19<00:00, 2.74it/s, train/loss=18.80]\nEpoch 0: | | 547/? [03:19<00:00, 2.74it/s, train/loss=19.40]\nEpoch 0: | | 548/? [03:19<00:00, 2.74it/s, train/loss=19.40]\nEpoch 0: | | 548/? [03:19<00:00, 2.74it/s, train/loss=21.10]\nEpoch 0: | | 549/? [03:19<00:00, 2.75it/s, train/loss=21.10]\nEpoch 0: | | 549/? [03:20<00:00, 2.74it/s, train/loss=28.20]\nEpoch 0: | | 550/? [03:20<00:00, 2.75it/s, train/loss=28.20]\nEpoch 0: | | 550/? [03:20<00:00, 2.75it/s, train/loss=28.10]\nEpoch 0: | | 551/? [03:20<00:00, 2.75it/s, train/loss=28.10]\nEpoch 0: | | 551/? [03:20<00:00, 2.75it/s, train/loss=48.30]\nEpoch 0: | | 552/? [03:20<00:00, 2.75it/s, train/loss=48.30]\nEpoch 0: | | 552/? [03:20<00:00, 2.75it/s, train/loss=24.20]\nEpoch 0: | | 553/? [03:21<00:00, 2.75it/s, train/loss=24.20]\nEpoch 0: | | 553/? [03:21<00:00, 2.75it/s, train/loss=31.10]\nEpoch 0: | | 554/? [03:21<00:00, 2.75it/s, train/loss=31.10]\nEpoch 0: | | 554/? [03:21<00:00, 2.75it/s, train/loss=24.40]\nEpoch 0: | | 555/? [03:21<00:00, 2.75it/s, train/loss=24.40]\nEpoch 0: | | 555/? [03:21<00:00, 2.75it/s, train/loss=19.50]\nEpoch 0: | | 556/? [03:22<00:00, 2.75it/s, train/loss=19.50]\nEpoch 0: | | 556/? [03:22<00:00, 2.75it/s, train/loss=25.60]\nEpoch 0: | | 557/? [03:22<00:00, 2.75it/s, train/loss=25.60]\nEpoch 0: | | 557/? [03:22<00:00, 2.75it/s, train/loss=23.50]\nEpoch 0: | | 558/? [03:22<00:00, 2.75it/s, train/loss=23.50]\nEpoch 0: | | 558/? [03:22<00:00, 2.75it/s, train/loss=19.50]\nEpoch 0: | | 559/? [03:23<00:00, 2.75it/s, train/loss=19.50]\nEpoch 0: | | 559/? [03:23<00:00, 2.75it/s, train/loss=19.30]\nEpoch 0: | | 560/? [03:23<00:00, 2.75it/s, train/loss=19.30]\nEpoch 0: | | 560/? [03:23<00:00, 2.75it/s, train/loss=10.50]\nEpoch 0: | | 561/? [03:23<00:00, 2.75it/s, train/loss=10.50]\nEpoch 0: | | 561/? [03:23<00:00, 2.75it/s, train/loss=27.50]\nEpoch 0: | | 562/? [03:24<00:00, 2.75it/s, train/loss=27.50]\nEpoch 0: | | 562/? [03:24<00:00, 2.75it/s, train/loss=27.70]\nEpoch 0: | | 563/? [03:24<00:00, 2.75it/s, train/loss=27.70]\nEpoch 0: | | 563/? [03:24<00:00, 2.75it/s, train/loss=17.00]\nEpoch 0: | | 564/? [03:24<00:00, 2.75it/s, train/loss=17.00]\nEpoch 0: | | 564/? [03:24<00:00, 2.75it/s, train/loss=13.70]\nEpoch 0: | | 565/? [03:25<00:00, 2.75it/s, train/loss=13.70]\nEpoch 0: | | 565/? [03:25<00:00, 2.75it/s, train/loss=25.20]\nEpoch 0: | | 566/? [03:25<00:00, 2.75it/s, train/loss=25.20]\nEpoch 0: | | 566/? [03:25<00:00, 2.75it/s, train/loss=20.40]\nEpoch 0: | | 567/? [03:25<00:00, 2.75it/s, train/loss=20.40]\nEpoch 0: | | 567/? [03:25<00:00, 2.75it/s, train/loss=22.20]\nEpoch 0: | | 568/? [03:26<00:00, 2.75it/s, train/loss=22.20]\nEpoch 0: | | 568/? [03:26<00:00, 2.75it/s, train/loss=22.10]\nEpoch 0: | | 569/? [03:26<00:00, 2.75it/s, train/loss=22.10]\nEpoch 0: | | 569/? [03:26<00:00, 2.75it/s, train/loss=18.20]\nEpoch 0: | | 570/? [03:26<00:00, 2.75it/s, train/loss=18.20]\nEpoch 0: | | 570/? [03:26<00:00, 2.75it/s, train/loss=28.90]\nEpoch 0: | | 571/? [03:27<00:00, 2.76it/s, train/loss=28.90]\nEpoch 0: | | 571/? [03:27<00:00, 2.75it/s, train/loss=35.40]\nEpoch 0: | | 572/? [03:27<00:00, 2.76it/s, train/loss=35.40]\nEpoch 0: | | 572/? [03:27<00:00, 2.76it/s, train/loss=10.30]\nEpoch 0: | | 573/? [03:27<00:00, 2.76it/s, train/loss=10.30]\nEpoch 0: | | 573/? [03:27<00:00, 2.76it/s, train/loss=21.20]\nEpoch 0: | | 574/? [03:28<00:00, 2.76it/s, train/loss=21.20]\nEpoch 0: | | 574/? [03:28<00:00, 2.76it/s, train/loss=38.30]\nEpoch 0: | | 575/? [03:28<00:00, 2.76it/s, train/loss=38.30]\nEpoch 0: | | 575/? [03:28<00:00, 2.76it/s, train/loss=6.780]\nEpoch 0: | | 576/? [03:28<00:00, 2.76it/s, train/loss=6.780]\nEpoch 0: | | 576/? [03:28<00:00, 2.76it/s, train/loss=9.820]\nEpoch 0: | | 577/? [03:29<00:00, 2.76it/s, train/loss=9.820]\nEpoch 0: | | 577/? [03:29<00:00, 2.76it/s, train/loss=19.20]\nEpoch 0: | | 578/? [03:29<00:00, 2.76it/s, train/loss=19.20]\nEpoch 0: | | 578/? [03:29<00:00, 2.76it/s, train/loss=18.50]\nEpoch 0: | | 579/? [03:29<00:00, 2.76it/s, train/loss=18.50]\nEpoch 0: | | 579/? [03:29<00:00, 2.76it/s, train/loss=16.60]\nEpoch 0: | | 580/? [03:30<00:00, 2.76it/s, train/loss=16.60]\nEpoch 0: | | 580/? [03:30<00:00, 2.76it/s, train/loss=41.70]\nEpoch 0: | | 581/? [03:30<00:00, 2.76it/s, train/loss=41.70]\nEpoch 0: | | 581/? [03:30<00:00, 2.76it/s, train/loss=16.80]\nEpoch 0: | | 582/? [03:30<00:00, 2.76it/s, train/loss=16.80]\nEpoch 0: | | 582/? [03:30<00:00, 2.76it/s, train/loss=13.50]\nEpoch 0: | | 583/? [03:31<00:00, 2.76it/s, train/loss=13.50]\nEpoch 0: | | 583/? [03:31<00:00, 2.76it/s, train/loss=12.60]\nEpoch 0: | | 584/? [03:31<00:00, 2.76it/s, train/loss=12.60]\nEpoch 0: | | 584/? [03:31<00:00, 2.76it/s, train/loss=8.210]\nEpoch 0: | | 585/? [03:31<00:00, 2.76it/s, train/loss=8.210]\nEpoch 0: | | 585/? [03:31<00:00, 2.76it/s, train/loss=25.00]\nEpoch 0: | | 586/? [03:32<00:00, 2.76it/s, train/loss=25.00]\nEpoch 0: | | 586/? [03:32<00:00, 2.76it/s, train/loss=21.70]\nEpoch 0: | | 587/? [03:32<00:00, 2.76it/s, train/loss=21.70]\nEpoch 0: | | 587/? [03:32<00:00, 2.76it/s, train/loss=22.60]\nEpoch 0: | | 588/? [03:32<00:00, 2.76it/s, train/loss=22.60]\nEpoch 0: | | 588/? [03:32<00:00, 2.76it/s, train/loss=33.70]\nEpoch 0: | | 589/? [03:33<00:00, 2.76it/s, train/loss=33.70]\nEpoch 0: | | 589/? [03:33<00:00, 2.76it/s, train/loss=23.50]\nEpoch 0: | | 590/? [03:33<00:00, 2.76it/s, train/loss=23.50]\nEpoch 0: | | 590/? [03:33<00:00, 2.76it/s, train/loss=24.20]\nEpoch 0: | | 591/? [03:33<00:00, 2.76it/s, train/loss=24.20]\nEpoch 0: | | 591/? [03:33<00:00, 2.76it/s, train/loss=16.40]\nEpoch 0: | | 592/? [03:34<00:00, 2.76it/s, train/loss=16.40]\nEpoch 0: | | 592/? [03:34<00:00, 2.76it/s, train/loss=30.10]\nEpoch 0: | | 593/? [03:34<00:00, 2.76it/s, train/loss=30.10]\nEpoch 0: | | 593/? [03:34<00:00, 2.76it/s, train/loss=15.80]\nEpoch 0: | | 594/? [03:34<00:00, 2.76it/s, train/loss=15.80]\nEpoch 0: | | 594/? [03:34<00:00, 2.76it/s, train/loss=28.50]\nEpoch 0: | | 595/? [03:35<00:00, 2.76it/s, train/loss=28.50]\nEpoch 0: | | 595/? [03:35<00:00, 2.76it/s, train/loss=42.00]\nEpoch 0: | | 596/? [03:35<00:00, 2.76it/s, train/loss=42.00]\nEpoch 0: | | 596/? [03:35<00:00, 2.76it/s, train/loss=25.40]\nEpoch 0: | | 597/? [03:35<00:00, 2.77it/s, train/loss=25.40]\nEpoch 0: | | 597/? [03:35<00:00, 2.77it/s, train/loss=51.90]\nEpoch 0: | | 598/? [03:36<00:00, 2.77it/s, train/loss=51.90]\nEpoch 0: | | 598/? [03:36<00:00, 2.77it/s, train/loss=34.00]\nEpoch 0: | | 599/? [03:36<00:00, 2.77it/s, train/loss=34.00]\nEpoch 0: | | 599/? [03:36<00:00, 2.77it/s, train/loss=31.20]\nEpoch 0: | | 600/? [03:36<00:00, 2.77it/s, train/loss=31.20]\nEpoch 0: | | 600/? [03:36<00:00, 2.77it/s, train/loss=20.80]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 11.29it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 11.44it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 11.46it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.58it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.58it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:02, 11.64it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.63it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.72it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.78it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.79it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.83it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.78it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.81it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.83it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.86it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.87it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:01, 11.83it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.85it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.87it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.88it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.90it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.86it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:01<00:01, 11.88it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.88it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.85it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.85it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.88it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.90it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.92it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.94it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.94it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.75it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.73it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.70it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:02<00:00, 11.71it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.70it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.70it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.71it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.72it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.73it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 600/? [03:43<00:00, 2.68it/s, train/loss=20.80]\nEpoch 0: | | 601/? [03:44<00:00, 2.67it/s, train/loss=20.80]\nEpoch 0: | | 601/? [03:44<00:00, 2.67it/s, train/loss=45.20]\nEpoch 0: | | 602/? [03:45<00:00, 2.67it/s, train/loss=45.20]\nEpoch 0: | | 602/? [03:45<00:00, 2.67it/s, train/loss=19.60]\nEpoch 0: | | 603/? [03:45<00:00, 2.67it/s, train/loss=19.60]\nEpoch 0: | | 603/? [03:45<00:00, 2.67it/s, train/loss=43.40]\nEpoch 0: | | 604/? [03:45<00:00, 2.68it/s, train/loss=43.40]\nEpoch 0: | | 604/? [03:45<00:00, 2.68it/s, train/loss=9.500]\nEpoch 0: | | 605/? [03:46<00:00, 2.68it/s, train/loss=9.500]\nEpoch 0: | | 605/? [03:46<00:00, 2.68it/s, train/loss=18.10]\nEpoch 0: | | 606/? [03:46<00:00, 2.68it/s, train/loss=18.10]\nEpoch 0: | | 606/? [03:46<00:00, 2.68it/s, train/loss=21.10]\nEpoch 0: | | 607/? [03:46<00:00, 2.68it/s, train/loss=21.10]\nEpoch 0: | | 607/? [03:46<00:00, 2.68it/s, train/loss=22.80]\nEpoch 0: | | 608/? [03:47<00:00, 2.68it/s, train/loss=22.80]\nEpoch 0: | | 608/? [03:47<00:00, 2.68it/s, train/loss=30.10]\nEpoch 0: | | 609/? [03:47<00:00, 2.68it/s, train/loss=30.10]\nEpoch 0: | | 609/? [03:47<00:00, 2.68it/s, train/loss=24.90]\nEpoch 0: | | 610/? [03:47<00:00, 2.68it/s, train/loss=24.90]\nEpoch 0: | | 610/? [03:47<00:00, 2.68it/s, train/loss=11.10]\nEpoch 0: | | 611/? [03:48<00:00, 2.68it/s, train/loss=11.10]\nEpoch 0: | | 611/? [03:48<00:00, 2.68it/s, train/loss=26.60]\nEpoch 0: | | 612/? [03:48<00:00, 2.68it/s, train/loss=26.60]\nEpoch 0: | | 612/? [03:48<00:00, 2.68it/s, train/loss=26.10]\nEpoch 0: | | 613/? [03:48<00:00, 2.68it/s, train/loss=26.10]\nEpoch 0: | | 613/? [03:48<00:00, 2.68it/s, train/loss=27.20]\nEpoch 0: | | 614/? [03:49<00:00, 2.68it/s, train/loss=27.20]\nEpoch 0: | | 614/? [03:49<00:00, 2.68it/s, train/loss=23.90]\nEpoch 0: | | 615/? [03:49<00:00, 2.68it/s, train/loss=23.90]\nEpoch 0: | | 615/? [03:49<00:00, 2.68it/s, train/loss=50.80]\nEpoch 0: | | 616/? [03:49<00:00, 2.68it/s, train/loss=50.80]\nEpoch 0: | | 616/? [03:49<00:00, 2.68it/s, train/loss=8.490]\nEpoch 0: | | 617/? [03:50<00:00, 2.68it/s, train/loss=8.490]\nEpoch 0: | | 617/? [03:50<00:00, 2.68it/s, train/loss=18.10]\nEpoch 0: | | 618/? [03:50<00:00, 2.68it/s, train/loss=18.10]\nEpoch 0: | | 618/? [03:50<00:00, 2.68it/s, train/loss=8.960]\nEpoch 0: | | 619/? [03:50<00:00, 2.68it/s, train/loss=8.960]\nEpoch 0: | | 619/? [03:50<00:00, 2.68it/s, train/loss=20.80]\nEpoch 0: | | 620/? [03:51<00:00, 2.68it/s, train/loss=20.80]\nEpoch 0: | | 620/? [03:51<00:00, 2.68it/s, train/loss=7.220]\nEpoch 0: | | 621/? [03:51<00:00, 2.68it/s, train/loss=7.220]\nEpoch 0: | | 621/? [03:51<00:00, 2.68it/s, train/loss=32.80]\nEpoch 0: | | 622/? [03:51<00:00, 2.68it/s, train/loss=32.80]\nEpoch 0: | | 622/? [03:51<00:00, 2.68it/s, train/loss=20.60]\nEpoch 0: | | 623/? [03:51<00:00, 2.69it/s, train/loss=20.60]\nEpoch 0: | | 623/? [03:51<00:00, 2.69it/s, train/loss=41.70]\nEpoch 0: | | 624/? [03:52<00:00, 2.69it/s, train/loss=41.70]\nEpoch 0: | | 624/? [03:52<00:00, 2.69it/s, train/loss=22.60]\nEpoch 0: | | 625/? [03:52<00:00, 2.69it/s, train/loss=22.60]\nEpoch 0: | | 625/? [03:52<00:00, 2.69it/s, train/loss=18.70]\nEpoch 0: | | 626/? [03:52<00:00, 2.69it/s, train/loss=18.70]\nEpoch 0: | | 626/? [03:52<00:00, 2.69it/s, train/loss=14.00]\nEpoch 0: | | 627/? [03:53<00:00, 2.69it/s, train/loss=14.00]\nEpoch 0: | | 627/? [03:53<00:00, 2.69it/s, train/loss=24.30]\nEpoch 0: | | 628/? [03:53<00:00, 2.69it/s, train/loss=24.30]\nEpoch 0: | | 628/? [03:53<00:00, 2.69it/s, train/loss=20.40]\nEpoch 0: | | 629/? [03:53<00:00, 2.69it/s, train/loss=20.40]\nEpoch 0: | | 629/? [03:53<00:00, 2.69it/s, train/loss=34.40]\nEpoch 0: | | 630/? [03:54<00:00, 2.69it/s, train/loss=34.40]\nEpoch 0: | | 630/? [03:54<00:00, 2.69it/s, train/loss=27.80]\nEpoch 0: | | 631/? [03:54<00:00, 2.69it/s, train/loss=27.80]\nEpoch 0: | | 631/? [03:54<00:00, 2.69it/s, train/loss=13.00]\nEpoch 0: | | 632/? [03:54<00:00, 2.69it/s, train/loss=13.00]\nEpoch 0: | | 632/? [03:54<00:00, 2.69it/s, train/loss=16.80]\nEpoch 0: | | 633/? [03:55<00:00, 2.69it/s, train/loss=16.80]\nEpoch 0: | | 633/? [03:55<00:00, 2.69it/s, train/loss=47.30]\nEpoch 0: | | 634/? [03:55<00:00, 2.69it/s, train/loss=47.30]\nEpoch 0: | | 634/? [03:55<00:00, 2.69it/s, train/loss=24.20]\nEpoch 0: | | 635/? [03:55<00:00, 2.69it/s, train/loss=24.20]\nEpoch 0: | | 635/? [03:55<00:00, 2.69it/s, train/loss=7.330]\nEpoch 0: | | 636/? [03:56<00:00, 2.69it/s, train/loss=7.330]\nEpoch 0: | | 636/? [03:56<00:00, 2.69it/s, train/loss=14.50]\nEpoch 0: | | 637/? [03:56<00:00, 2.69it/s, train/loss=14.50]\nEpoch 0: | | 637/? [03:56<00:00, 2.69it/s, train/loss=28.80]\nEpoch 0: | | 638/? [03:56<00:00, 2.69it/s, train/loss=28.80]\nEpoch 0: | | 638/? [03:56<00:00, 2.69it/s, train/loss=24.00]\nEpoch 0: | | 639/? [03:57<00:00, 2.69it/s, train/loss=24.00]\nEpoch 0: | | 639/? [03:57<00:00, 2.69it/s, train/loss=7.980]\nEpoch 0: | | 640/? [03:57<00:00, 2.69it/s, train/loss=7.980]\nEpoch 0: | | 640/? [03:57<00:00, 2.69it/s, train/loss=46.90]\nEpoch 0: | | 641/? [03:57<00:00, 2.69it/s, train/loss=46.90]\nEpoch 0: | | 641/? [03:57<00:00, 2.69it/s, train/loss=21.50]\nEpoch 0: | | 642/? [03:58<00:00, 2.70it/s, train/loss=21.50]\nEpoch 0: | | 642/? [03:58<00:00, 2.70it/s, train/loss=40.10]\nEpoch 0: | | 643/? [03:58<00:00, 2.70it/s, train/loss=40.10]\nEpoch 0: | | 643/? [03:58<00:00, 2.70it/s, train/loss=41.30]\nEpoch 0: | | 644/? [03:58<00:00, 2.70it/s, train/loss=41.30]\nEpoch 0: | | 644/? [03:58<00:00, 2.70it/s, train/loss=48.10]\nEpoch 0: | | 645/? [03:59<00:00, 2.70it/s, train/loss=48.10]\nEpoch 0: | | 645/? [03:59<00:00, 2.70it/s, train/loss=21.50]\nEpoch 0: | | 646/? [03:59<00:00, 2.70it/s, train/loss=21.50]\nEpoch 0: | | 646/? [03:59<00:00, 2.70it/s, train/loss=24.60]\nEpoch 0: | | 647/? [03:59<00:00, 2.70it/s, train/loss=24.60]\nEpoch 0: | | 647/? [03:59<00:00, 2.70it/s, train/loss=63.90]\nEpoch 0: | | 648/? [04:00<00:00, 2.70it/s, train/loss=63.90]\nEpoch 0: | | 648/? [04:00<00:00, 2.70it/s, train/loss=20.90]\nEpoch 0: | | 649/? [04:00<00:00, 2.70it/s, train/loss=20.90]\nEpoch 0: | | 649/? [04:00<00:00, 2.70it/s, train/loss=55.00]\nEpoch 0: | | 650/? [04:00<00:00, 2.70it/s, train/loss=55.00]\nEpoch 0: | | 650/? [04:00<00:00, 2.70it/s, train/loss=25.60]\nEpoch 0: | | 651/? [04:01<00:00, 2.70it/s, train/loss=25.60]\nEpoch 0: | | 651/? [04:01<00:00, 2.70it/s, train/loss=17.00]\nEpoch 0: | | 652/? [04:01<00:00, 2.70it/s, train/loss=17.00]\nEpoch 0: | | 652/? [04:01<00:00, 2.70it/s, train/loss=19.20]\nEpoch 0: | | 653/? [04:01<00:00, 2.70it/s, train/loss=19.20]\nEpoch 0: | | 653/? [04:01<00:00, 2.70it/s, train/loss=20.70]\nEpoch 0: | | 654/? [04:02<00:00, 2.70it/s, train/loss=20.70]\nEpoch 0: | | 654/? [04:02<00:00, 2.70it/s, train/loss=31.90]\nEpoch 0: | | 655/? [04:02<00:00, 2.70it/s, train/loss=31.90]\nEpoch 0: | | 655/? [04:02<00:00, 2.70it/s, train/loss=13.60]\nEpoch 0: | | 656/? [04:03<00:00, 2.70it/s, train/loss=13.60]\nEpoch 0: | | 656/? [04:03<00:00, 2.70it/s, train/loss=25.40]\nEpoch 0: | | 657/? [04:03<00:00, 2.70it/s, train/loss=25.40]\nEpoch 0: | | 657/? [04:03<00:00, 2.70it/s, train/loss=42.40]\nEpoch 0: | | 658/? [04:03<00:00, 2.70it/s, train/loss=42.40]\nEpoch 0: | | 658/? [04:03<00:00, 2.70it/s, train/loss=12.40]\nEpoch 0: | | 659/? [04:04<00:00, 2.70it/s, train/loss=12.40]\nEpoch 0: | | 659/? [04:04<00:00, 2.70it/s, train/loss=29.20]\nEpoch 0: | | 660/? [04:04<00:00, 2.70it/s, train/loss=29.20]\nEpoch 0: | | 660/? [04:04<00:00, 2.70it/s, train/loss=8.920]\nEpoch 0: | | 661/? [04:04<00:00, 2.70it/s, train/loss=8.920]\nEpoch 0: | | 661/? [04:04<00:00, 2.70it/s, train/loss=23.50]\nEpoch 0: | | 662/? [04:05<00:00, 2.70it/s, train/loss=23.50]\nEpoch 0: | | 662/? [04:05<00:00, 2.70it/s, train/loss=24.90]\nEpoch 0: | | 663/? [04:05<00:00, 2.70it/s, train/loss=24.90]\nEpoch 0: | | 663/? [04:05<00:00, 2.70it/s, train/loss=33.00]\nEpoch 0: | | 664/? [04:05<00:00, 2.70it/s, train/loss=33.00]\nEpoch 0: | | 664/? [04:05<00:00, 2.70it/s, train/loss=19.80]\nEpoch 0: | | 665/? [04:05<00:00, 2.70it/s, train/loss=19.80]\nEpoch 0: | | 665/? [04:05<00:00, 2.70it/s, train/loss=25.70]\nEpoch 0: | | 666/? [04:06<00:00, 2.70it/s, train/loss=25.70]\nEpoch 0: | | 666/? [04:06<00:00, 2.70it/s, train/loss=27.60]\nEpoch 0: | | 667/? [04:06<00:00, 2.70it/s, train/loss=27.60]\nEpoch 0: | | 667/? [04:06<00:00, 2.70it/s, train/loss=36.80]\nEpoch 0: | | 668/? [04:06<00:00, 2.70it/s, train/loss=36.80]\nEpoch 0: | | 668/? [04:06<00:00, 2.70it/s, train/loss=18.20]\nEpoch 0: | | 669/? [04:07<00:00, 2.71it/s, train/loss=18.20]\nEpoch 0: | | 669/? [04:07<00:00, 2.71it/s, train/loss=29.60]\nEpoch 0: | | 670/? [04:07<00:00, 2.71it/s, train/loss=29.60]\nEpoch 0: | | 670/? [04:07<00:00, 2.71it/s, train/loss=52.50]\nEpoch 0: | | 671/? [04:07<00:00, 2.71it/s, train/loss=52.50]\nEpoch 0: | | 671/? [04:07<00:00, 2.71it/s, train/loss=11.80]\nEpoch 0: | | 672/? [04:08<00:00, 2.71it/s, train/loss=11.80]\nEpoch 0: | | 672/? [04:08<00:00, 2.71it/s, train/loss=19.90]\nEpoch 0: | | 673/? [04:08<00:00, 2.71it/s, train/loss=19.90]\nEpoch 0: | | 673/? [04:08<00:00, 2.71it/s, train/loss=17.60]\nEpoch 0: | | 674/? [04:08<00:00, 2.71it/s, train/loss=17.60]\nEpoch 0: | | 674/? [04:08<00:00, 2.71it/s, train/loss=31.90]\nEpoch 0: | | 675/? [04:09<00:00, 2.71it/s, train/loss=31.90]\nEpoch 0: | | 675/? [04:09<00:00, 2.71it/s, train/loss=24.00]\nEpoch 0: | | 676/? [04:09<00:00, 2.71it/s, train/loss=24.00]\nEpoch 0: | | 676/? [04:09<00:00, 2.71it/s, train/loss=9.220]\nEpoch 0: | | 677/? [04:09<00:00, 2.71it/s, train/loss=9.220]\nEpoch 0: | | 677/? [04:09<00:00, 2.71it/s, train/loss=29.80]\nEpoch 0: | | 678/? [04:10<00:00, 2.71it/s, train/loss=29.80]\nEpoch 0: | | 678/? [04:10<00:00, 2.71it/s, train/loss=9.360]\nEpoch 0: | | 679/? [04:10<00:00, 2.71it/s, train/loss=9.360]\nEpoch 0: | | 679/? [04:10<00:00, 2.71it/s, train/loss=26.90]\nEpoch 0: | | 680/? [04:10<00:00, 2.71it/s, train/loss=26.90]\nEpoch 0: | | 680/? [04:10<00:00, 2.71it/s, train/loss=23.60]\nEpoch 0: | | 681/? [04:11<00:00, 2.71it/s, train/loss=23.60]\nEpoch 0: | | 681/? [04:11<00:00, 2.71it/s, train/loss=24.20]\nEpoch 0: | | 682/? [04:11<00:00, 2.71it/s, train/loss=24.20]\nEpoch 0: | | 682/? [04:11<00:00, 2.71it/s, train/loss=29.20]\nEpoch 0: | | 683/? [04:11<00:00, 2.71it/s, train/loss=29.20]\nEpoch 0: | | 683/? [04:11<00:00, 2.71it/s, train/loss=23.70]\nEpoch 0: | | 684/? [04:12<00:00, 2.71it/s, train/loss=23.70]\nEpoch 0: | | 684/? [04:12<00:00, 2.71it/s, train/loss=8.900]\nEpoch 0: | | 685/? [04:12<00:00, 2.71it/s, train/loss=8.900]\nEpoch 0: | | 685/? [04:12<00:00, 2.71it/s, train/loss=29.60]\nEpoch 0: | | 686/? [04:12<00:00, 2.71it/s, train/loss=29.60]\nEpoch 0: | | 686/? [04:12<00:00, 2.71it/s, train/loss=44.80]\nEpoch 0: | | 687/? [04:13<00:00, 2.71it/s, train/loss=44.80]\nEpoch 0: | | 687/? [04:13<00:00, 2.71it/s, train/loss=65.00]\nEpoch 0: | | 688/? [04:13<00:00, 2.71it/s, train/loss=65.00]\nEpoch 0: | | 688/? [04:13<00:00, 2.71it/s, train/loss=17.10]\nEpoch 0: | | 689/? [04:13<00:00, 2.71it/s, train/loss=17.10]\nEpoch 0: | | 689/? [04:13<00:00, 2.71it/s, train/loss=28.30]\nEpoch 0: | | 690/? [04:14<00:00, 2.71it/s, train/loss=28.30]\nEpoch 0: | | 690/? [04:14<00:00, 2.71it/s, train/loss=38.20]\nEpoch 0: | | 691/? [04:14<00:00, 2.72it/s, train/loss=38.20]\nEpoch 0: | | 691/? [04:14<00:00, 2.72it/s, train/loss=9.110]\nEpoch 0: | | 692/? [04:14<00:00, 2.72it/s, train/loss=9.110]\nEpoch 0: | | 692/? [04:14<00:00, 2.72it/s, train/loss=29.20]\nEpoch 0: | | 693/? [04:15<00:00, 2.72it/s, train/loss=29.20]\nEpoch 0: | | 693/? [04:15<00:00, 2.72it/s, train/loss=16.60]\nEpoch 0: | | 694/? [04:15<00:00, 2.72it/s, train/loss=16.60]\nEpoch 0: | | 694/? [04:15<00:00, 2.72it/s, train/loss=31.70]\nEpoch 0: | | 695/? [04:15<00:00, 2.72it/s, train/loss=31.70]\nEpoch 0: | | 695/? [04:15<00:00, 2.72it/s, train/loss=11.80]\nEpoch 0: | | 696/? [04:16<00:00, 2.72it/s, train/loss=11.80]\nEpoch 0: | | 696/? [04:16<00:00, 2.72it/s, train/loss=29.40]\nEpoch 0: | | 697/? [04:16<00:00, 2.72it/s, train/loss=29.40]\nEpoch 0: | | 697/? [04:16<00:00, 2.72it/s, train/loss=35.70]\nEpoch 0: | | 698/? [04:16<00:00, 2.72it/s, train/loss=35.70]\nEpoch 0: | | 698/? [04:16<00:00, 2.72it/s, train/loss=14.40]\nEpoch 0: | | 699/? [04:17<00:00, 2.72it/s, train/loss=14.40]\nEpoch 0: | | 699/? [04:17<00:00, 2.72it/s, train/loss=34.40]\nEpoch 0: | | 700/? [04:17<00:00, 2.72it/s, train/loss=34.40]\nEpoch 0: | | 700/? [04:17<00:00, 2.72it/s, train/loss=12.10]\nEpoch 0: | | 701/? [04:17<00:00, 2.72it/s, train/loss=12.10]\nEpoch 0: | | 701/? [04:17<00:00, 2.72it/s, train/loss=15.30]\nEpoch 0: | | 702/? [04:18<00:00, 2.72it/s, train/loss=15.30]\nEpoch 0: | | 702/? [04:18<00:00, 2.72it/s, train/loss=22.70]\nEpoch 0: | | 703/? [04:18<00:00, 2.72it/s, train/loss=22.70]\nEpoch 0: | | 703/? [04:18<00:00, 2.72it/s, train/loss=20.80]\nEpoch 0: | | 704/? [04:18<00:00, 2.72it/s, train/loss=20.80]\nEpoch 0: | | 704/? [04:18<00:00, 2.72it/s, train/loss=7.570]\nEpoch 0: | | 705/? [04:19<00:00, 2.72it/s, train/loss=7.570]\nEpoch 0: | | 705/? [04:19<00:00, 2.72it/s, train/loss=21.90]\nEpoch 0: | | 706/? [04:19<00:00, 2.72it/s, train/loss=21.90]\nEpoch 0: | | 706/? [04:19<00:00, 2.72it/s, train/loss=19.50]\nEpoch 0: | | 707/? [04:19<00:00, 2.72it/s, train/loss=19.50]\nEpoch 0: | | 707/? [04:19<00:00, 2.72it/s, train/loss=11.60]\nEpoch 0: | | 708/? [04:20<00:00, 2.72it/s, train/loss=11.60]\nEpoch 0: | | 708/? [04:20<00:00, 2.72it/s, train/loss=13.30]\nEpoch 0: | | 709/? [04:20<00:00, 2.72it/s, train/loss=13.30]\nEpoch 0: | | 709/? [04:20<00:00, 2.72it/s, train/loss=17.80]\nEpoch 0: | | 710/? [04:20<00:00, 2.72it/s, train/loss=17.80]\nEpoch 0: | | 710/? [04:20<00:00, 2.72it/s, train/loss=19.00]\nEpoch 0: | | 711/? [04:21<00:00, 2.72it/s, train/loss=19.00]\nEpoch 0: | | 711/? [04:21<00:00, 2.72it/s, train/loss=21.70]\nEpoch 0: | | 712/? [04:21<00:00, 2.72it/s, train/loss=21.70]\nEpoch 0: | | 712/? [04:21<00:00, 2.72it/s, train/loss=35.30]\nEpoch 0: | | 713/? [04:21<00:00, 2.72it/s, train/loss=35.30]\nEpoch 0: | | 713/? [04:21<00:00, 2.72it/s, train/loss=21.40]\nEpoch 0: | | 714/? [04:22<00:00, 2.72it/s, train/loss=21.40]\nEpoch 0: | | 714/? [04:22<00:00, 2.72it/s, train/loss=34.50]\nEpoch 0: | | 715/? [04:22<00:00, 2.72it/s, train/loss=34.50]\nEpoch 0: | | 715/? [04:22<00:00, 2.72it/s, train/loss=26.30]\nEpoch 0: | | 716/? [04:22<00:00, 2.73it/s, train/loss=26.30]\nEpoch 0: | | 716/? [04:22<00:00, 2.73it/s, train/loss=17.80]\nEpoch 0: | | 717/? [04:23<00:00, 2.73it/s, train/loss=17.80]\nEpoch 0: | | 717/? [04:23<00:00, 2.73it/s, train/loss=70.40]\nEpoch 0: | | 718/? [04:23<00:00, 2.73it/s, train/loss=70.40]\nEpoch 0: | | 718/? [04:23<00:00, 2.73it/s, train/loss=27.50]\nEpoch 0: | | 719/? [04:23<00:00, 2.73it/s, train/loss=27.50]\nEpoch 0: | | 719/? [04:23<00:00, 2.73it/s, train/loss=17.10]\nEpoch 0: | | 720/? [04:24<00:00, 2.73it/s, train/loss=17.10]\nEpoch 0: | | 720/? [04:24<00:00, 2.73it/s, train/loss=13.80]\nEpoch 0: | | 721/? [04:24<00:00, 2.73it/s, train/loss=13.80]\nEpoch 0: | | 721/? [04:24<00:00, 2.73it/s, train/loss=39.50]\nEpoch 0: | | 722/? [04:24<00:00, 2.73it/s, train/loss=39.50]\nEpoch 0: | | 722/? [04:24<00:00, 2.73it/s, train/loss=23.60]\nEpoch 0: | | 723/? [04:25<00:00, 2.73it/s, train/loss=23.60]\nEpoch 0: | | 723/? [04:25<00:00, 2.73it/s, train/loss=37.80]\nEpoch 0: | | 724/? [04:25<00:00, 2.73it/s, train/loss=37.80]\nEpoch 0: | | 724/? [04:25<00:00, 2.73it/s, train/loss=18.90]\nEpoch 0: | | 725/? [04:25<00:00, 2.73it/s, train/loss=18.90]\nEpoch 0: | | 725/? [04:25<00:00, 2.73it/s, train/loss=31.20]\nEpoch 0: | | 726/? [04:25<00:00, 2.73it/s, train/loss=31.20]\nEpoch 0: | | 726/? [04:25<00:00, 2.73it/s, train/loss=23.20]\nEpoch 0: | | 727/? [04:26<00:00, 2.73it/s, train/loss=23.20]\nEpoch 0: | | 727/? [04:26<00:00, 2.73it/s, train/loss=20.90]\nEpoch 0: | | 728/? [04:26<00:00, 2.73it/s, train/loss=20.90]\nEpoch 0: | | 728/? [04:26<00:00, 2.73it/s, train/loss=24.60]\nEpoch 0: | | 729/? [04:26<00:00, 2.73it/s, train/loss=24.60]\nEpoch 0: | | 729/? [04:26<00:00, 2.73it/s, train/loss=16.90]\nEpoch 0: | | 730/? [04:27<00:00, 2.73it/s, train/loss=16.90]\nEpoch 0: | | 730/? [04:27<00:00, 2.73it/s, train/loss=14.70]\nEpoch 0: | | 731/? [04:27<00:00, 2.73it/s, train/loss=14.70]\nEpoch 0: | | 731/? [04:27<00:00, 2.73it/s, train/loss=7.040]\nEpoch 0: | | 732/? [04:27<00:00, 2.73it/s, train/loss=7.040]\nEpoch 0: | | 732/? [04:27<00:00, 2.73it/s, train/loss=16.10]\nEpoch 0: | | 733/? [04:28<00:00, 2.73it/s, train/loss=16.10]\nEpoch 0: | | 733/? [04:28<00:00, 2.73it/s, train/loss=39.30]\nEpoch 0: | | 734/? [04:28<00:00, 2.73it/s, train/loss=39.30]\nEpoch 0: | | 734/? [04:28<00:00, 2.73it/s, train/loss=26.50]\nEpoch 0: | | 735/? [04:28<00:00, 2.73it/s, train/loss=26.50]\nEpoch 0: | | 735/? [04:28<00:00, 2.73it/s, train/loss=14.00]\nEpoch 0: | | 736/? [04:29<00:00, 2.73it/s, train/loss=14.00]\nEpoch 0: | | 736/? [04:29<00:00, 2.73it/s, train/loss=18.90]\nEpoch 0: | | 737/? [04:29<00:00, 2.73it/s, train/loss=18.90]\nEpoch 0: | | 737/? [04:29<00:00, 2.73it/s, train/loss=32.80]\nEpoch 0: | | 738/? [04:29<00:00, 2.73it/s, train/loss=32.80]\nEpoch 0: | | 738/? [04:29<00:00, 2.73it/s, train/loss=22.50]\nEpoch 0: | | 739/? [04:30<00:00, 2.73it/s, train/loss=22.50]\nEpoch 0: | | 739/? [04:30<00:00, 2.73it/s, train/loss=19.90]\nEpoch 0: | | 740/? [04:30<00:00, 2.74it/s, train/loss=19.90]\nEpoch 0: | | 740/? [04:30<00:00, 2.74it/s, train/loss=13.80]\nEpoch 0: | | 741/? [04:30<00:00, 2.74it/s, train/loss=13.80]\nEpoch 0: | | 741/? [04:30<00:00, 2.74it/s, train/loss=46.20]\nEpoch 0: | | 742/? [04:31<00:00, 2.74it/s, train/loss=46.20]\nEpoch 0: | | 742/? [04:31<00:00, 2.74it/s, train/loss=23.10]\nEpoch 0: | | 743/? [04:31<00:00, 2.74it/s, train/loss=23.10]\nEpoch 0: | | 743/? [04:31<00:00, 2.74it/s, train/loss=35.30]\nEpoch 0: | | 744/? [04:31<00:00, 2.74it/s, train/loss=35.30]\nEpoch 0: | | 744/? [04:31<00:00, 2.74it/s, train/loss=17.30]\nEpoch 0: | | 745/? [04:32<00:00, 2.74it/s, train/loss=17.30]\nEpoch 0: | | 745/? [04:32<00:00, 2.74it/s, train/loss=35.60]\nEpoch 0: | | 746/? [04:32<00:00, 2.74it/s, train/loss=35.60]\nEpoch 0: | | 746/? [04:32<00:00, 2.74it/s, train/loss=30.30]\nEpoch 0: | | 747/? [04:32<00:00, 2.74it/s, train/loss=30.30]\nEpoch 0: | | 747/? [04:32<00:00, 2.74it/s, train/loss=9.280]\nEpoch 0: | | 748/? [04:33<00:00, 2.74it/s, train/loss=9.280]\nEpoch 0: | | 748/? [04:33<00:00, 2.74it/s, train/loss=35.70]\nEpoch 0: | | 749/? [04:33<00:00, 2.74it/s, train/loss=35.70]\nEpoch 0: | | 749/? [04:33<00:00, 2.74it/s, train/loss=30.50]\nEpoch 0: | | 750/? [04:33<00:00, 2.74it/s, train/loss=30.50]\nEpoch 0: | | 750/? [04:33<00:00, 2.74it/s, train/loss=28.80]\nEpoch 0: | | 751/? [04:34<00:00, 2.74it/s, train/loss=28.80]\nEpoch 0: | | 751/? [04:34<00:00, 2.74it/s, train/loss=23.70]\nEpoch 0: | | 752/? [04:34<00:00, 2.74it/s, train/loss=23.70]\nEpoch 0: | | 752/? [04:34<00:00, 2.74it/s, train/loss=22.00]\nEpoch 0: | | 753/? [04:34<00:00, 2.74it/s, train/loss=22.00]\nEpoch 0: | | 753/? [04:34<00:00, 2.74it/s, train/loss=16.70]\nEpoch 0: | | 754/? [04:35<00:00, 2.74it/s, train/loss=16.70]\nEpoch 0: | | 754/? [04:35<00:00, 2.74it/s, train/loss=8.490]\nEpoch 0: | | 755/? [04:35<00:00, 2.74it/s, train/loss=8.490]\nEpoch 0: | | 755/? [04:35<00:00, 2.74it/s, train/loss=12.40]\nEpoch 0: | | 756/? [04:35<00:00, 2.74it/s, train/loss=12.40]\nEpoch 0: | | 756/? [04:35<00:00, 2.74it/s, train/loss=11.90]\nEpoch 0: | | 757/? [04:36<00:00, 2.74it/s, train/loss=11.90]\nEpoch 0: | | 757/? [04:36<00:00, 2.74it/s, train/loss=15.30]\nEpoch 0: | | 758/? [04:36<00:00, 2.74it/s, train/loss=15.30]\nEpoch 0: | | 758/? [04:36<00:00, 2.74it/s, train/loss=18.30]\nEpoch 0: | | 759/? [04:36<00:00, 2.74it/s, train/loss=18.30]\nEpoch 0: | | 759/? [04:36<00:00, 2.74it/s, train/loss=15.90]\nEpoch 0: | | 760/? [04:37<00:00, 2.74it/s, train/loss=15.90]\nEpoch 0: | | 760/? [04:37<00:00, 2.74it/s, train/loss=30.70]\nEpoch 0: | | 761/? [04:37<00:00, 2.74it/s, train/loss=30.70]\nEpoch 0: | | 761/? [04:37<00:00, 2.74it/s, train/loss=37.50]\nEpoch 0: | | 762/? [04:37<00:00, 2.74it/s, train/loss=37.50]\nEpoch 0: | | 762/? [04:37<00:00, 2.74it/s, train/loss=24.00]\nEpoch 0: | | 763/? [04:38<00:00, 2.74it/s, train/loss=24.00]\nEpoch 0: | | 763/? [04:38<00:00, 2.74it/s, train/loss=23.80]\nEpoch 0: | | 764/? [04:38<00:00, 2.74it/s, train/loss=23.80]\nEpoch 0: | | 764/? [04:38<00:00, 2.74it/s, train/loss=13.40]\nEpoch 0: | | 765/? [04:38<00:00, 2.74it/s, train/loss=13.40]\nEpoch 0: | | 765/? [04:38<00:00, 2.74it/s, train/loss=41.50]\nEpoch 0: | | 766/? [04:39<00:00, 2.75it/s, train/loss=41.50]\nEpoch 0: | | 766/? [04:39<00:00, 2.75it/s, train/loss=29.70]\nEpoch 0: | | 767/? [04:39<00:00, 2.75it/s, train/loss=29.70]\nEpoch 0: | | 767/? [04:39<00:00, 2.75it/s, train/loss=16.90]\nEpoch 0: | | 768/? [04:39<00:00, 2.75it/s, train/loss=16.90]\nEpoch 0: | | 768/? [04:39<00:00, 2.75it/s, train/loss=31.50]\nEpoch 0: | | 769/? [04:40<00:00, 2.75it/s, train/loss=31.50]\nEpoch 0: | | 769/? [04:40<00:00, 2.75it/s, train/loss=29.30]\nEpoch 0: | | 770/? [04:40<00:00, 2.75it/s, train/loss=29.30]\nEpoch 0: | | 770/? [04:40<00:00, 2.75it/s, train/loss=23.60]\nEpoch 0: | | 771/? [04:40<00:00, 2.75it/s, train/loss=23.60]\nEpoch 0: | | 771/? [04:40<00:00, 2.75it/s, train/loss=17.80]\nEpoch 0: | | 772/? [04:40<00:00, 2.75it/s, train/loss=17.80]\nEpoch 0: | | 772/? [04:40<00:00, 2.75it/s, train/loss=11.00]\nEpoch 0: | | 773/? [04:41<00:00, 2.75it/s, train/loss=11.00]\nEpoch 0: | | 773/? [04:41<00:00, 2.75it/s, train/loss=34.10]\nEpoch 0: | | 774/? [04:41<00:00, 2.75it/s, train/loss=34.10]\nEpoch 0: | | 774/? [04:41<00:00, 2.75it/s, train/loss=15.80]\nEpoch 0: | | 775/? [04:41<00:00, 2.75it/s, train/loss=15.80]\nEpoch 0: | | 775/? [04:41<00:00, 2.75it/s, train/loss=8.520]\nEpoch 0: | | 776/? [04:42<00:00, 2.75it/s, train/loss=8.520]\nEpoch 0: | | 776/? [04:42<00:00, 2.75it/s, train/loss=6.730]\nEpoch 0: | | 777/? [04:42<00:00, 2.75it/s, train/loss=6.730]\nEpoch 0: | | 777/? [04:42<00:00, 2.75it/s, train/loss=16.90]\nEpoch 0: | | 778/? [04:42<00:00, 2.75it/s, train/loss=16.90]\nEpoch 0: | | 778/? [04:42<00:00, 2.75it/s, train/loss=19.80]\nEpoch 0: | | 779/? [04:43<00:00, 2.75it/s, train/loss=19.80]\nEpoch 0: | | 779/? [04:43<00:00, 2.75it/s, train/loss=53.00]\nEpoch 0: | | 780/? [04:43<00:00, 2.75it/s, train/loss=53.00]\nEpoch 0: | | 780/? [04:43<00:00, 2.75it/s, train/loss=22.80]\nEpoch 0: | | 781/? [04:44<00:00, 2.75it/s, train/loss=22.80]\nEpoch 0: | | 781/? [04:44<00:00, 2.75it/s, train/loss=22.60]\nEpoch 0: | | 782/? [04:44<00:00, 2.75it/s, train/loss=22.60]\nEpoch 0: | | 782/? [04:44<00:00, 2.75it/s, train/loss=12.40]\nEpoch 0: | | 783/? [04:44<00:00, 2.75it/s, train/loss=12.40]\nEpoch 0: | | 783/? [04:44<00:00, 2.75it/s, train/loss=27.50]\nEpoch 0: | | 784/? [04:45<00:00, 2.75it/s, train/loss=27.50]\nEpoch 0: | | 784/? [04:45<00:00, 2.75it/s, train/loss=32.30]\nEpoch 0: | | 785/? [04:45<00:00, 2.75it/s, train/loss=32.30]\nEpoch 0: | | 785/? [04:45<00:00, 2.75it/s, train/loss=36.80]\nEpoch 0: | | 786/? [04:45<00:00, 2.75it/s, train/loss=36.80]\nEpoch 0: | | 786/? [04:45<00:00, 2.75it/s, train/loss=21.70]\nEpoch 0: | | 787/? [04:46<00:00, 2.75it/s, train/loss=21.70]\nEpoch 0: | | 787/? [04:46<00:00, 2.75it/s, train/loss=38.40]\nEpoch 0: | | 788/? [04:46<00:00, 2.75it/s, train/loss=38.40]\nEpoch 0: | | 788/? [04:46<00:00, 2.75it/s, train/loss=37.90]\nEpoch 0: | | 789/? [04:46<00:00, 2.75it/s, train/loss=37.90]\nEpoch 0: | | 789/? [04:46<00:00, 2.75it/s, train/loss=36.00]\nEpoch 0: | | 790/? [04:47<00:00, 2.75it/s, train/loss=36.00]\nEpoch 0: | | 790/? [04:47<00:00, 2.75it/s, train/loss=20.20]\nEpoch 0: | | 791/? [04:47<00:00, 2.75it/s, train/loss=20.20]\nEpoch 0: | | 791/? [04:47<00:00, 2.75it/s, train/loss=21.00]\nEpoch 0: | | 792/? [04:47<00:00, 2.75it/s, train/loss=21.00]\nEpoch 0: | | 792/? [04:47<00:00, 2.75it/s, train/loss=18.70]\nEpoch 0: | | 793/? [04:48<00:00, 2.75it/s, train/loss=18.70]\nEpoch 0: | | 793/? [04:48<00:00, 2.75it/s, train/loss=48.10]\nEpoch 0: | | 794/? [04:48<00:00, 2.75it/s, train/loss=48.10]\nEpoch 0: | | 794/? [04:48<00:00, 2.75it/s, train/loss=8.580]\nEpoch 0: | | 795/? [04:48<00:00, 2.75it/s, train/loss=8.580]\nEpoch 0: | | 795/? [04:48<00:00, 2.75it/s, train/loss=20.30]\nEpoch 0: | | 796/? [04:49<00:00, 2.75it/s, train/loss=20.30]\nEpoch 0: | | 796/? [04:49<00:00, 2.75it/s, train/loss=17.20]\nEpoch 0: | | 797/? [04:49<00:00, 2.75it/s, train/loss=17.20]\nEpoch 0: | | 797/? [04:49<00:00, 2.75it/s, train/loss=21.70]\nEpoch 0: | | 798/? [04:49<00:00, 2.75it/s, train/loss=21.70]\nEpoch 0: | | 798/? [04:49<00:00, 2.75it/s, train/loss=30.10]\nEpoch 0: | | 799/? [04:50<00:00, 2.76it/s, train/loss=30.10]\nEpoch 0: | | 799/? [04:50<00:00, 2.76it/s, train/loss=13.00]\nEpoch 0: | | 800/? [04:50<00:00, 2.76it/s, train/loss=13.00]\nEpoch 0: | | 800/? [04:50<00:00, 2.76it/s, train/loss=6.670]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 10.50it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 11.18it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 11.06it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.04it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.05it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.10it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.15it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.26it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.39it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.49it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.50it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.49it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.51it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.50it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.17it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 10.94it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 10.99it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.04it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.08it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.10it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.11it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.16it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 11.18it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.23it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.25it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.27it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.14it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.16it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.20it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.25it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.29it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.33it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.35it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.36it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.38it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.38it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.38it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.34it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.34it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.35it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670]\n`Trainer.fit` stopped: `max_steps=800` reached.\nEpoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670]\nEpoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670]\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\nTesting: | | 0/? [00:00<?, ?it/s]\nTesting: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 1%| | 1/120 [00:00<00:10, 11.05it/s]\nTesting DataLoader 0: 2%|▏ | 2/120 [00:00<00:10, 11.31it/s]\nTesting DataLoader 0: 2%|▎ | 3/120 [00:00<00:10, 11.59it/s]\nTesting DataLoader 0: 3%|▎ | 4/120 [00:00<00:09, 11.62it/s]\nTesting DataLoader 0: 4%|▍ | 5/120 [00:00<00:09, 11.56it/s]\nTesting DataLoader 0: 5%|▌ | 6/120 [00:00<00:09, 11.51it/s]\nTesting DataLoader 0: 6%|▌ | 7/120 [00:00<00:09, 11.41it/s]\nTesting DataLoader 0: 7%|▋ | 8/120 [00:00<00:09, 11.42it/s]\nTesting DataLoader 0: 8%|▊ | 9/120 [00:00<00:09, 11.42it/s]\nTesting DataLoader 0: 8%|▊ | 10/120 [00:00<00:09, 11.45it/s]\nTesting DataLoader 0: 9%|▉ | 11/120 [00:00<00:09, 11.50it/s]\nTesting DataLoader 0: 10%|█ | 12/120 [00:01<00:09, 11.55it/s]\nTesting DataLoader 0: 11%|█ | 13/120 [00:01<00:09, 11.56it/s]\nTesting DataLoader 0: 12%|█▏ | 14/120 [00:01<00:09, 11.60it/s]\nTesting DataLoader 0: 12%|█▎ | 15/120 [00:01<00:09, 11.64it/s]\nTesting DataLoader 0: 13%|█▎ | 16/120 [00:01<00:08, 11.63it/s]\nTesting DataLoader 0: 14%|█▍ | 17/120 [00:01<00:08, 11.67it/s]\nTesting DataLoader 0: 15%|█▌ | 18/120 [00:01<00:08, 11.70it/s]\nTesting DataLoader 0: 16%|█▌ | 19/120 [00:01<00:08, 11.70it/s]\nTesting DataLoader 0: 17%|█▋ | 20/120 [00:01<00:08, 11.67it/s]\nTesting DataLoader 0: 18%|█▊ | 21/120 [00:01<00:08, 11.70it/s]\nTesting DataLoader 0: 18%|█▊ | 22/120 [00:01<00:08, 11.72it/s]\nTesting DataLoader 0: 19%|█▉ | 23/120 [00:01<00:08, 11.51it/s]\nTesting DataLoader 0: 20%|██ | 24/120 [00:02<00:08, 11.34it/s]\nTesting DataLoader 0: 21%|██ | 25/120 [00:02<00:08, 11.19it/s]\nTesting DataLoader 0: 22%|██▏ | 26/120 [00:02<00:08, 11.21it/s]\nTesting DataLoader 0: 22%|██▎ | 27/120 [00:02<00:08, 11.23it/s]\nTesting DataLoader 0: 23%|██▎ | 28/120 [00:02<00:08, 11.23it/s]\nTesting DataLoader 0: 24%|██▍ | 29/120 [00:02<00:08, 11.26it/s]\nTesting DataLoader 0: 25%|██▌ | 30/120 [00:02<00:07, 11.29it/s]\nTesting DataLoader 0: 26%|██▌ | 31/120 [00:02<00:07, 11.30it/s]\nTesting DataLoader 0: 27%|██▋ | 32/120 [00:02<00:07, 11.32it/s]\nTesting DataLoader 0: 28%|██▊ | 33/120 [00:02<00:07, 11.33it/s]\nTesting DataLoader 0: 28%|██▊ | 34/120 [00:02<00:07, 11.36it/s]\nTesting DataLoader 0: 29%|██▉ | 35/120 [00:03<00:07, 11.37it/s]\nTesting DataLoader 0: 30%|███ | 36/120 [00:03<00:07, 11.38it/s]\nTesting DataLoader 0: 31%|███ | 37/120 [00:03<00:07, 11.41it/s]\nTesting DataLoader 0: 32%|███▏ | 38/120 [00:03<00:07, 11.43it/s]\nTesting DataLoader 0: 32%|███▎ | 39/120 [00:03<00:07, 11.45it/s]\nTesting DataLoader 0: 33%|███▎ | 40/120 [00:03<00:06, 11.46it/s]\nTesting DataLoader 0: 34%|███▍ | 41/120 [00:03<00:06, 11.47it/s]\nTesting DataLoader 0: 35%|███▌ | 42/120 [00:03<00:06, 11.49it/s]\nTesting DataLoader 0: 36%|███▌ | 43/120 [00:03<00:06, 11.51it/s]\nTesting DataLoader 0: 37%|███▋ | 44/120 [00:03<00:06, 11.52it/s]\nTesting DataLoader 0: 38%|███▊ | 45/120 [00:03<00:06, 11.50it/s]\nTesting DataLoader 0: 38%|███▊ | 46/120 [00:04<00:06, 11.50it/s]\nTesting DataLoader 0: 39%|███▉ | 47/120 [00:04<00:06, 11.50it/s]\nTesting DataLoader 0: 40%|████ | 48/120 [00:04<00:06, 11.51it/s]\nTesting DataLoader 0: 41%|████ | 49/120 [00:04<00:06, 11.51it/s]\nTesting DataLoader 0: 42%|████▏ | 50/120 [00:04<00:06, 11.51it/s]\nTesting DataLoader 0: 42%|████▎ | 51/120 [00:04<00:05, 11.52it/s]\nTesting DataLoader 0: 43%|████▎ | 52/120 [00:04<00:05, 11.43it/s]\nTesting DataLoader 0: 44%|████▍ | 53/120 [00:04<00:05, 11.40it/s]\nTesting DataLoader 0: 45%|████▌ | 54/120 [00:04<00:05, 11.41it/s]\nTesting DataLoader 0: 46%|████▌ | 55/120 [00:04<00:05, 11.42it/s]\nTesting DataLoader 0: 47%|████▋ | 56/120 [00:04<00:05, 11.44it/s]\nTesting DataLoader 0: 48%|████▊ | 57/120 [00:04<00:05, 11.44it/s]\nTesting DataLoader 0: 48%|████▊ | 58/120 [00:05<00:05, 11.44it/s]\nTesting DataLoader 0: 49%|████▉ | 59/120 [00:05<00:05, 11.44it/s]\nTesting DataLoader 0: 50%|█████ | 60/120 [00:05<00:05, 11.44it/s]\nTesting DataLoader 0: 51%|█████ | 61/120 [00:05<00:05, 11.45it/s]\nTesting DataLoader 0: 52%|█████▏ | 62/120 [00:05<00:05, 11.46it/s]\nTesting DataLoader 0: 52%|█████▎ | 63/120 [00:05<00:04, 11.47it/s]\nTesting DataLoader 0: 53%|█████▎ | 64/120 [00:05<00:04, 11.48it/s]\nTesting DataLoader 0: 54%|█████▍ | 65/120 [00:05<00:04, 11.49it/s]\nTesting DataLoader 0: 55%|█████▌ | 66/120 [00:05<00:04, 11.49it/s]\nTesting DataLoader 0: 56%|█████▌ | 67/120 [00:05<00:04, 11.49it/s]\nTesting DataLoader 0: 57%|█████▋ | 68/120 [00:05<00:04, 11.49it/s]\nTesting DataLoader 0: 57%|█████▊ | 69/120 [00:06<00:04, 11.46it/s]\nTesting DataLoader 0: 58%|█████▊ | 70/120 [00:06<00:04, 11.46it/s]\nTesting DataLoader 0: 59%|█████▉ | 71/120 [00:06<00:04, 11.47it/s]\nTesting DataLoader 0: 60%|██████ | 72/120 [00:06<00:04, 11.47it/s]\nTesting DataLoader 0: 61%|██████ | 73/120 [00:06<00:04, 11.48it/s]\nTesting DataLoader 0: 62%|██████▏ | 74/120 [00:06<00:04, 11.48it/s]\nTesting DataLoader 0: 62%|██████▎ | 75/120 [00:06<00:03, 11.49it/s]\nTesting DataLoader 0: 63%|██████▎ | 76/120 [00:06<00:03, 11.50it/s]\nTesting DataLoader 0: 64%|██████▍ | 77/120 [00:06<00:03, 11.50it/s]\nTesting DataLoader 0: 65%|██████▌ | 78/120 [00:06<00:03, 11.50it/s]\nTesting DataLoader 0: 66%|██████▌ | 79/120 [00:06<00:03, 11.50it/s]\nTesting DataLoader 0: 67%|██████▋ | 80/120 [00:06<00:03, 11.51it/s]\nTesting DataLoader 0: 68%|██████▊ | 81/120 [00:07<00:03, 11.51it/s]\nTesting DataLoader 0: 68%|██████▊ | 82/120 [00:07<00:03, 11.52it/s]\nTesting DataLoader 0: 69%|██████▉ | 83/120 [00:07<00:03, 11.53it/s]\nTesting DataLoader 0: 70%|███████ | 84/120 [00:07<00:03, 11.53it/s]\nTesting DataLoader 0: 71%|███████ | 85/120 [00:07<00:03, 11.54it/s]\nTesting DataLoader 0: 72%|███████▏ | 86/120 [00:07<00:02, 11.54it/s]\nTesting DataLoader 0: 72%|███████▎ | 87/120 [00:07<00:02, 11.54it/s]\nTesting DataLoader 0: 73%|███████▎ | 88/120 [00:07<00:02, 11.55it/s]\nTesting DataLoader 0: 74%|███████▍ | 89/120 [00:07<00:02, 11.56it/s]\nTesting DataLoader 0: 75%|███████▌ | 90/120 [00:07<00:02, 11.56it/s]\nTesting DataLoader 0: 76%|███████▌ | 91/120 [00:07<00:02, 11.57it/s]\nTesting DataLoader 0: 77%|███████▋ | 92/120 [00:07<00:02, 11.58it/s]\nTesting DataLoader 0: 78%|███████▊ | 93/120 [00:08<00:02, 11.59it/s]\nTesting DataLoader 0: 78%|███████▊ | 94/120 [00:08<00:02, 11.60it/s]\nTesting DataLoader 0: 79%|███████▉ | 95/120 [00:08<00:02, 11.61it/s]\nTesting DataLoader 0: 80%|████████ | 96/120 [00:08<00:02, 11.61it/s]\nTesting DataLoader 0: 81%|████████ | 97/120 [00:08<00:01, 11.61it/s]\nTesting DataLoader 0: 82%|████████▏ | 98/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 82%|████████▎ | 99/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 83%|████████▎ | 100/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 84%|████████▍ | 101/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 85%|████████▌ | 102/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 86%|████████▌ | 103/120 [00:08<00:01, 11.61it/s]\nTesting DataLoader 0: 87%|████████▋ | 104/120 [00:08<00:01, 11.62it/s]\nTesting DataLoader 0: 88%|████████▊ | 105/120 [00:09<00:01, 11.62it/s]\nTesting DataLoader 0: 88%|████████▊ | 106/120 [00:09<00:01, 11.61it/s]\nTesting DataLoader 0: 89%|████████▉ | 107/120 [00:09<00:01, 11.61it/s]\nTesting DataLoader 0: 90%|█████████ | 108/120 [00:09<00:01, 11.61it/s]\nTesting DataLoader 0: 91%|█████████ | 109/120 [00:09<00:00, 11.61it/s]\nTesting DataLoader 0: 92%|█████████▏| 110/120 [00:09<00:00, 11.59it/s]\nTesting DataLoader 0: 92%|█████████▎| 111/120 [00:09<00:00, 11.59it/s]\nTesting DataLoader 0: 93%|█████████▎| 112/120 [00:09<00:00, 11.59it/s]\nTesting DataLoader 0: 94%|█████████▍| 113/120 [00:09<00:00, 11.57it/s]\nTesting DataLoader 0: 95%|█████████▌| 114/120 [00:09<00:00, 11.57it/s]\nTesting DataLoader 0: 96%|█████████▌| 115/120 [00:09<00:00, 11.58it/s]\nTesting DataLoader 0: 97%|█████████▋| 116/120 [00:10<00:00, 11.58it/s]\nTesting DataLoader 0: 98%|█████████▊| 117/120 [00:10<00:00, 11.58it/s]\nTesting DataLoader 0: 98%|█████████▊| 118/120 [00:10<00:00, 11.58it/s]\nTesting DataLoader 0: 99%|█████████▉| 119/120 [00:10<00:00, 11.58it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:10<00:00, 11.59it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:18<00:00, 6.56it/s]\nTest results saved to outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/save\nRunning step 4: texture refinement\n{'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800},\n'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}},\n'data_type': 'dreamcraft3d-single-image-datamodule',\n'description': '',\n'exp_dir': 'outputs/dreamcraft3d-texture',\n'exp_root_dir': 'outputs',\n'n_gpus': 1,\n'name': 'dreamcraft3d-texture',\n'resume': None,\n'seed': 0,\n'system': {'stage': 'texture', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True, 'isosurface_remove_outliers': True, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378}, 'fix_geometry': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'dreamcraft3d-mask-nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'stable-diffusion-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'prompt': 'A green leafy plant in a striped terracotta pot', 'front_threshold': 30.0, 'back_threshold': 30.0}, 'guidance_type': 'dreamcraft3d-stable-diffusion-bsd-lora-guidance', 'guidance': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'pretrained_model_name_or_path_lora': 'stabilityai/stable-diffusion-2-1-base', 'guidance_scale': 5.0, 'min_step_percent': 0.05, 'max_step_percent': 0.3, 'only_pretrain_step': 10, 'per_update_pretrain_step': 10}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': -1, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_vsd': 0.1, 'lambda_lora': 0.1, 'lambda_pretrain': 0.1, 'lambda_3d_sds': 0.01, 'lambda_rgb': 1000.0, 'lambda_mask': 0.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_z_variance': 0.0, 'lambda_reg': 0.0}, 'optimizer': {'name': 'AdamW', 'args': {'betas': [0.9, 0.99], 'eps': 0.0001}, 'params': {'geometry.encoding': {'lr': 0.005}, 'geometry.feature_network': {'lr': 0.001}, 'guidance': {'lr': 0.0001}}}, 'geometry_convert_from': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/ckpts/last.ckpt'},\n'system_type': 'dreamcraft3d-system',\n'tag': 'replicate_user',\n'timestamp': '@20240222-135357',\n'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32, 'gradient_clip_val': 1.0},\n'trial_dir': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357',\n'trial_name': 'replicate_user@20240222-135357',\n'use_timestamp': True}\nInitializing geometry from a given checkpoint ...\nLoading Stable Diffusion ...\nLoading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s]\nLoading pipeline components...: 25%|██▌ | 1/4 [00:00<00:01, 1.81it/s]\nLoading pipeline components...: 50%|█████ | 2/4 [00:00<00:00, 3.48it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:03<00:00, 1.11it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:03<00:00, 1.26it/s]\nLoading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s]\nLoading pipeline components...: 25%|██▌ | 1/4 [00:00<00:01, 1.83it/s]\nLoading pipeline components...: 50%|█████ | 2/4 [00:00<00:00, 3.52it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 4.19it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 3.73it/s]\nLoaded Stable Diffusion!\nLoading Stable Zero123 ...\nget obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion\nLatentDiffusion: Running in eps-prediction mode\nDiffusionWrapper has 859.53 M params.\nKeeping EMAs of 688.\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\nLoaded Stable Zero123!\nUsing prompt [A green leafy plant in a striped terracotta pot] and negative prompt []\nUsing view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_5m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_11m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_384 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_512 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected.\nreturn register_model(fn_wrapper)\ntokenizer/tokenizer_config.json: 0%| | 0.00/807 [00:00<?, ?B/s]\ntokenizer/tokenizer_config.json: 100%|██████████| 807/807 [00:00<00:00, 5.66MB/s]\ntokenizer/vocab.json: 0%| | 0.00/1.06M [00:00<?, ?B/s]\ntokenizer/vocab.json: 100%|██████████| 1.06M/1.06M [00:00<00:00, 3.06MB/s]\ntokenizer/vocab.json: 100%|██████████| 1.06M/1.06M [00:00<00:00, 3.06MB/s]\ntokenizer/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s]\ntokenizer/merges.txt: 100%|██████████| 525k/525k [00:00<00:00, 21.7MB/s]\ntokenizer/special_tokens_map.json: 0%| | 0.00/460 [00:00<?, ?B/s]\ntokenizer/special_tokens_map.json: 100%|██████████| 460/460 [00:00<00:00, 2.77MB/s]\nloaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth\nGPU available: True (cuda), used: True\nTPU available: False, using: 0 TPU cores\nIPU available: False, using: 0 IPUs\nHPU available: False, using: 0 HPUs\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n| Name | Type | Params\n----------------------------------------------------------\n0 | geometry | TetrahedraSDFGrid | 12.6 M\n1 | material | NoMaterial | 0\n2 | background | SolidColorBackground | 0\n3 | renderer | NVDiffRasterizer | 0\n4 | guidance | StableDiffusionBSDGuidance | 870 M\n----------------------------------------------------------\n882 M Trainable params\n0 Non-trainable params\n882 M Total params\n3,530.663 Total estimated model params size (MB)\nValidation results will be saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save\nTraining: | | 0/? [00:00<?, ?it/s]\nTraining: | | 0/? [00:00<?, ?it/s]\nEpoch 0: | | 0/? [00:00<?, ?it/s] \nEpoch 0: | | 1/? [00:01<00:00, 0.61it/s]\nEpoch 0: | | 1/? [00:01<00:00, 0.60it/s, train/loss=1.330]\nEpoch 0: | | 2/? [00:01<00:00, 1.03it/s, train/loss=1.330]\nEpoch 0: | | 2/? [00:02<00:00, 1.00it/s, train/loss=1.800]\nEpoch 0: | | 3/? [00:02<00:00, 1.46it/s, train/loss=1.800]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/diffusers/models/attention_processor.py:1746: FutureWarning: `LoRAAttnProcessor` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\nEpoch 0: | | 3/? [00:02<00:00, 1.46it/s, train/loss=20.90]\nEpoch 0: | | 4/? [00:02<00:00, 1.62it/s, train/loss=20.90]\nEpoch 0: | | 4/? [00:02<00:00, 1.62it/s, train/loss=2.410]\nEpoch 0: | | 5/? [00:02<00:00, 1.97it/s, train/loss=2.410]\nEpoch 0: | | 5/? [00:02<00:00, 1.97it/s, train/loss=20.40]\nEpoch 0: | | 6/? [00:02<00:00, 2.06it/s, train/loss=20.40]\nEpoch 0: | | 6/? [00:02<00:00, 2.05it/s, train/loss=3.250]\nEpoch 0: | | 7/? [00:02<00:00, 2.35it/s, train/loss=3.250]\nEpoch 0: | | 7/? [00:02<00:00, 2.35it/s, train/loss=19.90]\nEpoch 0: | | 8/? [00:03<00:00, 2.38it/s, train/loss=19.90]\nEpoch 0: | | 8/? [00:03<00:00, 2.38it/s, train/loss=2.610]\nEpoch 0: | | 9/? [00:03<00:00, 2.63it/s, train/loss=2.610]\nEpoch 0: | | 9/? [00:03<00:00, 2.63it/s, train/loss=19.50]\nEpoch 0: | | 10/? [00:03<00:00, 2.63it/s, train/loss=19.50]\nEpoch 0: | | 10/? [00:03<00:00, 2.63it/s, train/loss=0.927]\nEpoch 0: | | 11/? [00:04<00:00, 2.34it/s, train/loss=0.927]\nEpoch 0: | | 11/? [00:04<00:00, 2.31it/s, train/loss=3.080]\nEpoch 0: | | 12/? [00:05<00:00, 2.38it/s, train/loss=3.080]\nEpoch 0: | | 12/? [00:05<00:00, 2.36it/s, train/loss=3.780]\nEpoch 0: | | 13/? [00:05<00:00, 2.52it/s, train/loss=3.780]\nEpoch 0: | | 13/? [00:05<00:00, 2.52it/s, train/loss=18.80]\nEpoch 0: | | 14/? [00:05<00:00, 2.53it/s, train/loss=18.80]\nEpoch 0: | | 14/? [00:05<00:00, 2.53it/s, train/loss=1.730]\nEpoch 0: | | 15/? [00:05<00:00, 2.68it/s, train/loss=1.730]\nEpoch 0: | | 15/? [00:05<00:00, 2.68it/s, train/loss=18.60]\nEpoch 0: | | 16/? [00:05<00:00, 2.68it/s, train/loss=18.60]\nEpoch 0: | | 16/? [00:05<00:00, 2.68it/s, train/loss=1.910]\nEpoch 0: | | 17/? [00:06<00:00, 2.82it/s, train/loss=1.910]\nEpoch 0: | | 17/? [00:06<00:00, 2.82it/s, train/loss=18.30]\nEpoch 0: | | 18/? [00:06<00:00, 2.80it/s, train/loss=18.30]\nEpoch 0: | | 18/? [00:06<00:00, 2.80it/s, train/loss=0.785]\nEpoch 0: | | 19/? [00:06<00:00, 2.93it/s, train/loss=0.785]\nEpoch 0: | | 19/? [00:06<00:00, 2.93it/s, train/loss=18.00]\nEpoch 0: | | 20/? [00:06<00:00, 2.91it/s, train/loss=18.00]\nEpoch 0: | | 20/? [00:06<00:00, 2.91it/s, train/loss=1.770]\nEpoch 0: | | 21/? [00:07<00:00, 2.71it/s, train/loss=1.770]\nEpoch 0: | | 21/? [00:07<00:00, 2.69it/s, train/loss=1.730]\nEpoch 0: | | 22/? [00:08<00:00, 2.72it/s, train/loss=1.730]\nEpoch 0: | | 22/? [00:08<00:00, 2.70it/s, train/loss=3.860]\nEpoch 0: | | 23/? [00:08<00:00, 2.80it/s, train/loss=3.860]\nEpoch 0: | | 23/? [00:08<00:00, 2.80it/s, train/loss=17.50]\nEpoch 0: | | 24/? [00:08<00:00, 2.79it/s, train/loss=17.50]\nEpoch 0: | | 24/? [00:08<00:00, 2.79it/s, train/loss=2.070]\nEpoch 0: | | 25/? [00:08<00:00, 2.89it/s, train/loss=2.070]\nEpoch 0: | | 25/? [00:08<00:00, 2.89it/s, train/loss=17.30]\nEpoch 0: | | 26/? [00:09<00:00, 2.88it/s, train/loss=17.30]\nEpoch 0: | | 26/? [00:09<00:00, 2.88it/s, train/loss=1.730]\nEpoch 0: | | 27/? [00:09<00:00, 2.97it/s, train/loss=1.730]\nEpoch 0: | | 27/? [00:09<00:00, 2.97it/s, train/loss=17.00]\nEpoch 0: | | 28/? [00:09<00:00, 2.96it/s, train/loss=17.00]\nEpoch 0: | | 28/? [00:09<00:00, 2.96it/s, train/loss=2.510]\nEpoch 0: | | 29/? [00:09<00:00, 3.05it/s, train/loss=2.510]\nEpoch 0: | | 29/? [00:09<00:00, 3.05it/s, train/loss=16.80]\nEpoch 0: | | 30/? [00:09<00:00, 3.03it/s, train/loss=16.80]\nEpoch 0: | | 30/? [00:09<00:00, 3.03it/s, train/loss=3.290]\nEpoch 0: | | 31/? [00:10<00:00, 2.87it/s, train/loss=3.290]\nEpoch 0: | | 31/? [00:10<00:00, 2.86it/s, train/loss=2.080]\nEpoch 0: | | 32/? [00:11<00:00, 2.88it/s, train/loss=2.080]\nEpoch 0: | | 32/? [00:11<00:00, 2.86it/s, train/loss=0.979]\nEpoch 0: | | 33/? [00:11<00:00, 2.94it/s, train/loss=0.979]\nEpoch 0: | | 33/? [00:11<00:00, 2.94it/s, train/loss=16.30]\nEpoch 0: | | 34/? [00:11<00:00, 2.93it/s, train/loss=16.30]\nEpoch 0: | | 34/? [00:11<00:00, 2.93it/s, train/loss=1.400]\nEpoch 0: | | 35/? [00:11<00:00, 3.00it/s, train/loss=1.400]\nEpoch 0: | | 35/? [00:11<00:00, 3.00it/s, train/loss=16.10]\nEpoch 0: | | 36/? [00:12<00:00, 2.99it/s, train/loss=16.10]\nEpoch 0: | | 36/? [00:12<00:00, 2.99it/s, train/loss=2.130]\nEpoch 0: | | 37/? [00:12<00:00, 3.06it/s, train/loss=2.130]\nEpoch 0: | | 37/? [00:12<00:00, 3.05it/s, train/loss=15.80]\nEpoch 0: | | 38/? [00:12<00:00, 3.04it/s, train/loss=15.80]\nEpoch 0: | | 38/? [00:12<00:00, 3.04it/s, train/loss=2.690]\nEpoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=2.690]\nEpoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=15.60]\nEpoch 0: | | 40/? [00:12<00:00, 3.09it/s, train/loss=15.60]\nEpoch 0: | | 40/? [00:12<00:00, 3.09it/s, train/loss=0.976]\nEpoch 0: | | 41/? [00:13<00:00, 2.97it/s, train/loss=0.976]\nEpoch 0: | | 41/? [00:13<00:00, 2.95it/s, train/loss=1.850]\nEpoch 0: | | 42/? [00:14<00:00, 2.97it/s, train/loss=1.850]\nEpoch 0: | | 42/? [00:14<00:00, 2.95it/s, train/loss=0.784]\nEpoch 0: | | 43/? [00:14<00:00, 3.01it/s, train/loss=0.784]\nEpoch 0: | | 43/? [00:14<00:00, 3.01it/s, train/loss=15.20]\nEpoch 0: | | 44/? [00:14<00:00, 3.00it/s, train/loss=15.20]\nEpoch 0: | | 44/? [00:14<00:00, 3.00it/s, train/loss=1.540]\nEpoch 0: | | 45/? [00:14<00:00, 3.06it/s, train/loss=1.540]\nEpoch 0: | | 45/? [00:14<00:00, 3.06it/s, train/loss=15.00]\nEpoch 0: | | 46/? [00:15<00:00, 3.04it/s, train/loss=15.00]\nEpoch 0: | | 46/? [00:15<00:00, 3.04it/s, train/loss=1.380]\nEpoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=1.380]\nEpoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=14.80]\nEpoch 0: | | 48/? [00:15<00:00, 3.09it/s, train/loss=14.80]\nEpoch 0: | | 48/? [00:15<00:00, 3.09it/s, train/loss=2.230]\nEpoch 0: | | 49/? [00:15<00:00, 3.14it/s, train/loss=2.230]\nEpoch 0: | | 49/? [00:15<00:00, 3.14it/s, train/loss=14.50]\nEpoch 0: | | 50/? [00:15<00:00, 3.13it/s, train/loss=14.50]\nEpoch 0: | | 50/? [00:15<00:00, 3.13it/s, train/loss=3.040]\nEpoch 0: | | 51/? [00:16<00:00, 3.02it/s, train/loss=3.040]\nEpoch 0: | | 51/? [00:16<00:00, 3.01it/s, train/loss=0.739]\nEpoch 0: | | 52/? [00:17<00:00, 3.02it/s, train/loss=0.739]\nEpoch 0: | | 52/? [00:17<00:00, 3.01it/s, train/loss=3.670]\nEpoch 0: | | 53/? [00:17<00:00, 3.06it/s, train/loss=3.670]\nEpoch 0: | | 53/? [00:17<00:00, 3.06it/s, train/loss=14.20]\nEpoch 0: | | 54/? [00:17<00:00, 3.05it/s, train/loss=14.20]\nEpoch 0: | | 54/? [00:17<00:00, 3.05it/s, train/loss=1.620]\nEpoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=1.620]\nEpoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=14.00]\nEpoch 0: | | 56/? [00:18<00:00, 3.08it/s, train/loss=14.00]\nEpoch 0: | | 56/? [00:18<00:00, 3.08it/s, train/loss=2.510]\nEpoch 0: | | 57/? [00:18<00:00, 3.13it/s, train/loss=2.510]\nEpoch 0: | | 57/? [00:18<00:00, 3.13it/s, train/loss=13.80]\nEpoch 0: | | 58/? [00:18<00:00, 3.12it/s, train/loss=13.80]\nEpoch 0: | | 58/? [00:18<00:00, 3.12it/s, train/loss=3.540]\nEpoch 0: | | 59/? [00:18<00:00, 3.16it/s, train/loss=3.540]\nEpoch 0: | | 59/? [00:18<00:00, 3.16it/s, train/loss=13.60]\nEpoch 0: | | 60/? [00:19<00:00, 3.15it/s, train/loss=13.60]\nEpoch 0: | | 60/? [00:19<00:00, 3.15it/s, train/loss=3.700]\nEpoch 0: | | 61/? [00:19<00:00, 3.06it/s, train/loss=3.700]\nEpoch 0: | | 61/? [00:19<00:00, 3.05it/s, train/loss=0.619]\nEpoch 0: | | 62/? [00:20<00:00, 3.06it/s, train/loss=0.619]\nEpoch 0: | | 62/? [00:20<00:00, 3.05it/s, train/loss=2.010]\nEpoch 0: | | 63/? [00:20<00:00, 3.09it/s, train/loss=2.010]\nEpoch 0: | | 63/? [00:20<00:00, 3.09it/s, train/loss=13.30]\nEpoch 0: | | 64/? [00:20<00:00, 3.08it/s, train/loss=13.30]\nEpoch 0: | | 64/? [00:20<00:00, 3.08it/s, train/loss=1.010]\nEpoch 0: | | 65/? [00:20<00:00, 3.12it/s, train/loss=1.010]\nEpoch 0: | | 65/? [00:20<00:00, 3.12it/s, train/loss=13.10]\nEpoch 0: | | 66/? [00:21<00:00, 3.11it/s, train/loss=13.10]\nEpoch 0: | | 66/? [00:21<00:00, 3.11it/s, train/loss=3.870]\nEpoch 0: | | 67/? [00:21<00:00, 3.15it/s, train/loss=3.870]\nEpoch 0: | | 67/? [00:21<00:00, 3.15it/s, train/loss=12.90]\nEpoch 0: | | 68/? [00:21<00:00, 3.14it/s, train/loss=12.90]\nEpoch 0: | | 68/? [00:21<00:00, 3.14it/s, train/loss=2.660]\nEpoch 0: | | 69/? [00:21<00:00, 3.17it/s, train/loss=2.660]\nEpoch 0: | | 69/? [00:21<00:00, 3.17it/s, train/loss=12.70]\nEpoch 0: | | 70/? [00:22<00:00, 3.16it/s, train/loss=12.70]\nEpoch 0: | | 70/? [00:22<00:00, 3.16it/s, train/loss=3.440]\nEpoch 0: | | 71/? [00:23<00:00, 3.09it/s, train/loss=3.440]\nEpoch 0: | | 71/? [00:23<00:00, 3.08it/s, train/loss=0.751]\nEpoch 0: | | 72/? [00:23<00:00, 3.09it/s, train/loss=0.751]\nEpoch 0: | | 72/? [00:23<00:00, 3.08it/s, train/loss=2.930]\nEpoch 0: | | 73/? [00:23<00:00, 3.11it/s, train/loss=2.930]\nEpoch 0: | | 73/? [00:23<00:00, 3.11it/s, train/loss=12.40]\nEpoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=12.40]\nEpoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=2.180]\nEpoch 0: | | 75/? [00:23<00:00, 3.14it/s, train/loss=2.180]\nEpoch 0: | | 75/? [00:23<00:00, 3.14it/s, train/loss=12.20]\nEpoch 0: | | 76/? [00:24<00:00, 3.13it/s, train/loss=12.20]\nEpoch 0: | | 76/? [00:24<00:00, 3.13it/s, train/loss=2.370]\nEpoch 0: | | 77/? [00:24<00:00, 3.17it/s, train/loss=2.370]\nEpoch 0: | | 77/? [00:24<00:00, 3.17it/s, train/loss=12.00]\nEpoch 0: | | 78/? [00:24<00:00, 3.16it/s, train/loss=12.00]\nEpoch 0: | | 78/? [00:24<00:00, 3.16it/s, train/loss=2.250]\nEpoch 0: | | 79/? [00:24<00:00, 3.19it/s, train/loss=2.250]\nEpoch 0: | | 79/? [00:24<00:00, 3.19it/s, train/loss=11.80]\nEpoch 0: | | 80/? [00:25<00:00, 3.18it/s, train/loss=11.80]\nEpoch 0: | | 80/? [00:25<00:00, 3.18it/s, train/loss=2.530]\nEpoch 0: | | 81/? [00:26<00:00, 3.11it/s, train/loss=2.530]\nEpoch 0: | | 81/? [00:26<00:00, 3.10it/s, train/loss=2.030]\nEpoch 0: | | 82/? [00:26<00:00, 3.11it/s, train/loss=2.030]\nEpoch 0: | | 82/? [00:26<00:00, 3.10it/s, train/loss=0.990]\nEpoch 0: | | 83/? [00:26<00:00, 3.14it/s, train/loss=0.990]\nEpoch 0: | | 83/? [00:26<00:00, 3.13it/s, train/loss=11.50]\nEpoch 0: | | 84/? [00:26<00:00, 3.13it/s, train/loss=11.50]\nEpoch 0: | | 84/? [00:26<00:00, 3.13it/s, train/loss=2.540]\nEpoch 0: | | 85/? [00:26<00:00, 3.16it/s, train/loss=2.540]\nEpoch 0: | | 85/? [00:26<00:00, 3.16it/s, train/loss=11.40]\nEpoch 0: | | 86/? [00:27<00:00, 3.15it/s, train/loss=11.40]\nEpoch 0: | | 86/? [00:27<00:00, 3.15it/s, train/loss=2.830]\nEpoch 0: | | 87/? [00:27<00:00, 3.18it/s, train/loss=2.830]\nEpoch 0: | | 87/? [00:27<00:00, 3.18it/s, train/loss=11.20]\nEpoch 0: | | 88/? [00:27<00:00, 3.17it/s, train/loss=11.20]\nEpoch 0: | | 88/? [00:27<00:00, 3.17it/s, train/loss=1.430]\nEpoch 0: | | 89/? [00:27<00:00, 3.20it/s, train/loss=1.430]\nEpoch 0: | | 89/? [00:27<00:00, 3.20it/s, train/loss=11.10]\nEpoch 0: | | 90/? [00:28<00:00, 3.19it/s, train/loss=11.10]\nEpoch 0: | | 90/? [00:28<00:00, 3.19it/s, train/loss=1.880]\nEpoch 0: | | 91/? [00:29<00:00, 3.13it/s, train/loss=1.880]\nEpoch 0: | | 91/? [00:29<00:00, 3.12it/s, train/loss=1.450]\nEpoch 0: | | 92/? [00:29<00:00, 3.13it/s, train/loss=1.450]\nEpoch 0: | | 92/? [00:29<00:00, 3.12it/s, train/loss=1.310]\nEpoch 0: | | 93/? [00:29<00:00, 3.15it/s, train/loss=1.310]\nEpoch 0: | | 93/? [00:29<00:00, 3.15it/s, train/loss=10.80]\nEpoch 0: | | 94/? [00:29<00:00, 3.14it/s, train/loss=10.80]\nEpoch 0: | | 94/? [00:29<00:00, 3.14it/s, train/loss=0.665]\nEpoch 0: | | 95/? [00:29<00:00, 3.17it/s, train/loss=0.665]\nEpoch 0: | | 95/? [00:29<00:00, 3.17it/s, train/loss=10.70]\nEpoch 0: | | 96/? [00:30<00:00, 3.16it/s, train/loss=10.70]\nEpoch 0: | | 96/? [00:30<00:00, 3.16it/s, train/loss=2.050]\nEpoch 0: | | 97/? [00:30<00:00, 3.19it/s, train/loss=2.050]\nEpoch 0: | | 97/? [00:30<00:00, 3.19it/s, train/loss=10.50]\nEpoch 0: | | 98/? [00:30<00:00, 3.18it/s, train/loss=10.50]\nEpoch 0: | | 98/? [00:30<00:00, 3.18it/s, train/loss=2.290]\nEpoch 0: | | 99/? [00:30<00:00, 3.21it/s, train/loss=2.290]\nEpoch 0: | | 99/? [00:30<00:00, 3.21it/s, train/loss=10.40]\nEpoch 0: | | 100/? [00:31<00:00, 3.20it/s, train/loss=10.40]\nEpoch 0: | | 100/? [00:31<00:00, 3.20it/s, train/loss=1.910]\nEpoch 0: | | 101/? [00:32<00:00, 3.15it/s, train/loss=1.910]\nEpoch 0: | | 101/? [00:32<00:00, 3.14it/s, train/loss=1.090]\nEpoch 0: | | 102/? [00:32<00:00, 3.15it/s, train/loss=1.090]\nEpoch 0: | | 102/? [00:32<00:00, 3.14it/s, train/loss=2.970]\nEpoch 0: | | 103/? [00:32<00:00, 3.17it/s, train/loss=2.970]\nEpoch 0: | | 103/? [00:32<00:00, 3.17it/s, train/loss=10.10]\nEpoch 0: | | 104/? [00:32<00:00, 3.16it/s, train/loss=10.10]\nEpoch 0: | | 104/? [00:32<00:00, 3.16it/s, train/loss=2.400]\nEpoch 0: | | 105/? [00:32<00:00, 3.18it/s, train/loss=2.400]\nEpoch 0: | | 105/? [00:32<00:00, 3.18it/s, train/loss=10.00]\nEpoch 0: | | 106/? [00:33<00:00, 3.18it/s, train/loss=10.00]\nEpoch 0: | | 106/? [00:33<00:00, 3.18it/s, train/loss=2.730]\nEpoch 0: | | 107/? [00:33<00:00, 3.20it/s, train/loss=2.730]\nEpoch 0: | | 107/? [00:33<00:00, 3.20it/s, train/loss=9.900]\nEpoch 0: | | 108/? [00:33<00:00, 3.20it/s, train/loss=9.900]\nEpoch 0: | | 108/? [00:33<00:00, 3.20it/s, train/loss=2.430]\nEpoch 0: | | 109/? [00:33<00:00, 3.22it/s, train/loss=2.430]\nEpoch 0: | | 109/? [00:33<00:00, 3.22it/s, train/loss=9.770]\nEpoch 0: | | 110/? [00:34<00:00, 3.21it/s, train/loss=9.770]\nEpoch 0: | | 110/? [00:34<00:00, 3.21it/s, train/loss=1.070]\nEpoch 0: | | 111/? [00:35<00:00, 3.16it/s, train/loss=1.070]\nEpoch 0: | | 111/? [00:35<00:00, 3.15it/s, train/loss=2.210]\nEpoch 0: | | 112/? [00:35<00:00, 3.16it/s, train/loss=2.210]\nEpoch 0: | | 112/? [00:35<00:00, 3.15it/s, train/loss=0.631]\nEpoch 0: | | 113/? [00:35<00:00, 3.18it/s, train/loss=0.631]\nEpoch 0: | | 113/? [00:35<00:00, 3.18it/s, train/loss=9.550]\nEpoch 0: | | 114/? [00:35<00:00, 3.17it/s, train/loss=9.550]\nEpoch 0: | | 114/? [00:35<00:00, 3.17it/s, train/loss=1.270]\nEpoch 0: | | 115/? [00:36<00:00, 3.19it/s, train/loss=1.270]\nEpoch 0: | | 115/? [00:36<00:00, 3.19it/s, train/loss=9.450]\nEpoch 0: | | 116/? [00:36<00:00, 3.19it/s, train/loss=9.450]\nEpoch 0: | | 116/? [00:36<00:00, 3.19it/s, train/loss=1.790]\nEpoch 0: | | 117/? [00:36<00:00, 3.21it/s, train/loss=1.790]\nEpoch 0: | | 117/? [00:36<00:00, 3.21it/s, train/loss=9.340]\nEpoch 0: | | 118/? [00:36<00:00, 3.20it/s, train/loss=9.340]\nEpoch 0: | | 118/? [00:36<00:00, 3.20it/s, train/loss=2.310]\nEpoch 0: | | 119/? [00:36<00:00, 3.23it/s, train/loss=2.310]\nEpoch 0: | | 119/? [00:36<00:00, 3.23it/s, train/loss=9.220]\nEpoch 0: | | 120/? [00:37<00:00, 3.22it/s, train/loss=9.220]\nEpoch 0: | | 120/? [00:37<00:00, 3.22it/s, train/loss=2.210]\nEpoch 0: | | 121/? [00:38<00:00, 3.17it/s, train/loss=2.210]\nEpoch 0: | | 121/? [00:38<00:00, 3.17it/s, train/loss=6.350]\nEpoch 0: | | 122/? [00:38<00:00, 3.17it/s, train/loss=6.350]\nEpoch 0: | | 122/? [00:38<00:00, 3.16it/s, train/loss=2.140]\nEpoch 0: | | 123/? [00:38<00:00, 3.19it/s, train/loss=2.140]\nEpoch 0: | | 123/? [00:38<00:00, 3.19it/s, train/loss=9.020]\nEpoch 0: | | 124/? [00:38<00:00, 3.18it/s, train/loss=9.020]\nEpoch 0: | | 124/? [00:38<00:00, 3.18it/s, train/loss=2.490]\nEpoch 0: | | 125/? [00:39<00:00, 3.20it/s, train/loss=2.490]\nEpoch 0: | | 125/? [00:39<00:00, 3.20it/s, train/loss=8.930]\nEpoch 0: | | 126/? [00:39<00:00, 3.20it/s, train/loss=8.930]\nEpoch 0: | | 126/? [00:39<00:00, 3.20it/s, train/loss=0.836]\nEpoch 0: | | 127/? [00:39<00:00, 3.22it/s, train/loss=0.836]\nEpoch 0: | | 127/? [00:39<00:00, 3.22it/s, train/loss=8.830]\nEpoch 0: | | 128/? [00:39<00:00, 3.21it/s, train/loss=8.830]\nEpoch 0: | | 128/? [00:39<00:00, 3.21it/s, train/loss=1.060]\nEpoch 0: | | 129/? [00:39<00:00, 3.23it/s, train/loss=1.060]\nEpoch 0: | | 129/? [00:39<00:00, 3.23it/s, train/loss=8.730]\nEpoch 0: | | 130/? [00:40<00:00, 3.23it/s, train/loss=8.730]\nEpoch 0: | | 130/? [00:40<00:00, 3.23it/s, train/loss=2.120]\nEpoch 0: | | 131/? [00:41<00:00, 3.18it/s, train/loss=2.120]\nEpoch 0: | | 131/? [00:41<00:00, 3.18it/s, train/loss=4.420]\nEpoch 0: | | 132/? [00:41<00:00, 3.18it/s, train/loss=4.420]\nEpoch 0: | | 132/? [00:41<00:00, 3.17it/s, train/loss=2.920]\nEpoch 0: | | 133/? [00:41<00:00, 3.19it/s, train/loss=2.920]\nEpoch 0: | | 133/? [00:41<00:00, 3.19it/s, train/loss=8.560]\nEpoch 0: | | 134/? [00:42<00:00, 3.19it/s, train/loss=8.560]\nEpoch 0: | | 134/? [00:42<00:00, 3.19it/s, train/loss=1.740]\nEpoch 0: | | 135/? [00:42<00:00, 3.21it/s, train/loss=1.740]\nEpoch 0: | | 135/? [00:42<00:00, 3.21it/s, train/loss=8.480]\nEpoch 0: | | 136/? [00:42<00:00, 3.20it/s, train/loss=8.480]\nEpoch 0: | | 136/? [00:42<00:00, 3.20it/s, train/loss=5.630]\nEpoch 0: | | 137/? [00:42<00:00, 3.22it/s, train/loss=5.630]\nEpoch 0: | | 137/? [00:42<00:00, 3.22it/s, train/loss=8.390]\nEpoch 0: | | 138/? [00:42<00:00, 3.22it/s, train/loss=8.390]\nEpoch 0: | | 138/? [00:42<00:00, 3.22it/s, train/loss=2.640]\nEpoch 0: | | 139/? [00:42<00:00, 3.24it/s, train/loss=2.640]\nEpoch 0: | | 139/? [00:42<00:00, 3.24it/s, train/loss=8.310]\nEpoch 0: | | 140/? [00:43<00:00, 3.23it/s, train/loss=8.310]\nEpoch 0: | | 140/? [00:43<00:00, 3.23it/s, train/loss=1.650]\nEpoch 0: | | 141/? [00:44<00:00, 3.19it/s, train/loss=1.650]\nEpoch 0: | | 141/? [00:44<00:00, 3.18it/s, train/loss=1.890]\nEpoch 0: | | 142/? [00:44<00:00, 3.19it/s, train/loss=1.890]\nEpoch 0: | | 142/? [00:44<00:00, 3.18it/s, train/loss=1.700]\nEpoch 0: | | 143/? [00:44<00:00, 3.20it/s, train/loss=1.700]\nEpoch 0: | | 143/? [00:44<00:00, 3.20it/s, train/loss=8.180]\nEpoch 0: | | 144/? [00:45<00:00, 3.20it/s, train/loss=8.180]\nEpoch 0: | | 144/? [00:45<00:00, 3.20it/s, train/loss=2.450]\nEpoch 0: | | 145/? [00:45<00:00, 3.21it/s, train/loss=2.450]\nEpoch 0: | | 145/? [00:45<00:00, 3.21it/s, train/loss=8.110]\nEpoch 0: | | 146/? [00:45<00:00, 3.21it/s, train/loss=8.110]\nEpoch 0: | | 146/? [00:45<00:00, 3.21it/s, train/loss=1.610]\nEpoch 0: | | 147/? [00:45<00:00, 3.22it/s, train/loss=1.610]\nEpoch 0: | | 147/? [00:45<00:00, 3.22it/s, train/loss=8.040]\nEpoch 0: | | 148/? [00:45<00:00, 3.22it/s, train/loss=8.040]\nEpoch 0: | | 148/? [00:45<00:00, 3.22it/s, train/loss=2.790]\nEpoch 0: | | 149/? [00:46<00:00, 3.24it/s, train/loss=2.790]\nEpoch 0: | | 149/? [00:46<00:00, 3.23it/s, train/loss=7.960]\nEpoch 0: | | 150/? [00:46<00:00, 3.23it/s, train/loss=7.960]\nEpoch 0: | | 150/? [00:46<00:00, 3.23it/s, train/loss=2.020]\nEpoch 0: | | 151/? [00:47<00:00, 3.19it/s, train/loss=2.020]\nEpoch 0: | | 151/? [00:47<00:00, 3.19it/s, train/loss=1.330]\nEpoch 0: | | 152/? [00:47<00:00, 3.18it/s, train/loss=1.330]\nEpoch 0: | | 152/? [00:47<00:00, 3.18it/s, train/loss=2.790]\nEpoch 0: | | 153/? [00:47<00:00, 3.20it/s, train/loss=2.790]\nEpoch 0: | | 153/? [00:47<00:00, 3.20it/s, train/loss=7.830]\nEpoch 0: | | 154/? [00:48<00:00, 3.19it/s, train/loss=7.830]\nEpoch 0: | | 154/? [00:48<00:00, 3.19it/s, train/loss=3.220]\nEpoch 0: | | 155/? [00:48<00:00, 3.21it/s, train/loss=3.220]\nEpoch 0: | | 155/? [00:48<00:00, 3.21it/s, train/loss=7.760]\nEpoch 0: | | 156/? [00:48<00:00, 3.20it/s, train/loss=7.760]\nEpoch 0: | | 156/? [00:48<00:00, 3.20it/s, train/loss=2.120]\nEpoch 0: | | 157/? [00:48<00:00, 3.22it/s, train/loss=2.120]\nEpoch 0: | | 157/? [00:48<00:00, 3.22it/s, train/loss=7.700]\nEpoch 0: | | 158/? [00:49<00:00, 3.20it/s, train/loss=7.700]\nEpoch 0: | | 158/? [00:49<00:00, 3.20it/s, train/loss=1.940]\nEpoch 0: | | 159/? [00:49<00:00, 3.21it/s, train/loss=1.940]\nEpoch 0: | | 159/? [00:49<00:00, 3.21it/s, train/loss=7.640]\nEpoch 0: | | 160/? [00:49<00:00, 3.20it/s, train/loss=7.640]\nEpoch 0: | | 160/? [00:49<00:00, 3.20it/s, train/loss=1.960]\nEpoch 0: | | 161/? [00:51<00:00, 3.15it/s, train/loss=1.960]\nEpoch 0: | | 161/? [00:51<00:00, 3.15it/s, train/loss=0.607]\nEpoch 0: | | 162/? [00:51<00:00, 3.14it/s, train/loss=0.607]\nEpoch 0: | | 162/? [00:51<00:00, 3.14it/s, train/loss=0.631]\nEpoch 0: | | 163/? [00:51<00:00, 3.15it/s, train/loss=0.631]\nEpoch 0: | | 163/? [00:51<00:00, 3.15it/s, train/loss=7.540]\nEpoch 0: | | 164/? [00:52<00:00, 3.14it/s, train/loss=7.540]\nEpoch 0: | | 164/? [00:52<00:00, 3.14it/s, train/loss=2.620]\nEpoch 0: | | 165/? [00:52<00:00, 3.15it/s, train/loss=2.620]\nEpoch 0: | | 165/? [00:52<00:00, 3.15it/s, train/loss=7.500]\nEpoch 0: | | 166/? [00:52<00:00, 3.15it/s, train/loss=7.500]\nEpoch 0: | | 166/? [00:52<00:00, 3.15it/s, train/loss=2.730]\nEpoch 0: | | 167/? [00:52<00:00, 3.16it/s, train/loss=2.730]\nEpoch 0: | | 167/? [00:52<00:00, 3.16it/s, train/loss=7.450]\nEpoch 0: | | 168/? [00:53<00:00, 3.16it/s, train/loss=7.450]\nEpoch 0: | | 168/? [00:53<00:00, 3.16it/s, train/loss=1.880]\nEpoch 0: | | 169/? [00:53<00:00, 3.17it/s, train/loss=1.880]\nEpoch 0: | | 169/? [00:53<00:00, 3.17it/s, train/loss=7.390]\nEpoch 0: | | 170/? [00:53<00:00, 3.17it/s, train/loss=7.390]\nEpoch 0: | | 170/? [00:53<00:00, 3.17it/s, train/loss=1.330]\nEpoch 0: | | 171/? [00:54<00:00, 3.13it/s, train/loss=1.330]\nEpoch 0: | | 171/? [00:54<00:00, 3.13it/s, train/loss=1.980]\nEpoch 0: | | 172/? [00:54<00:00, 3.13it/s, train/loss=1.980]\nEpoch 0: | | 172/? [00:54<00:00, 3.13it/s, train/loss=0.843]\nEpoch 0: | | 173/? [00:55<00:00, 3.14it/s, train/loss=0.843]\nEpoch 0: | | 173/? [00:55<00:00, 3.14it/s, train/loss=7.300]\nEpoch 0: | | 174/? [00:55<00:00, 3.14it/s, train/loss=7.300]\nEpoch 0: | | 174/? [00:55<00:00, 3.14it/s, train/loss=3.970]\nEpoch 0: | | 175/? [00:55<00:00, 3.15it/s, train/loss=3.970]\nEpoch 0: | | 175/? [00:55<00:00, 3.15it/s, train/loss=7.240]\nEpoch 0: | | 176/? [00:55<00:00, 3.15it/s, train/loss=7.240]\nEpoch 0: | | 176/? [00:55<00:00, 3.15it/s, train/loss=1.490]\nEpoch 0: | | 177/? [00:55<00:00, 3.16it/s, train/loss=1.490]\nEpoch 0: | | 177/? [00:55<00:00, 3.16it/s, train/loss=7.180]\nEpoch 0: | | 178/? [00:56<00:00, 3.16it/s, train/loss=7.180]\nEpoch 0: | | 178/? [00:56<00:00, 3.16it/s, train/loss=2.410]\nEpoch 0: | | 179/? [00:56<00:00, 3.18it/s, train/loss=2.410]\nEpoch 0: | | 179/? [00:56<00:00, 3.18it/s, train/loss=7.130]\nEpoch 0: | | 180/? [00:56<00:00, 3.17it/s, train/loss=7.130]\nEpoch 0: | | 180/? [00:56<00:00, 3.17it/s, train/loss=4.450]\nEpoch 0: | | 181/? [00:57<00:00, 3.14it/s, train/loss=4.450]\nEpoch 0: | | 181/? [00:57<00:00, 3.13it/s, train/loss=2.640]\nEpoch 0: | | 182/? [00:58<00:00, 3.13it/s, train/loss=2.640]\nEpoch 0: | | 182/? [00:58<00:00, 3.12it/s, train/loss=1.290]\nEpoch 0: | | 183/? [00:58<00:00, 3.13it/s, train/loss=1.290]\nEpoch 0: | | 183/? [00:58<00:00, 3.13it/s, train/loss=7.040]\nEpoch 0: | | 184/? [00:58<00:00, 3.12it/s, train/loss=7.040]\nEpoch 0: | | 184/? [00:58<00:00, 3.12it/s, train/loss=1.280]\nEpoch 0: | | 185/? [00:58<00:00, 3.14it/s, train/loss=1.280]\nEpoch 0: | | 185/? [00:58<00:00, 3.14it/s, train/loss=6.990]\nEpoch 0: | | 186/? [00:59<00:00, 3.14it/s, train/loss=6.990]\nEpoch 0: | | 186/? [00:59<00:00, 3.14it/s, train/loss=1.760]\nEpoch 0: | | 187/? [00:59<00:00, 3.15it/s, train/loss=1.760]\nEpoch 0: | | 187/? [00:59<00:00, 3.15it/s, train/loss=6.940]\nEpoch 0: | | 188/? [00:59<00:00, 3.15it/s, train/loss=6.940]\nEpoch 0: | | 188/? [00:59<00:00, 3.15it/s, train/loss=1.270]\nEpoch 0: | | 189/? [00:59<00:00, 3.16it/s, train/loss=1.270]\nEpoch 0: | | 189/? [00:59<00:00, 3.16it/s, train/loss=6.890]\nEpoch 0: | | 190/? [01:00<00:00, 3.16it/s, train/loss=6.890]\nEpoch 0: | | 190/? [01:00<00:00, 3.16it/s, train/loss=0.835]\nEpoch 0: | | 191/? [01:01<00:00, 3.12it/s, train/loss=0.835]\nEpoch 0: | | 191/? [01:01<00:00, 3.12it/s, train/loss=1.100]\nEpoch 0: | | 192/? [01:01<00:00, 3.12it/s, train/loss=1.100]\nEpoch 0: | | 192/? [01:01<00:00, 3.12it/s, train/loss=1.180]\nEpoch 0: | | 193/? [01:01<00:00, 3.13it/s, train/loss=1.180]\nEpoch 0: | | 193/? [01:01<00:00, 3.13it/s, train/loss=6.810]\nEpoch 0: | | 194/? [01:01<00:00, 3.13it/s, train/loss=6.810]\nEpoch 0: | | 194/? [01:01<00:00, 3.13it/s, train/loss=3.430]\nEpoch 0: | | 195/? [01:02<00:00, 3.14it/s, train/loss=3.430]\nEpoch 0: | | 195/? [01:02<00:00, 3.14it/s, train/loss=6.770]\nEpoch 0: | | 196/? [01:02<00:00, 3.14it/s, train/loss=6.770]\nEpoch 0: | | 196/? [01:02<00:00, 3.14it/s, train/loss=2.480]\nEpoch 0: | | 197/? [01:02<00:00, 3.15it/s, train/loss=2.480]\nEpoch 0: | | 197/? [01:02<00:00, 3.15it/s, train/loss=6.720]\nEpoch 0: | | 198/? [01:02<00:00, 3.15it/s, train/loss=6.720]\nEpoch 0: | | 198/? [01:02<00:00, 3.15it/s, train/loss=1.160]\nEpoch 0: | | 199/? [01:02<00:00, 3.16it/s, train/loss=1.160]\nEpoch 0: | | 199/? [01:02<00:00, 3.16it/s, train/loss=6.670]\nEpoch 0: | | 200/? [01:03<00:00, 3.16it/s, train/loss=6.670]\nEpoch 0: | | 200/? [01:03<00:00, 3.16it/s, train/loss=2.950]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 9.34it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.52it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.71it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.76it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 8.88it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.96it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 9.00it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 9.05it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:03, 9.06it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 9.09it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 9.10it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 9.12it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 9.15it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 9.18it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 9.17it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 9.17it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 9.16it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:02, 9.18it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 9.19it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 9.21it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 9.23it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:01, 9.23it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 9.25it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 9.26it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 9.26it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 9.27it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.28it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.30it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 9.33it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 9.33it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:00, 9.35it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 9.35it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 9.37it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 9.37it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 9.38it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 9.38it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 9.36it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 9.35it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 9.35it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 9.35it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 200/? [01:12<00:00, 2.76it/s, train/loss=2.950]\nEpoch 0: | | 201/? [01:20<00:00, 2.51it/s, train/loss=2.950]\nEpoch 0: | | 201/? [01:20<00:00, 2.51it/s, train/loss=1.330]\nEpoch 0: | | 202/? [01:20<00:00, 2.51it/s, train/loss=1.330]\nEpoch 0: | | 202/? [01:20<00:00, 2.51it/s, train/loss=0.757]\nEpoch 0: | | 203/? [01:20<00:00, 2.52it/s, train/loss=0.757]\nEpoch 0: | | 203/? [01:20<00:00, 2.52it/s, train/loss=6.590]\nEpoch 0: | | 204/? [01:20<00:00, 2.52it/s, train/loss=6.590]\nEpoch 0: | | 204/? [01:20<00:00, 2.52it/s, train/loss=1.360]\nEpoch 0: | | 205/? [01:20<00:00, 2.53it/s, train/loss=1.360]\nEpoch 0: | | 205/? [01:20<00:00, 2.53it/s, train/loss=6.550]\nEpoch 0: | | 206/? [01:21<00:00, 2.53it/s, train/loss=6.550]\nEpoch 0: | | 206/? [01:21<00:00, 2.53it/s, train/loss=3.090]\nEpoch 0: | | 207/? [01:21<00:00, 2.55it/s, train/loss=3.090]\nEpoch 0: | | 207/? [01:21<00:00, 2.55it/s, train/loss=6.500]\nEpoch 0: | | 208/? [01:21<00:00, 2.55it/s, train/loss=6.500]\nEpoch 0: | | 208/? [01:21<00:00, 2.55it/s, train/loss=3.700]\nEpoch 0: | | 209/? [01:21<00:00, 2.56it/s, train/loss=3.700]\nEpoch 0: | | 209/? [01:21<00:00, 2.56it/s, train/loss=6.450]\nEpoch 0: | | 210/? [01:22<00:00, 2.56it/s, train/loss=6.450]\nEpoch 0: | | 210/? [01:22<00:00, 2.56it/s, train/loss=2.180]\nEpoch 0: | | 211/? [01:23<00:00, 2.54it/s, train/loss=2.180]\nEpoch 0: | | 211/? [01:23<00:00, 2.54it/s, train/loss=2.080]\nEpoch 0: | | 212/? [01:23<00:00, 2.54it/s, train/loss=2.080]\nEpoch 0: | | 212/? [01:23<00:00, 2.54it/s, train/loss=1.330]\nEpoch 0: | | 213/? [01:23<00:00, 2.55it/s, train/loss=1.330]\nEpoch 0: | | 213/? [01:23<00:00, 2.55it/s, train/loss=6.370]\nEpoch 0: | | 214/? [01:23<00:00, 2.55it/s, train/loss=6.370]\nEpoch 0: | | 214/? [01:23<00:00, 2.55it/s, train/loss=6.390]\nEpoch 0: | | 215/? [01:23<00:00, 2.56it/s, train/loss=6.390]\nEpoch 0: | | 215/? [01:23<00:00, 2.56it/s, train/loss=6.320]\nEpoch 0: | | 216/? [01:24<00:00, 2.56it/s, train/loss=6.320]\nEpoch 0: | | 216/? [01:24<00:00, 2.56it/s, train/loss=2.420]\nEpoch 0: | | 217/? [01:24<00:00, 2.57it/s, train/loss=2.420]\nEpoch 0: | | 217/? [01:24<00:00, 2.57it/s, train/loss=6.280]\nEpoch 0: | | 218/? [01:24<00:00, 2.57it/s, train/loss=6.280]\nEpoch 0: | | 218/? [01:24<00:00, 2.57it/s, train/loss=0.810]\nEpoch 0: | | 219/? [01:24<00:00, 2.58it/s, train/loss=0.810]\nEpoch 0: | | 219/? [01:24<00:00, 2.58it/s, train/loss=6.250]\nEpoch 0: | | 220/? [01:25<00:00, 2.58it/s, train/loss=6.250]\nEpoch 0: | | 220/? [01:25<00:00, 2.58it/s, train/loss=2.580]\nEpoch 0: | | 221/? [01:26<00:00, 2.57it/s, train/loss=2.580]\nEpoch 0: | | 221/? [01:26<00:00, 2.56it/s, train/loss=1.950]\nEpoch 0: | | 222/? [01:26<00:00, 2.57it/s, train/loss=1.950]\nEpoch 0: | | 222/? [01:26<00:00, 2.57it/s, train/loss=2.630]\nEpoch 0: | | 223/? [01:26<00:00, 2.58it/s, train/loss=2.630]\nEpoch 0: | | 223/? [01:26<00:00, 2.58it/s, train/loss=6.190]\nEpoch 0: | | 224/? [01:26<00:00, 2.58it/s, train/loss=6.190]\nEpoch 0: | | 224/? [01:26<00:00, 2.58it/s, train/loss=1.390]\nEpoch 0: | | 225/? [01:27<00:00, 2.59it/s, train/loss=1.390]\nEpoch 0: | | 225/? [01:27<00:00, 2.59it/s, train/loss=6.140]\nEpoch 0: | | 226/? [01:27<00:00, 2.59it/s, train/loss=6.140]\nEpoch 0: | | 226/? [01:27<00:00, 2.59it/s, train/loss=1.380]\nEpoch 0: | | 227/? [01:27<00:00, 2.60it/s, train/loss=1.380]\nEpoch 0: | | 227/? [01:27<00:00, 2.60it/s, train/loss=6.100]\nEpoch 0: | | 228/? [01:27<00:00, 2.60it/s, train/loss=6.100]\nEpoch 0: | | 228/? [01:27<00:00, 2.60it/s, train/loss=3.490]\nEpoch 0: | | 229/? [01:27<00:00, 2.61it/s, train/loss=3.490]\nEpoch 0: | | 229/? [01:27<00:00, 2.61it/s, train/loss=6.060]\nEpoch 0: | | 230/? [01:28<00:00, 2.61it/s, train/loss=6.060]\nEpoch 0: | | 230/? [01:28<00:00, 2.61it/s, train/loss=1.660]\nEpoch 0: | | 231/? [01:29<00:00, 2.59it/s, train/loss=1.660]\nEpoch 0: | | 231/? [01:29<00:00, 2.59it/s, train/loss=1.780]\nEpoch 0: | | 232/? [01:29<00:00, 2.59it/s, train/loss=1.780]\nEpoch 0: | | 232/? [01:29<00:00, 2.59it/s, train/loss=1.100]\nEpoch 0: | | 233/? [01:29<00:00, 2.60it/s, train/loss=1.100]\nEpoch 0: | | 233/? [01:29<00:00, 2.60it/s, train/loss=6.010]\nEpoch 0: | | 234/? [01:30<00:00, 2.60it/s, train/loss=6.010]\nEpoch 0: | | 234/? [01:30<00:00, 2.60it/s, train/loss=2.180]\nEpoch 0: | | 235/? [01:30<00:00, 2.61it/s, train/loss=2.180]\nEpoch 0: | | 235/? [01:30<00:00, 2.61it/s, train/loss=5.970]\nEpoch 0: | | 236/? [01:30<00:00, 2.61it/s, train/loss=5.970]\nEpoch 0: | | 236/? [01:30<00:00, 2.61it/s, train/loss=2.190]\nEpoch 0: | | 237/? [01:30<00:00, 2.62it/s, train/loss=2.190]\nEpoch 0: | | 237/? [01:30<00:00, 2.62it/s, train/loss=5.920]\nEpoch 0: | | 238/? [01:30<00:00, 2.62it/s, train/loss=5.920]\nEpoch 0: | | 238/? [01:30<00:00, 2.62it/s, train/loss=2.410]\nEpoch 0: | | 239/? [01:30<00:00, 2.63it/s, train/loss=2.410]\nEpoch 0: | | 239/? [01:30<00:00, 2.63it/s, train/loss=5.900]\nEpoch 0: | | 240/? [01:31<00:00, 2.63it/s, train/loss=5.900]\nEpoch 0: | | 240/? [01:31<00:00, 2.63it/s, train/loss=3.740]\nEpoch 0: | | 241/? [01:32<00:00, 2.61it/s, train/loss=3.740]\nEpoch 0: | | 241/? [01:32<00:00, 2.61it/s, train/loss=0.724]\nEpoch 0: | | 242/? [01:32<00:00, 2.61it/s, train/loss=0.724]\nEpoch 0: | | 242/? [01:32<00:00, 2.61it/s, train/loss=2.850]\nEpoch 0: | | 243/? [01:32<00:00, 2.62it/s, train/loss=2.850]\nEpoch 0: | | 243/? [01:32<00:00, 2.62it/s, train/loss=5.900]\nEpoch 0: | | 244/? [01:33<00:00, 2.62it/s, train/loss=5.900]\nEpoch 0: | | 244/? [01:33<00:00, 2.62it/s, train/loss=2.430]\nEpoch 0: | | 245/? [01:33<00:00, 2.62it/s, train/loss=2.430]\nEpoch 0: | | 245/? [01:33<00:00, 2.62it/s, train/loss=5.900]\nEpoch 0: | | 246/? [01:33<00:00, 2.62it/s, train/loss=5.900]\nEpoch 0: | | 246/? [01:33<00:00, 2.62it/s, train/loss=1.230]\nEpoch 0: | | 247/? [01:34<00:00, 2.63it/s, train/loss=1.230]\nEpoch 0: | | 247/? [01:34<00:00, 2.63it/s, train/loss=5.870]\nEpoch 0: | | 248/? [01:34<00:00, 2.63it/s, train/loss=5.870]\nEpoch 0: | | 248/? [01:34<00:00, 2.63it/s, train/loss=2.390]\nEpoch 0: | | 249/? [01:34<00:00, 2.63it/s, train/loss=2.390]\nEpoch 0: | | 249/? [01:34<00:00, 2.63it/s, train/loss=5.860]\nEpoch 0: | | 250/? [01:34<00:00, 2.63it/s, train/loss=5.860]\nEpoch 0: | | 250/? [01:34<00:00, 2.63it/s, train/loss=1.140]\nEpoch 0: | | 251/? [01:35<00:00, 2.62it/s, train/loss=1.140]\nEpoch 0: | | 251/? [01:35<00:00, 2.62it/s, train/loss=2.820]\nEpoch 0: | | 252/? [01:36<00:00, 2.62it/s, train/loss=2.820]\nEpoch 0: | | 252/? [01:36<00:00, 2.62it/s, train/loss=1.120]\nEpoch 0: | | 253/? [01:36<00:00, 2.63it/s, train/loss=1.120]\nEpoch 0: | | 253/? [01:36<00:00, 2.63it/s, train/loss=5.850]\nEpoch 0: | | 254/? [01:36<00:00, 2.63it/s, train/loss=5.850]\nEpoch 0: | | 254/? [01:36<00:00, 2.63it/s, train/loss=1.020]\nEpoch 0: | | 255/? [01:36<00:00, 2.64it/s, train/loss=1.020]\nEpoch 0: | | 255/? [01:36<00:00, 2.64it/s, train/loss=5.830]\nEpoch 0: | | 256/? [01:37<00:00, 2.64it/s, train/loss=5.830]\nEpoch 0: | | 256/? [01:37<00:00, 2.64it/s, train/loss=1.290]\nEpoch 0: | | 257/? [01:37<00:00, 2.65it/s, train/loss=1.290]\nEpoch 0: | | 257/? [01:37<00:00, 2.65it/s, train/loss=5.800]\nEpoch 0: | | 258/? [01:37<00:00, 2.65it/s, train/loss=5.800]\nEpoch 0: | | 258/? [01:37<00:00, 2.65it/s, train/loss=1.870]\nEpoch 0: | | 259/? [01:37<00:00, 2.65it/s, train/loss=1.870]\nEpoch 0: | | 259/? [01:37<00:00, 2.65it/s, train/loss=5.770]\nEpoch 0: | | 260/? [01:37<00:00, 2.65it/s, train/loss=5.770]\nEpoch 0: | | 260/? [01:37<00:00, 2.65it/s, train/loss=1.200]\nEpoch 0: | | 261/? [01:38<00:00, 2.64it/s, train/loss=1.200]\nEpoch 0: | | 261/? [01:38<00:00, 2.64it/s, train/loss=2.530]\nEpoch 0: | | 262/? [01:39<00:00, 2.64it/s, train/loss=2.530]\nEpoch 0: | | 262/? [01:39<00:00, 2.64it/s, train/loss=3.570]\nEpoch 0: | | 263/? [01:39<00:00, 2.65it/s, train/loss=3.570]\nEpoch 0: | | 263/? [01:39<00:00, 2.65it/s, train/loss=5.770]\nEpoch 0: | | 264/? [01:39<00:00, 2.65it/s, train/loss=5.770]\nEpoch 0: | | 264/? [01:39<00:00, 2.65it/s, train/loss=0.946]\nEpoch 0: | | 265/? [01:39<00:00, 2.66it/s, train/loss=0.946]\nEpoch 0: | | 265/? [01:39<00:00, 2.66it/s, train/loss=5.760]\nEpoch 0: | | 266/? [01:40<00:00, 2.65it/s, train/loss=5.760]\nEpoch 0: | | 266/? [01:40<00:00, 2.65it/s, train/loss=1.480]\nEpoch 0: | | 267/? [01:40<00:00, 2.66it/s, train/loss=1.480]\nEpoch 0: | | 267/? [01:40<00:00, 2.66it/s, train/loss=5.740]\nEpoch 0: | | 268/? [01:40<00:00, 2.65it/s, train/loss=5.740]\nEpoch 0: | | 268/? [01:40<00:00, 2.65it/s, train/loss=3.570]\nEpoch 0: | | 269/? [01:41<00:00, 2.66it/s, train/loss=3.570]\nEpoch 0: | | 269/? [01:41<00:00, 2.66it/s, train/loss=5.720]\nEpoch 0: | | 270/? [01:41<00:00, 2.66it/s, train/loss=5.720]\nEpoch 0: | | 270/? [01:41<00:00, 2.66it/s, train/loss=2.580]\nEpoch 0: | | 271/? [01:42<00:00, 2.65it/s, train/loss=2.580]\nEpoch 0: | | 271/? [01:42<00:00, 2.65it/s, train/loss=2.380]\nEpoch 0: | | 272/? [01:42<00:00, 2.65it/s, train/loss=2.380]\nEpoch 0: | | 272/? [01:42<00:00, 2.65it/s, train/loss=0.554]\nEpoch 0: | | 273/? [01:42<00:00, 2.66it/s, train/loss=0.554]\nEpoch 0: | | 273/? [01:42<00:00, 2.66it/s, train/loss=5.690]\nEpoch 0: | | 274/? [01:43<00:00, 2.66it/s, train/loss=5.690]\nEpoch 0: | | 274/? [01:43<00:00, 2.66it/s, train/loss=1.810]\nEpoch 0: | | 275/? [01:43<00:00, 2.67it/s, train/loss=1.810]\nEpoch 0: | | 275/? [01:43<00:00, 2.67it/s, train/loss=5.660]\nEpoch 0: | | 276/? [01:43<00:00, 2.66it/s, train/loss=5.660]\nEpoch 0: | | 276/? [01:43<00:00, 2.66it/s, train/loss=3.710]\nEpoch 0: | | 277/? [01:43<00:00, 2.67it/s, train/loss=3.710]\nEpoch 0: | | 277/? [01:43<00:00, 2.67it/s, train/loss=5.640]\nEpoch 0: | | 278/? [01:44<00:00, 2.67it/s, train/loss=5.640]\nEpoch 0: | | 278/? [01:44<00:00, 2.67it/s, train/loss=2.730]\nEpoch 0: | | 279/? [01:44<00:00, 2.68it/s, train/loss=2.730]\nEpoch 0: | | 279/? [01:44<00:00, 2.68it/s, train/loss=5.610]\nEpoch 0: | | 280/? [01:44<00:00, 2.68it/s, train/loss=5.610]\nEpoch 0: | | 280/? [01:44<00:00, 2.68it/s, train/loss=1.710]\nEpoch 0: | | 281/? [01:45<00:00, 2.67it/s, train/loss=1.710]\nEpoch 0: | | 281/? [01:45<00:00, 2.67it/s, train/loss=2.830]\nEpoch 0: | | 282/? [01:45<00:00, 2.67it/s, train/loss=2.830]\nEpoch 0: | | 282/? [01:45<00:00, 2.67it/s, train/loss=4.200]\nEpoch 0: | | 283/? [01:45<00:00, 2.67it/s, train/loss=4.200]\nEpoch 0: | | 283/? [01:45<00:00, 2.67it/s, train/loss=5.560]\nEpoch 0: | | 284/? [01:46<00:00, 2.67it/s, train/loss=5.560]\nEpoch 0: | | 284/? [01:46<00:00, 2.67it/s, train/loss=2.860]\nEpoch 0: | | 285/? [01:46<00:00, 2.68it/s, train/loss=2.860]\nEpoch 0: | | 285/? [01:46<00:00, 2.68it/s, train/loss=5.520]\nEpoch 0: | | 286/? [01:46<00:00, 2.68it/s, train/loss=5.520]\nEpoch 0: | | 286/? [01:46<00:00, 2.68it/s, train/loss=3.260]\nEpoch 0: | | 287/? [01:46<00:00, 2.69it/s, train/loss=3.260]\nEpoch 0: | | 287/? [01:46<00:00, 2.69it/s, train/loss=5.480]\nEpoch 0: | | 288/? [01:47<00:00, 2.69it/s, train/loss=5.480]\nEpoch 0: | | 288/? [01:47<00:00, 2.69it/s, train/loss=2.080]\nEpoch 0: | | 289/? [01:47<00:00, 2.70it/s, train/loss=2.080]\nEpoch 0: | | 289/? [01:47<00:00, 2.70it/s, train/loss=5.440]\nEpoch 0: | | 290/? [01:47<00:00, 2.70it/s, train/loss=5.440]\nEpoch 0: | | 290/? [01:47<00:00, 2.70it/s, train/loss=2.980]\nEpoch 0: | | 291/? [01:48<00:00, 2.68it/s, train/loss=2.980]\nEpoch 0: | | 291/? [01:48<00:00, 2.68it/s, train/loss=1.650]\nEpoch 0: | | 292/? [01:48<00:00, 2.69it/s, train/loss=1.650]\nEpoch 0: | | 292/? [01:48<00:00, 2.68it/s, train/loss=1.700]\nEpoch 0: | | 293/? [01:48<00:00, 2.69it/s, train/loss=1.700]\nEpoch 0: | | 293/? [01:48<00:00, 2.69it/s, train/loss=5.400]\nEpoch 0: | | 294/? [01:49<00:00, 2.69it/s, train/loss=5.400]\nEpoch 0: | | 294/? [01:49<00:00, 2.69it/s, train/loss=3.030]\nEpoch 0: | | 295/? [01:49<00:00, 2.70it/s, train/loss=3.030]\nEpoch 0: | | 295/? [01:49<00:00, 2.70it/s, train/loss=5.380]\nEpoch 0: | | 296/? [01:49<00:00, 2.70it/s, train/loss=5.380]\nEpoch 0: | | 296/? [01:49<00:00, 2.70it/s, train/loss=2.820]\nEpoch 0: | | 297/? [01:49<00:00, 2.71it/s, train/loss=2.820]\nEpoch 0: | | 297/? [01:49<00:00, 2.71it/s, train/loss=5.350]\nEpoch 0: | | 298/? [01:50<00:00, 2.71it/s, train/loss=5.350]\nEpoch 0: | | 298/? [01:50<00:00, 2.71it/s, train/loss=1.420]\nEpoch 0: | | 299/? [01:50<00:00, 2.71it/s, train/loss=1.420]\nEpoch 0: | | 299/? [01:50<00:00, 2.71it/s, train/loss=5.320]\nEpoch 0: | | 300/? [01:50<00:00, 2.71it/s, train/loss=5.320]\nEpoch 0: | | 300/? [01:50<00:00, 2.71it/s, train/loss=1.020]\nEpoch 0: | | 301/? [01:51<00:00, 2.70it/s, train/loss=1.020]\nEpoch 0: | | 301/? [01:51<00:00, 2.70it/s, train/loss=0.883]\nEpoch 0: | | 302/? [01:51<00:00, 2.70it/s, train/loss=0.883]\nEpoch 0: | | 302/? [01:51<00:00, 2.70it/s, train/loss=3.050]\nEpoch 0: | | 303/? [01:51<00:00, 2.71it/s, train/loss=3.050]\nEpoch 0: | | 303/? [01:51<00:00, 2.71it/s, train/loss=5.280]\nEpoch 0: | | 304/? [01:52<00:00, 2.71it/s, train/loss=5.280]\nEpoch 0: | | 304/? [01:52<00:00, 2.71it/s, train/loss=2.640]\nEpoch 0: | | 305/? [01:52<00:00, 2.72it/s, train/loss=2.640]\nEpoch 0: | | 305/? [01:52<00:00, 2.72it/s, train/loss=5.260]\nEpoch 0: | | 306/? [01:52<00:00, 2.71it/s, train/loss=5.260]\nEpoch 0: | | 306/? [01:52<00:00, 2.71it/s, train/loss=1.430]\nEpoch 0: | | 307/? [01:52<00:00, 2.72it/s, train/loss=1.430]\nEpoch 0: | | 307/? [01:52<00:00, 2.72it/s, train/loss=5.230]\nEpoch 0: | | 308/? [01:53<00:00, 2.72it/s, train/loss=5.230]\nEpoch 0: | | 308/? [01:53<00:00, 2.72it/s, train/loss=2.380]\nEpoch 0: | | 309/? [01:53<00:00, 2.73it/s, train/loss=2.380]\nEpoch 0: | | 309/? [01:53<00:00, 2.73it/s, train/loss=5.200]\nEpoch 0: | | 310/? [01:53<00:00, 2.73it/s, train/loss=5.200]\nEpoch 0: | | 310/? [01:53<00:00, 2.73it/s, train/loss=1.700]\nEpoch 0: | | 311/? [01:54<00:00, 2.72it/s, train/loss=1.700]\nEpoch 0: | | 311/? [01:54<00:00, 2.71it/s, train/loss=2.040]\nEpoch 0: | | 312/? [01:54<00:00, 2.72it/s, train/loss=2.040]\nEpoch 0: | | 312/? [01:54<00:00, 2.71it/s, train/loss=0.999]\nEpoch 0: | | 313/? [01:54<00:00, 2.72it/s, train/loss=0.999]\nEpoch 0: | | 313/? [01:54<00:00, 2.72it/s, train/loss=5.190]\nEpoch 0: | | 314/? [01:55<00:00, 2.72it/s, train/loss=5.190]\nEpoch 0: | | 314/? [01:55<00:00, 2.72it/s, train/loss=1.130]\nEpoch 0: | | 315/? [01:55<00:00, 2.73it/s, train/loss=1.130]\nEpoch 0: | | 315/? [01:55<00:00, 2.73it/s, train/loss=5.190]\nEpoch 0: | | 316/? [01:55<00:00, 2.73it/s, train/loss=5.190]\nEpoch 0: | | 316/? [01:55<00:00, 2.73it/s, train/loss=3.310]\nEpoch 0: | | 317/? [01:55<00:00, 2.74it/s, train/loss=3.310]\nEpoch 0: | | 317/? [01:55<00:00, 2.74it/s, train/loss=5.170]\nEpoch 0: | | 318/? [01:56<00:00, 2.73it/s, train/loss=5.170]\nEpoch 0: | | 318/? [01:56<00:00, 2.73it/s, train/loss=1.810]\nEpoch 0: | | 319/? [01:56<00:00, 2.74it/s, train/loss=1.810]\nEpoch 0: | | 319/? [01:56<00:00, 2.74it/s, train/loss=5.160]\nEpoch 0: | | 320/? [01:56<00:00, 2.74it/s, train/loss=5.160]\nEpoch 0: | | 320/? [01:56<00:00, 2.74it/s, train/loss=2.270]\nEpoch 0: | | 321/? [01:57<00:00, 2.73it/s, train/loss=2.270]\nEpoch 0: | | 321/? [01:57<00:00, 2.73it/s, train/loss=1.920]\nEpoch 0: | | 322/? [01:57<00:00, 2.73it/s, train/loss=1.920]\nEpoch 0: | | 322/? [01:58<00:00, 2.73it/s, train/loss=1.600]\nEpoch 0: | | 323/? [01:58<00:00, 2.73it/s, train/loss=1.600]\nEpoch 0: | | 323/? [01:58<00:00, 2.73it/s, train/loss=5.150]\nEpoch 0: | | 324/? [01:58<00:00, 2.73it/s, train/loss=5.150]\nEpoch 0: | | 324/? [01:58<00:00, 2.73it/s, train/loss=3.730]\nEpoch 0: | | 325/? [01:58<00:00, 2.74it/s, train/loss=3.730]\nEpoch 0: | | 325/? [01:58<00:00, 2.74it/s, train/loss=5.150]\nEpoch 0: | | 326/? [01:58<00:00, 2.74it/s, train/loss=5.150]\nEpoch 0: | | 326/? [01:58<00:00, 2.74it/s, train/loss=2.220]\nEpoch 0: | | 327/? [01:59<00:00, 2.75it/s, train/loss=2.220]\nEpoch 0: | | 327/? [01:59<00:00, 2.75it/s, train/loss=5.130]\nEpoch 0: | | 328/? [01:59<00:00, 2.75it/s, train/loss=5.130]\nEpoch 0: | | 328/? [01:59<00:00, 2.75it/s, train/loss=1.950]\nEpoch 0: | | 329/? [01:59<00:00, 2.75it/s, train/loss=1.950]\nEpoch 0: | | 329/? [01:59<00:00, 2.75it/s, train/loss=5.100]\nEpoch 0: | | 330/? [01:59<00:00, 2.75it/s, train/loss=5.100]\nEpoch 0: | | 330/? [01:59<00:00, 2.75it/s, train/loss=5.410]\nEpoch 0: | | 331/? [02:00<00:00, 2.74it/s, train/loss=5.410]\nEpoch 0: | | 331/? [02:00<00:00, 2.74it/s, train/loss=2.210]\nEpoch 0: | | 332/? [02:01<00:00, 2.74it/s, train/loss=2.210]\nEpoch 0: | | 332/? [02:01<00:00, 2.74it/s, train/loss=1.130]\nEpoch 0: | | 333/? [02:01<00:00, 2.75it/s, train/loss=1.130]\nEpoch 0: | | 333/? [02:01<00:00, 2.75it/s, train/loss=5.080]\nEpoch 0: | | 334/? [02:01<00:00, 2.75it/s, train/loss=5.080]\nEpoch 0: | | 334/? [02:01<00:00, 2.75it/s, train/loss=2.390]\nEpoch 0: | | 335/? [02:01<00:00, 2.75it/s, train/loss=2.390]\nEpoch 0: | | 335/? [02:01<00:00, 2.75it/s, train/loss=5.060]\nEpoch 0: | | 336/? [02:02<00:00, 2.75it/s, train/loss=5.060]\nEpoch 0: | | 336/? [02:02<00:00, 2.75it/s, train/loss=3.190]\nEpoch 0: | | 337/? [02:02<00:00, 2.76it/s, train/loss=3.190]\nEpoch 0: | | 337/? [02:02<00:00, 2.76it/s, train/loss=5.040]\nEpoch 0: | | 338/? [02:02<00:00, 2.76it/s, train/loss=5.040]\nEpoch 0: | | 338/? [02:02<00:00, 2.76it/s, train/loss=0.746]\nEpoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=0.746]\nEpoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=5.020]\nEpoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=5.020]\nEpoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=1.340]\nEpoch 0: | | 341/? [02:03<00:00, 2.75it/s, train/loss=1.340]\nEpoch 0: | | 341/? [02:03<00:00, 2.75it/s, train/loss=1.570]\nEpoch 0: | | 342/? [02:04<00:00, 2.75it/s, train/loss=1.570]\nEpoch 0: | | 342/? [02:04<00:00, 2.75it/s, train/loss=2.380]\nEpoch 0: | | 343/? [02:04<00:00, 2.76it/s, train/loss=2.380]\nEpoch 0: | | 343/? [02:04<00:00, 2.76it/s, train/loss=5.000]\nEpoch 0: | | 344/? [02:04<00:00, 2.76it/s, train/loss=5.000]\nEpoch 0: | | 344/? [02:04<00:00, 2.76it/s, train/loss=4.760]\nEpoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=4.760]\nEpoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=4.980]\nEpoch 0: | | 346/? [02:05<00:00, 2.77it/s, train/loss=4.980]\nEpoch 0: | | 346/? [02:05<00:00, 2.77it/s, train/loss=3.570]\nEpoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=3.570]\nEpoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=4.940]\nEpoch 0: | | 348/? [02:05<00:00, 2.77it/s, train/loss=4.940]\nEpoch 0: | | 348/? [02:05<00:00, 2.77it/s, train/loss=2.680]\nEpoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=2.680]\nEpoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=4.940]\nEpoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=4.940]\nEpoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=1.490]\nEpoch 0: | | 351/? [02:06<00:00, 2.77it/s, train/loss=1.490]\nEpoch 0: | | 351/? [02:06<00:00, 2.76it/s, train/loss=2.270]\nEpoch 0: | | 352/? [02:07<00:00, 2.77it/s, train/loss=2.270]\nEpoch 0: | | 352/? [02:07<00:00, 2.77it/s, train/loss=1.580]\nEpoch 0: | | 353/? [02:07<00:00, 2.77it/s, train/loss=1.580]\nEpoch 0: | | 353/? [02:07<00:00, 2.77it/s, train/loss=4.990]\nEpoch 0: | | 354/? [02:07<00:00, 2.77it/s, train/loss=4.990]\nEpoch 0: | | 354/? [02:07<00:00, 2.77it/s, train/loss=0.693]\nEpoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=0.693]\nEpoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=4.980]\nEpoch 0: | | 356/? [02:08<00:00, 2.77it/s, train/loss=4.980]\nEpoch 0: | | 356/? [02:08<00:00, 2.77it/s, train/loss=2.220]\nEpoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=2.220]\nEpoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=4.950]\nEpoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=4.950]\nEpoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=0.770]\nEpoch 0: | | 359/? [02:08<00:00, 2.79it/s, train/loss=0.770]\nEpoch 0: | | 359/? [02:08<00:00, 2.79it/s, train/loss=4.930]\nEpoch 0: | | 360/? [02:09<00:00, 2.79it/s, train/loss=4.930]\nEpoch 0: | | 360/? [02:09<00:00, 2.79it/s, train/loss=3.010]\nEpoch 0: | | 361/? [02:10<00:00, 2.77it/s, train/loss=3.010]\nEpoch 0: | | 361/? [02:10<00:00, 2.77it/s, train/loss=0.704]\nEpoch 0: | | 362/? [02:10<00:00, 2.78it/s, train/loss=0.704]\nEpoch 0: | | 362/? [02:10<00:00, 2.77it/s, train/loss=2.000]\nEpoch 0: | | 363/? [02:10<00:00, 2.78it/s, train/loss=2.000]\nEpoch 0: | | 363/? [02:10<00:00, 2.78it/s, train/loss=4.930]\nEpoch 0: | | 364/? [02:10<00:00, 2.78it/s, train/loss=4.930]\nEpoch 0: | | 364/? [02:10<00:00, 2.78it/s, train/loss=2.770]\nEpoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=2.770]\nEpoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=4.920]\nEpoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=4.920]\nEpoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=1.270]\nEpoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=1.270]\nEpoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=4.900]\nEpoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=4.900]\nEpoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=2.370]\nEpoch 0: | | 369/? [02:11<00:00, 2.80it/s, train/loss=2.370]\nEpoch 0: | | 369/? [02:11<00:00, 2.80it/s, train/loss=4.890]\nEpoch 0: | | 370/? [02:12<00:00, 2.80it/s, train/loss=4.890]\nEpoch 0: | | 370/? [02:12<00:00, 2.80it/s, train/loss=1.150]\nEpoch 0: | | 371/? [02:13<00:00, 2.79it/s, train/loss=1.150]\nEpoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=2.940]\nEpoch 0: | | 372/? [02:13<00:00, 2.79it/s, train/loss=2.940]\nEpoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=1.090]\nEpoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=1.090]\nEpoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=4.880]\nEpoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=4.880]\nEpoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=3.940]\nEpoch 0: | | 375/? [02:14<00:00, 2.80it/s, train/loss=3.940]\nEpoch 0: | | 375/? [02:14<00:00, 2.80it/s, train/loss=4.870]\nEpoch 0: | | 376/? [02:14<00:00, 2.80it/s, train/loss=4.870]\nEpoch 0: | | 376/? [02:14<00:00, 2.80it/s, train/loss=2.950]\nEpoch 0: | | 377/? [02:14<00:00, 2.80it/s, train/loss=2.950]\nEpoch 0: | | 377/? [02:14<00:00, 2.80it/s, train/loss=4.840]\nEpoch 0: | | 378/? [02:14<00:00, 2.80it/s, train/loss=4.840]\nEpoch 0: | | 378/? [02:14<00:00, 2.80it/s, train/loss=2.900]\nEpoch 0: | | 379/? [02:14<00:00, 2.81it/s, train/loss=2.900]\nEpoch 0: | | 379/? [02:14<00:00, 2.81it/s, train/loss=4.820]\nEpoch 0: | | 380/? [02:15<00:00, 2.81it/s, train/loss=4.820]\nEpoch 0: | | 380/? [02:15<00:00, 2.81it/s, train/loss=2.240]\nEpoch 0: | | 381/? [02:16<00:00, 2.80it/s, train/loss=2.240]\nEpoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=0.726]\nEpoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=0.726]\nEpoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=1.090]\nEpoch 0: | | 383/? [02:16<00:00, 2.80it/s, train/loss=1.090]\nEpoch 0: | | 383/? [02:16<00:00, 2.80it/s, train/loss=4.800]\nEpoch 0: | | 384/? [02:17<00:00, 2.80it/s, train/loss=4.800]\nEpoch 0: | | 384/? [02:17<00:00, 2.80it/s, train/loss=3.060]\nEpoch 0: | | 385/? [02:17<00:00, 2.81it/s, train/loss=3.060]\nEpoch 0: | | 385/? [02:17<00:00, 2.81it/s, train/loss=4.780]\nEpoch 0: | | 386/? [02:17<00:00, 2.80it/s, train/loss=4.780]\nEpoch 0: | | 386/? [02:17<00:00, 2.80it/s, train/loss=2.630]\nEpoch 0: | | 387/? [02:17<00:00, 2.81it/s, train/loss=2.630]\nEpoch 0: | | 387/? [02:17<00:00, 2.81it/s, train/loss=4.750]\nEpoch 0: | | 388/? [02:18<00:00, 2.81it/s, train/loss=4.750]\nEpoch 0: | | 388/? [02:18<00:00, 2.81it/s, train/loss=0.970]\nEpoch 0: | | 389/? [02:18<00:00, 2.82it/s, train/loss=0.970]\nEpoch 0: | | 389/? [02:18<00:00, 2.82it/s, train/loss=4.730]\nEpoch 0: | | 390/? [02:18<00:00, 2.81it/s, train/loss=4.730]\nEpoch 0: | | 390/? [02:18<00:00, 2.81it/s, train/loss=3.590]\nEpoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=3.590]\nEpoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=1.050]\nEpoch 0: | | 392/? [02:19<00:00, 2.80it/s, train/loss=1.050]\nEpoch 0: | | 392/? [02:19<00:00, 2.80it/s, train/loss=0.961]\nEpoch 0: | | 393/? [02:19<00:00, 2.81it/s, train/loss=0.961]\nEpoch 0: | | 393/? [02:19<00:00, 2.81it/s, train/loss=4.700]\nEpoch 0: | | 394/? [02:20<00:00, 2.81it/s, train/loss=4.700]\nEpoch 0: | | 394/? [02:20<00:00, 2.81it/s, train/loss=2.750]\nEpoch 0: | | 395/? [02:20<00:00, 2.81it/s, train/loss=2.750]\nEpoch 0: | | 395/? [02:20<00:00, 2.81it/s, train/loss=4.690]\nEpoch 0: | | 396/? [02:20<00:00, 2.81it/s, train/loss=4.690]\nEpoch 0: | | 396/? [02:20<00:00, 2.81it/s, train/loss=4.030]\nEpoch 0: | | 397/? [02:20<00:00, 2.82it/s, train/loss=4.030]\nEpoch 0: | | 397/? [02:20<00:00, 2.82it/s, train/loss=4.670]\nEpoch 0: | | 398/? [02:21<00:00, 2.82it/s, train/loss=4.670]\nEpoch 0: | | 398/? [02:21<00:00, 2.82it/s, train/loss=2.210]\nEpoch 0: | | 399/? [02:21<00:00, 2.82it/s, train/loss=2.210]\nEpoch 0: | | 399/? [02:21<00:00, 2.82it/s, train/loss=4.660]\nEpoch 0: | | 400/? [02:21<00:00, 2.82it/s, train/loss=4.660]\nEpoch 0: | | 400/? [02:21<00:00, 2.82it/s, train/loss=2.450]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.57it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.84it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.95it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.76it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 8.82it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.82it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.89it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.95it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:03, 9.01it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 9.01it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 9.03it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 9.07it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 9.10it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 9.10it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 9.09it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 9.06it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 9.07it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:02, 9.07it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 9.08it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 9.06it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 9.05it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:01, 9.06it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 9.07it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 9.08it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 9.10it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 9.10it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.12it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.13it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 8.97it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 8.92it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:01, 8.93it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 8.95it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 8.97it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 8.97it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 8.98it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:04<00:00, 8.96it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 8.96it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 8.95it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 8.95it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 8.95it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 400/? [02:30<00:00, 2.65it/s, train/loss=2.450]\nEpoch 0: | | 401/? [02:50<00:00, 2.35it/s, train/loss=2.450]\nEpoch 0: | | 401/? [02:51<00:00, 2.34it/s, train/loss=0.663]\nEpoch 0: | | 402/? [02:51<00:00, 2.35it/s, train/loss=0.663]\nEpoch 0: | | 402/? [02:51<00:00, 2.35it/s, train/loss=1.990]\nEpoch 0: | | 403/? [02:51<00:00, 2.35it/s, train/loss=1.990]\nEpoch 0: | | 403/? [02:51<00:00, 2.35it/s, train/loss=4.650]\nEpoch 0: | | 404/? [02:51<00:00, 2.35it/s, train/loss=4.650]\nEpoch 0: | | 404/? [02:51<00:00, 2.35it/s, train/loss=1.070]\nEpoch 0: | | 405/? [02:51<00:00, 2.36it/s, train/loss=1.070]\nEpoch 0: | | 405/? [02:51<00:00, 2.36it/s, train/loss=4.640]\nEpoch 0: | | 406/? [02:52<00:00, 2.36it/s, train/loss=4.640]\nEpoch 0: | | 406/? [02:52<00:00, 2.36it/s, train/loss=2.970]\nEpoch 0: | | 407/? [02:52<00:00, 2.36it/s, train/loss=2.970]\nEpoch 0: | | 407/? [02:52<00:00, 2.36it/s, train/loss=4.610]\nEpoch 0: | | 408/? [02:52<00:00, 2.36it/s, train/loss=4.610]\nEpoch 0: | | 408/? [02:52<00:00, 2.36it/s, train/loss=2.380]\nEpoch 0: | | 409/? [02:52<00:00, 2.37it/s, train/loss=2.380]\nEpoch 0: | | 409/? [02:52<00:00, 2.37it/s, train/loss=4.590]\nEpoch 0: | | 410/? [02:53<00:00, 2.36it/s, train/loss=4.590]\nEpoch 0: | | 410/? [02:53<00:00, 2.36it/s, train/loss=1.430]\nEpoch 0: | | 411/? [02:54<00:00, 2.36it/s, train/loss=1.430]\nEpoch 0: | | 411/? [02:54<00:00, 2.35it/s, train/loss=1.160]\nEpoch 0: | | 412/? [02:54<00:00, 2.36it/s, train/loss=1.160]\nEpoch 0: | | 412/? [02:54<00:00, 2.36it/s, train/loss=1.590]\nEpoch 0: | | 413/? [02:54<00:00, 2.36it/s, train/loss=1.590]\nEpoch 0: | | 413/? [02:54<00:00, 2.36it/s, train/loss=4.570]\nEpoch 0: | | 414/? [02:55<00:00, 2.36it/s, train/loss=4.570]\nEpoch 0: | | 414/? [02:55<00:00, 2.36it/s, train/loss=1.560]\nEpoch 0: | | 415/? [02:55<00:00, 2.37it/s, train/loss=1.560]\nEpoch 0: | | 415/? [02:55<00:00, 2.37it/s, train/loss=4.550]\nEpoch 0: | | 416/? [02:55<00:00, 2.37it/s, train/loss=4.550]\nEpoch 0: | | 416/? [02:55<00:00, 2.37it/s, train/loss=3.270]\nEpoch 0: | | 417/? [02:55<00:00, 2.37it/s, train/loss=3.270]\nEpoch 0: | | 417/? [02:55<00:00, 2.37it/s, train/loss=4.530]\nEpoch 0: | | 418/? [02:56<00:00, 2.37it/s, train/loss=4.530]\nEpoch 0: | | 418/? [02:56<00:00, 2.37it/s, train/loss=3.370]\nEpoch 0: | | 419/? [02:56<00:00, 2.38it/s, train/loss=3.370]\nEpoch 0: | | 419/? [02:56<00:00, 2.38it/s, train/loss=4.520]\nEpoch 0: | | 420/? [02:56<00:00, 2.38it/s, train/loss=4.520]\nEpoch 0: | | 420/? [02:56<00:00, 2.38it/s, train/loss=2.730]\nEpoch 0: | | 421/? [02:57<00:00, 2.37it/s, train/loss=2.730]\nEpoch 0: | | 421/? [02:57<00:00, 2.37it/s, train/loss=0.665]\nEpoch 0: | | 422/? [02:58<00:00, 2.37it/s, train/loss=0.665]\nEpoch 0: | | 422/? [02:58<00:00, 2.37it/s, train/loss=2.290]\nEpoch 0: | | 423/? [02:58<00:00, 2.37it/s, train/loss=2.290]\nEpoch 0: | | 423/? [02:58<00:00, 2.37it/s, train/loss=4.540]\nEpoch 0: | | 424/? [02:58<00:00, 2.38it/s, train/loss=4.540]\nEpoch 0: | | 424/? [02:58<00:00, 2.38it/s, train/loss=2.300]\nEpoch 0: | | 425/? [02:58<00:00, 2.38it/s, train/loss=2.300]\nEpoch 0: | | 425/? [02:58<00:00, 2.38it/s, train/loss=4.540]\nEpoch 0: | | 426/? [02:58<00:00, 2.38it/s, train/loss=4.540]\nEpoch 0: | | 426/? [02:58<00:00, 2.38it/s, train/loss=1.450]\nEpoch 0: | | 427/? [02:59<00:00, 2.39it/s, train/loss=1.450]\nEpoch 0: | | 427/? [02:59<00:00, 2.38it/s, train/loss=4.500]\nEpoch 0: | | 428/? [02:59<00:00, 2.39it/s, train/loss=4.500]\nEpoch 0: | | 428/? [02:59<00:00, 2.39it/s, train/loss=0.830]\nEpoch 0: | | 429/? [02:59<00:00, 2.39it/s, train/loss=0.830]\nEpoch 0: | | 429/? [02:59<00:00, 2.39it/s, train/loss=4.490]\nEpoch 0: | | 430/? [02:59<00:00, 2.39it/s, train/loss=4.490]\nEpoch 0: | | 430/? [02:59<00:00, 2.39it/s, train/loss=0.742]\nEpoch 0: | | 431/? [03:00<00:00, 2.38it/s, train/loss=0.742]\nEpoch 0: | | 431/? [03:00<00:00, 2.38it/s, train/loss=1.350]\nEpoch 0: | | 432/? [03:01<00:00, 2.38it/s, train/loss=1.350]\nEpoch 0: | | 432/? [03:01<00:00, 2.38it/s, train/loss=2.160]\nEpoch 0: | | 433/? [03:01<00:00, 2.39it/s, train/loss=2.160]\nEpoch 0: | | 433/? [03:01<00:00, 2.39it/s, train/loss=4.540]\nEpoch 0: | | 434/? [03:01<00:00, 2.39it/s, train/loss=4.540]\nEpoch 0: | | 434/? [03:01<00:00, 2.39it/s, train/loss=2.430]\nEpoch 0: | | 435/? [03:01<00:00, 2.39it/s, train/loss=2.430]\nEpoch 0: | | 435/? [03:01<00:00, 2.39it/s, train/loss=4.530]\nEpoch 0: | | 436/? [03:02<00:00, 2.39it/s, train/loss=4.530]\nEpoch 0: | | 436/? [03:02<00:00, 2.39it/s, train/loss=3.150]\nEpoch 0: | | 437/? [03:02<00:00, 2.40it/s, train/loss=3.150]\nEpoch 0: | | 437/? [03:02<00:00, 2.40it/s, train/loss=4.510]\nEpoch 0: | | 438/? [03:02<00:00, 2.40it/s, train/loss=4.510]\nEpoch 0: | | 438/? [03:02<00:00, 2.40it/s, train/loss=2.300]\nEpoch 0: | | 439/? [03:02<00:00, 2.40it/s, train/loss=2.300]\nEpoch 0: | | 439/? [03:02<00:00, 2.40it/s, train/loss=4.510]\nEpoch 0: | | 440/? [03:03<00:00, 2.40it/s, train/loss=4.510]\nEpoch 0: | | 440/? [03:03<00:00, 2.40it/s, train/loss=3.060]\nEpoch 0: | | 441/? [03:03<00:00, 2.40it/s, train/loss=3.060]\nEpoch 0: | | 441/? [03:03<00:00, 2.40it/s, train/loss=1.380]\nEpoch 0: | | 442/? [03:04<00:00, 2.40it/s, train/loss=1.380]\nEpoch 0: | | 442/? [03:04<00:00, 2.40it/s, train/loss=2.210]\nEpoch 0: | | 443/? [03:04<00:00, 2.40it/s, train/loss=2.210]\nEpoch 0: | | 443/? [03:04<00:00, 2.40it/s, train/loss=4.530]\nEpoch 0: | | 444/? [03:04<00:00, 2.40it/s, train/loss=4.530]\nEpoch 0: | | 444/? [03:04<00:00, 2.40it/s, train/loss=1.410]\nEpoch 0: | | 445/? [03:04<00:00, 2.41it/s, train/loss=1.410]\nEpoch 0: | | 445/? [03:04<00:00, 2.41it/s, train/loss=4.520]\nEpoch 0: | | 446/? [03:05<00:00, 2.41it/s, train/loss=4.520]\nEpoch 0: | | 446/? [03:05<00:00, 2.41it/s, train/loss=0.731]\nEpoch 0: | | 447/? [03:05<00:00, 2.41it/s, train/loss=0.731]\nEpoch 0: | | 447/? [03:05<00:00, 2.41it/s, train/loss=4.500]\nEpoch 0: | | 448/? [03:05<00:00, 2.41it/s, train/loss=4.500]\nEpoch 0: | | 448/? [03:05<00:00, 2.41it/s, train/loss=1.490]\nEpoch 0: | | 449/? [03:05<00:00, 2.42it/s, train/loss=1.490]\nEpoch 0: | | 449/? [03:05<00:00, 2.42it/s, train/loss=4.470]\nEpoch 0: | | 450/? [03:06<00:00, 2.42it/s, train/loss=4.470]\nEpoch 0: | | 450/? [03:06<00:00, 2.42it/s, train/loss=3.620]\nEpoch 0: | | 451/? [03:07<00:00, 2.41it/s, train/loss=3.620]\nEpoch 0: | | 451/? [03:07<00:00, 2.41it/s, train/loss=3.350]\nEpoch 0: | | 452/? [03:07<00:00, 2.41it/s, train/loss=3.350]\nEpoch 0: | | 452/? [03:07<00:00, 2.41it/s, train/loss=1.390]\nEpoch 0: | | 453/? [03:07<00:00, 2.42it/s, train/loss=1.390]\nEpoch 0: | | 453/? [03:07<00:00, 2.42it/s, train/loss=4.420]\nEpoch 0: | | 454/? [03:07<00:00, 2.42it/s, train/loss=4.420]\nEpoch 0: | | 454/? [03:07<00:00, 2.42it/s, train/loss=2.750]\nEpoch 0: | | 455/? [03:07<00:00, 2.42it/s, train/loss=2.750]\nEpoch 0: | | 455/? [03:07<00:00, 2.42it/s, train/loss=4.400]\nEpoch 0: | | 456/? [03:08<00:00, 2.42it/s, train/loss=4.400]\nEpoch 0: | | 456/? [03:08<00:00, 2.42it/s, train/loss=1.430]\nEpoch 0: | | 457/? [03:08<00:00, 2.43it/s, train/loss=1.430]\nEpoch 0: | | 457/? [03:08<00:00, 2.43it/s, train/loss=4.380]\nEpoch 0: | | 458/? [03:08<00:00, 2.43it/s, train/loss=4.380]\nEpoch 0: | | 458/? [03:08<00:00, 2.43it/s, train/loss=1.900]\nEpoch 0: | | 459/? [03:08<00:00, 2.43it/s, train/loss=1.900]\nEpoch 0: | | 459/? [03:08<00:00, 2.43it/s, train/loss=4.350]\nEpoch 0: | | 460/? [03:09<00:00, 2.43it/s, train/loss=4.350]\nEpoch 0: | | 460/? [03:09<00:00, 2.43it/s, train/loss=3.030]\nEpoch 0: | | 461/? [03:10<00:00, 2.42it/s, train/loss=3.030]\nEpoch 0: | | 461/? [03:10<00:00, 2.42it/s, train/loss=2.120]\nEpoch 0: | | 462/? [03:10<00:00, 2.43it/s, train/loss=2.120]\nEpoch 0: | | 462/? [03:10<00:00, 2.42it/s, train/loss=1.960]\nEpoch 0: | | 463/? [03:10<00:00, 2.43it/s, train/loss=1.960]\nEpoch 0: | | 463/? [03:10<00:00, 2.43it/s, train/loss=4.340]\nEpoch 0: | | 464/? [03:10<00:00, 2.43it/s, train/loss=4.340]\nEpoch 0: | | 464/? [03:10<00:00, 2.43it/s, train/loss=1.650]\nEpoch 0: | | 465/? [03:11<00:00, 2.43it/s, train/loss=1.650]\nEpoch 0: | | 465/? [03:11<00:00, 2.43it/s, train/loss=4.340]\nEpoch 0: | | 466/? [03:11<00:00, 2.43it/s, train/loss=4.340]\nEpoch 0: | | 466/? [03:11<00:00, 2.43it/s, train/loss=0.967]\nEpoch 0: | | 467/? [03:11<00:00, 2.44it/s, train/loss=0.967]\nEpoch 0: | | 467/? [03:11<00:00, 2.44it/s, train/loss=4.320]\nEpoch 0: | | 468/? [03:11<00:00, 2.44it/s, train/loss=4.320]\nEpoch 0: | | 468/? [03:11<00:00, 2.44it/s, train/loss=3.190]\nEpoch 0: | | 469/? [03:11<00:00, 2.44it/s, train/loss=3.190]\nEpoch 0: | | 469/? [03:11<00:00, 2.44it/s, train/loss=4.310]\nEpoch 0: | | 470/? [03:12<00:00, 2.44it/s, train/loss=4.310]\nEpoch 0: | | 470/? [03:12<00:00, 2.44it/s, train/loss=2.530]\nEpoch 0: | | 471/? [03:13<00:00, 2.44it/s, train/loss=2.530]\nEpoch 0: | | 471/? [03:13<00:00, 2.44it/s, train/loss=2.540]\nEpoch 0: | | 472/? [03:13<00:00, 2.44it/s, train/loss=2.540]\nEpoch 0: | | 472/? [03:13<00:00, 2.44it/s, train/loss=1.790]\nEpoch 0: | | 473/? [03:13<00:00, 2.44it/s, train/loss=1.790]\nEpoch 0: | | 473/? [03:13<00:00, 2.44it/s, train/loss=4.330]\nEpoch 0: | | 474/? [03:14<00:00, 2.44it/s, train/loss=4.330]\nEpoch 0: | | 474/? [03:14<00:00, 2.44it/s, train/loss=3.140]\nEpoch 0: | | 475/? [03:14<00:00, 2.45it/s, train/loss=3.140]\nEpoch 0: | | 475/? [03:14<00:00, 2.45it/s, train/loss=4.320]\nEpoch 0: | | 476/? [03:14<00:00, 2.45it/s, train/loss=4.320]\nEpoch 0: | | 476/? [03:14<00:00, 2.45it/s, train/loss=2.120]\nEpoch 0: | | 477/? [03:14<00:00, 2.45it/s, train/loss=2.120]\nEpoch 0: | | 477/? [03:14<00:00, 2.45it/s, train/loss=4.300]\nEpoch 0: | | 478/? [03:15<00:00, 2.45it/s, train/loss=4.300]\nEpoch 0: | | 478/? [03:15<00:00, 2.45it/s, train/loss=1.920]\nEpoch 0: | | 479/? [03:15<00:00, 2.46it/s, train/loss=1.920]\nEpoch 0: | | 479/? [03:15<00:00, 2.46it/s, train/loss=4.280]\nEpoch 0: | | 480/? [03:15<00:00, 2.46it/s, train/loss=4.280]\nEpoch 0: | | 480/? [03:15<00:00, 2.46it/s, train/loss=2.280]\nEpoch 0: | | 481/? [03:16<00:00, 2.45it/s, train/loss=2.280]\nEpoch 0: | | 481/? [03:16<00:00, 2.45it/s, train/loss=0.513]\nEpoch 0: | | 482/? [03:16<00:00, 2.45it/s, train/loss=0.513]\nEpoch 0: | | 482/? [03:16<00:00, 2.45it/s, train/loss=0.849]\nEpoch 0: | | 483/? [03:16<00:00, 2.45it/s, train/loss=0.849]\nEpoch 0: | | 483/? [03:16<00:00, 2.45it/s, train/loss=4.270]\nEpoch 0: | | 484/? [03:17<00:00, 2.45it/s, train/loss=4.270]\nEpoch 0: | | 484/? [03:17<00:00, 2.45it/s, train/loss=1.970]\nEpoch 0: | | 485/? [03:17<00:00, 2.46it/s, train/loss=1.970]\nEpoch 0: | | 485/? [03:17<00:00, 2.46it/s, train/loss=4.250]\nEpoch 0: | | 486/? [03:17<00:00, 2.46it/s, train/loss=4.250]\nEpoch 0: | | 486/? [03:17<00:00, 2.46it/s, train/loss=1.330]\nEpoch 0: | | 487/? [03:17<00:00, 2.46it/s, train/loss=1.330]\nEpoch 0: | | 487/? [03:17<00:00, 2.46it/s, train/loss=4.240]\nEpoch 0: | | 488/? [03:18<00:00, 2.46it/s, train/loss=4.240]\nEpoch 0: | | 488/? [03:18<00:00, 2.46it/s, train/loss=3.980]\nEpoch 0: | | 489/? [03:18<00:00, 2.47it/s, train/loss=3.980]\nEpoch 0: | | 489/? [03:18<00:00, 2.47it/s, train/loss=4.250]\nEpoch 0: | | 490/? [03:18<00:00, 2.47it/s, train/loss=4.250]\nEpoch 0: | | 490/? [03:18<00:00, 2.47it/s, train/loss=3.170]\nEpoch 0: | | 491/? [03:19<00:00, 2.46it/s, train/loss=3.170]\nEpoch 0: | | 491/? [03:19<00:00, 2.46it/s, train/loss=3.520]\nEpoch 0: | | 492/? [03:19<00:00, 2.46it/s, train/loss=3.520]\nEpoch 0: | | 492/? [03:19<00:00, 2.46it/s, train/loss=1.780]\nEpoch 0: | | 493/? [03:19<00:00, 2.47it/s, train/loss=1.780]\nEpoch 0: | | 493/? [03:19<00:00, 2.47it/s, train/loss=4.330]\nEpoch 0: | | 494/? [03:20<00:00, 2.47it/s, train/loss=4.330]\nEpoch 0: | | 494/? [03:20<00:00, 2.46it/s, train/loss=2.840]\nEpoch 0: | | 495/? [03:20<00:00, 2.47it/s, train/loss=2.840]\nEpoch 0: | | 495/? [03:20<00:00, 2.47it/s, train/loss=4.350]\nEpoch 0: | | 496/? [03:20<00:00, 2.47it/s, train/loss=4.350]\nEpoch 0: | | 496/? [03:20<00:00, 2.47it/s, train/loss=2.180]\nEpoch 0: | | 497/? [03:21<00:00, 2.47it/s, train/loss=2.180]\nEpoch 0: | | 497/? [03:21<00:00, 2.47it/s, train/loss=4.350]\nEpoch 0: | | 498/? [03:21<00:00, 2.47it/s, train/loss=4.350]\nEpoch 0: | | 498/? [03:21<00:00, 2.47it/s, train/loss=0.676]\nEpoch 0: | | 499/? [03:21<00:00, 2.48it/s, train/loss=0.676]\nEpoch 0: | | 499/? [03:21<00:00, 2.48it/s, train/loss=4.340]\nEpoch 0: | | 500/? [03:21<00:00, 2.48it/s, train/loss=4.340]\nEpoch 0: | | 500/? [03:21<00:00, 2.48it/s, train/loss=1.350]\nEpoch 0: | | 501/? [03:22<00:00, 2.47it/s, train/loss=1.350]\nEpoch 0: | | 501/? [03:22<00:00, 2.47it/s, train/loss=1.280]\nEpoch 0: | | 502/? [03:23<00:00, 2.47it/s, train/loss=1.280]\nEpoch 0: | | 502/? [03:23<00:00, 2.47it/s, train/loss=1.450]\nEpoch 0: | | 503/? [03:23<00:00, 2.47it/s, train/loss=1.450]\nEpoch 0: | | 503/? [03:23<00:00, 2.47it/s, train/loss=4.360]\nEpoch 0: | | 504/? [03:23<00:00, 2.47it/s, train/loss=4.360]\nEpoch 0: | | 504/? [03:23<00:00, 2.47it/s, train/loss=2.170]\nEpoch 0: | | 505/? [03:23<00:00, 2.48it/s, train/loss=2.170]\nEpoch 0: | | 505/? [03:23<00:00, 2.48it/s, train/loss=4.350]\nEpoch 0: | | 506/? [03:24<00:00, 2.48it/s, train/loss=4.350]\nEpoch 0: | | 506/? [03:24<00:00, 2.48it/s, train/loss=1.810]\nEpoch 0: | | 507/? [03:24<00:00, 2.48it/s, train/loss=1.810]\nEpoch 0: | | 507/? [03:24<00:00, 2.48it/s, train/loss=4.340]\nEpoch 0: | | 508/? [03:24<00:00, 2.48it/s, train/loss=4.340]\nEpoch 0: | | 508/? [03:24<00:00, 2.48it/s, train/loss=2.820]\nEpoch 0: | | 509/? [03:24<00:00, 2.49it/s, train/loss=2.820]\nEpoch 0: | | 509/? [03:24<00:00, 2.49it/s, train/loss=4.320]\nEpoch 0: | | 510/? [03:25<00:00, 2.49it/s, train/loss=4.320]\nEpoch 0: | | 510/? [03:25<00:00, 2.49it/s, train/loss=1.890]\nEpoch 0: | | 511/? [03:25<00:00, 2.48it/s, train/loss=1.890]\nEpoch 0: | | 511/? [03:26<00:00, 2.48it/s, train/loss=1.120]\nEpoch 0: | | 512/? [03:26<00:00, 2.48it/s, train/loss=1.120]\nEpoch 0: | | 512/? [03:26<00:00, 2.48it/s, train/loss=2.630]\nEpoch 0: | | 513/? [03:26<00:00, 2.49it/s, train/loss=2.630]\nEpoch 0: | | 513/? [03:26<00:00, 2.49it/s, train/loss=4.340]\nEpoch 0: | | 514/? [03:26<00:00, 2.49it/s, train/loss=4.340]\nEpoch 0: | | 514/? [03:26<00:00, 2.49it/s, train/loss=0.942]\nEpoch 0: | | 515/? [03:26<00:00, 2.49it/s, train/loss=0.942]\nEpoch 0: | | 515/? [03:26<00:00, 2.49it/s, train/loss=4.340]\nEpoch 0: | | 516/? [03:27<00:00, 2.49it/s, train/loss=4.340]\nEpoch 0: | | 516/? [03:27<00:00, 2.49it/s, train/loss=1.110]\nEpoch 0: | | 517/? [03:27<00:00, 2.49it/s, train/loss=1.110]\nEpoch 0: | | 517/? [03:27<00:00, 2.49it/s, train/loss=4.320]\nEpoch 0: | | 518/? [03:27<00:00, 2.49it/s, train/loss=4.320]\nEpoch 0: | | 518/? [03:27<00:00, 2.49it/s, train/loss=4.760]\nEpoch 0: | | 519/? [03:27<00:00, 2.50it/s, train/loss=4.760]\nEpoch 0: | | 519/? [03:27<00:00, 2.50it/s, train/loss=4.300]\nEpoch 0: | | 520/? [03:28<00:00, 2.50it/s, train/loss=4.300]\nEpoch 0: | | 520/? [03:28<00:00, 2.50it/s, train/loss=1.390]\nEpoch 0: | | 521/? [03:29<00:00, 2.49it/s, train/loss=1.390]\nEpoch 0: | | 521/? [03:29<00:00, 2.49it/s, train/loss=1.430]\nEpoch 0: | | 522/? [03:29<00:00, 2.49it/s, train/loss=1.430]\nEpoch 0: | | 522/? [03:29<00:00, 2.49it/s, train/loss=1.370]\nEpoch 0: | | 523/? [03:29<00:00, 2.50it/s, train/loss=1.370]\nEpoch 0: | | 523/? [03:29<00:00, 2.50it/s, train/loss=4.260]\nEpoch 0: | | 524/? [03:29<00:00, 2.50it/s, train/loss=4.260]\nEpoch 0: | | 524/? [03:29<00:00, 2.50it/s, train/loss=1.990]\nEpoch 0: | | 525/? [03:29<00:00, 2.50it/s, train/loss=1.990]\nEpoch 0: | | 525/? [03:29<00:00, 2.50it/s, train/loss=4.240]\nEpoch 0: | | 526/? [03:30<00:00, 2.50it/s, train/loss=4.240]\nEpoch 0: | | 526/? [03:30<00:00, 2.50it/s, train/loss=1.040]\nEpoch 0: | | 527/? [03:30<00:00, 2.50it/s, train/loss=1.040]\nEpoch 0: | | 527/? [03:30<00:00, 2.50it/s, train/loss=4.210]\nEpoch 0: | | 528/? [03:30<00:00, 2.50it/s, train/loss=4.210]\nEpoch 0: | | 528/? [03:30<00:00, 2.50it/s, train/loss=1.550]\nEpoch 0: | | 529/? [03:30<00:00, 2.51it/s, train/loss=1.550]\nEpoch 0: | | 529/? [03:30<00:00, 2.51it/s, train/loss=4.190]\nEpoch 0: | | 530/? [03:31<00:00, 2.51it/s, train/loss=4.190]\nEpoch 0: | | 530/? [03:31<00:00, 2.51it/s, train/loss=2.190]\nEpoch 0: | | 531/? [03:32<00:00, 2.50it/s, train/loss=2.190]\nEpoch 0: | | 531/? [03:32<00:00, 2.50it/s, train/loss=2.480]\nEpoch 0: | | 532/? [03:32<00:00, 2.50it/s, train/loss=2.480]\nEpoch 0: | | 532/? [03:32<00:00, 2.50it/s, train/loss=3.060]\nEpoch 0: | | 533/? [03:32<00:00, 2.51it/s, train/loss=3.060]\nEpoch 0: | | 533/? [03:32<00:00, 2.51it/s, train/loss=4.170]\nEpoch 0: | | 534/? [03:33<00:00, 2.51it/s, train/loss=4.170]\nEpoch 0: | | 534/? [03:33<00:00, 2.51it/s, train/loss=1.580]\nEpoch 0: | | 535/? [03:33<00:00, 2.51it/s, train/loss=1.580]\nEpoch 0: | | 535/? [03:33<00:00, 2.51it/s, train/loss=4.150]\nEpoch 0: | | 536/? [03:33<00:00, 2.51it/s, train/loss=4.150]\nEpoch 0: | | 536/? [03:33<00:00, 2.51it/s, train/loss=2.330]\nEpoch 0: | | 537/? [03:33<00:00, 2.51it/s, train/loss=2.330]\nEpoch 0: | | 537/? [03:33<00:00, 2.51it/s, train/loss=4.130]\nEpoch 0: | | 538/? [03:33<00:00, 2.51it/s, train/loss=4.130]\nEpoch 0: | | 538/? [03:33<00:00, 2.51it/s, train/loss=1.740]\nEpoch 0: | | 539/? [03:34<00:00, 2.52it/s, train/loss=1.740]\nEpoch 0: | | 539/? [03:34<00:00, 2.52it/s, train/loss=4.120]\nEpoch 0: | | 540/? [03:34<00:00, 2.52it/s, train/loss=4.120]\nEpoch 0: | | 540/? [03:34<00:00, 2.52it/s, train/loss=2.130]\nEpoch 0: | | 541/? [03:35<00:00, 2.51it/s, train/loss=2.130]\nEpoch 0: | | 541/? [03:35<00:00, 2.51it/s, train/loss=2.980]\nEpoch 0: | | 542/? [03:35<00:00, 2.51it/s, train/loss=2.980]\nEpoch 0: | | 542/? [03:35<00:00, 2.51it/s, train/loss=1.930]\nEpoch 0: | | 543/? [03:35<00:00, 2.52it/s, train/loss=1.930]\nEpoch 0: | | 543/? [03:35<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 544/? [03:36<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 544/? [03:36<00:00, 2.52it/s, train/loss=2.970]\nEpoch 0: | | 545/? [03:36<00:00, 2.52it/s, train/loss=2.970]\nEpoch 0: | | 545/? [03:36<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 546/? [03:36<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 546/? [03:36<00:00, 2.52it/s, train/loss=1.780]\nEpoch 0: | | 547/? [03:36<00:00, 2.52it/s, train/loss=1.780]\nEpoch 0: | | 547/? [03:36<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 548/? [03:37<00:00, 2.52it/s, train/loss=4.130]\nEpoch 0: | | 548/? [03:37<00:00, 2.52it/s, train/loss=2.270]\nEpoch 0: | | 549/? [03:37<00:00, 2.53it/s, train/loss=2.270]\nEpoch 0: | | 549/? [03:37<00:00, 2.53it/s, train/loss=4.110]\nEpoch 0: | | 550/? [03:37<00:00, 2.53it/s, train/loss=4.110]\nEpoch 0: | | 550/? [03:37<00:00, 2.53it/s, train/loss=2.440]\nEpoch 0: | | 551/? [03:38<00:00, 2.52it/s, train/loss=2.440]\nEpoch 0: | | 551/? [03:38<00:00, 2.52it/s, train/loss=2.390]\nEpoch 0: | | 552/? [03:38<00:00, 2.52it/s, train/loss=2.390]\nEpoch 0: | | 552/? [03:38<00:00, 2.52it/s, train/loss=1.130]\nEpoch 0: | | 553/? [03:38<00:00, 2.53it/s, train/loss=1.130]\nEpoch 0: | | 553/? [03:38<00:00, 2.53it/s, train/loss=4.110]\nEpoch 0: | | 554/? [03:39<00:00, 2.53it/s, train/loss=4.110]\nEpoch 0: | | 554/? [03:39<00:00, 2.53it/s, train/loss=0.801]\nEpoch 0: | | 555/? [03:39<00:00, 2.53it/s, train/loss=0.801]\nEpoch 0: | | 555/? [03:39<00:00, 2.53it/s, train/loss=4.090]\nEpoch 0: | | 556/? [03:39<00:00, 2.53it/s, train/loss=4.090]\nEpoch 0: | | 556/? [03:39<00:00, 2.53it/s, train/loss=3.380]\nEpoch 0: | | 557/? [03:39<00:00, 2.53it/s, train/loss=3.380]\nEpoch 0: | | 557/? [03:39<00:00, 2.53it/s, train/loss=4.070]\nEpoch 0: | | 558/? [03:40<00:00, 2.53it/s, train/loss=4.070]\nEpoch 0: | | 558/? [03:40<00:00, 2.53it/s, train/loss=2.010]\nEpoch 0: | | 559/? [03:40<00:00, 2.54it/s, train/loss=2.010]\nEpoch 0: | | 559/? [03:40<00:00, 2.54it/s, train/loss=4.050]\nEpoch 0: | | 560/? [03:40<00:00, 2.54it/s, train/loss=4.050]\nEpoch 0: | | 560/? [03:40<00:00, 2.54it/s, train/loss=1.340]\nEpoch 0: | | 561/? [03:41<00:00, 2.53it/s, train/loss=1.340]\nEpoch 0: | | 561/? [03:41<00:00, 2.53it/s, train/loss=2.310]\nEpoch 0: | | 562/? [03:42<00:00, 2.53it/s, train/loss=2.310]\nEpoch 0: | | 562/? [03:42<00:00, 2.53it/s, train/loss=0.956]\nEpoch 0: | | 563/? [03:42<00:00, 2.53it/s, train/loss=0.956]\nEpoch 0: | | 563/? [03:42<00:00, 2.53it/s, train/loss=4.030]\nEpoch 0: | | 564/? [03:42<00:00, 2.53it/s, train/loss=4.030]\nEpoch 0: | | 564/? [03:42<00:00, 2.53it/s, train/loss=3.390]\nEpoch 0: | | 565/? [03:42<00:00, 2.54it/s, train/loss=3.390]\nEpoch 0: | | 565/? [03:42<00:00, 2.54it/s, train/loss=4.010]\nEpoch 0: | | 566/? [03:43<00:00, 2.54it/s, train/loss=4.010]\nEpoch 0: | | 566/? [03:43<00:00, 2.54it/s, train/loss=2.930]\nEpoch 0: | | 567/? [03:43<00:00, 2.54it/s, train/loss=2.930]\nEpoch 0: | | 567/? [03:43<00:00, 2.54it/s, train/loss=4.000]\nEpoch 0: | | 568/? [03:43<00:00, 2.54it/s, train/loss=4.000]\nEpoch 0: | | 568/? [03:43<00:00, 2.54it/s, train/loss=2.650]\nEpoch 0: | | 569/? [03:43<00:00, 2.55it/s, train/loss=2.650]\nEpoch 0: | | 569/? [03:43<00:00, 2.55it/s, train/loss=3.990]\nEpoch 0: | | 570/? [03:43<00:00, 2.55it/s, train/loss=3.990]\nEpoch 0: | | 570/? [03:43<00:00, 2.55it/s, train/loss=0.636]\nEpoch 0: | | 571/? [03:44<00:00, 2.54it/s, train/loss=0.636]\nEpoch 0: | | 571/? [03:44<00:00, 2.54it/s, train/loss=1.320]\nEpoch 0: | | 572/? [03:45<00:00, 2.54it/s, train/loss=1.320]\nEpoch 0: | | 572/? [03:45<00:00, 2.54it/s, train/loss=0.937]\nEpoch 0: | | 573/? [03:45<00:00, 2.54it/s, train/loss=0.937]\nEpoch 0: | | 573/? [03:45<00:00, 2.54it/s, train/loss=4.000]\nEpoch 0: | | 574/? [03:45<00:00, 2.54it/s, train/loss=4.000]\nEpoch 0: | | 574/? [03:45<00:00, 2.54it/s, train/loss=0.672]\nEpoch 0: | | 575/? [03:45<00:00, 2.55it/s, train/loss=0.672]\nEpoch 0: | | 575/? [03:45<00:00, 2.55it/s, train/loss=3.980]\nEpoch 0: | | 576/? [03:46<00:00, 2.55it/s, train/loss=3.980]\nEpoch 0: | | 576/? [03:46<00:00, 2.55it/s, train/loss=2.170]\nEpoch 0: | | 577/? [03:46<00:00, 2.55it/s, train/loss=2.170]\nEpoch 0: | | 577/? [03:46<00:00, 2.55it/s, train/loss=3.970]\nEpoch 0: | | 578/? [03:46<00:00, 2.55it/s, train/loss=3.970]\nEpoch 0: | | 578/? [03:46<00:00, 2.55it/s, train/loss=1.480]\nEpoch 0: | | 579/? [03:46<00:00, 2.55it/s, train/loss=1.480]\nEpoch 0: | | 579/? [03:46<00:00, 2.55it/s, train/loss=3.960]\nEpoch 0: | | 580/? [03:47<00:00, 2.55it/s, train/loss=3.960]\nEpoch 0: | | 580/? [03:47<00:00, 2.55it/s, train/loss=3.060]\nEpoch 0: | | 581/? [03:47<00:00, 2.55it/s, train/loss=3.060]\nEpoch 0: | | 581/? [03:48<00:00, 2.55it/s, train/loss=2.920]\nEpoch 0: | | 582/? [03:48<00:00, 2.55it/s, train/loss=2.920]\nEpoch 0: | | 582/? [03:48<00:00, 2.55it/s, train/loss=0.917]\nEpoch 0: | | 583/? [03:48<00:00, 2.55it/s, train/loss=0.917]\nEpoch 0: | | 583/? [03:48<00:00, 2.55it/s, train/loss=3.960]\nEpoch 0: | | 584/? [03:48<00:00, 2.55it/s, train/loss=3.960]\nEpoch 0: | | 584/? [03:48<00:00, 2.55it/s, train/loss=2.450]\nEpoch 0: | | 585/? [03:49<00:00, 2.55it/s, train/loss=2.450]\nEpoch 0: | | 585/? [03:49<00:00, 2.55it/s, train/loss=3.950]\nEpoch 0: | | 586/? [03:49<00:00, 2.55it/s, train/loss=3.950]\nEpoch 0: | | 586/? [03:49<00:00, 2.55it/s, train/loss=2.180]\nEpoch 0: | | 587/? [03:49<00:00, 2.56it/s, train/loss=2.180]\nEpoch 0: | | 587/? [03:49<00:00, 2.56it/s, train/loss=3.920]\nEpoch 0: | | 588/? [03:49<00:00, 2.56it/s, train/loss=3.920]\nEpoch 0: | | 588/? [03:49<00:00, 2.56it/s, train/loss=2.390]\nEpoch 0: | | 589/? [03:49<00:00, 2.56it/s, train/loss=2.390]\nEpoch 0: | | 589/? [03:49<00:00, 2.56it/s, train/loss=3.920]\nEpoch 0: | | 590/? [03:50<00:00, 2.56it/s, train/loss=3.920]\nEpoch 0: | | 590/? [03:50<00:00, 2.56it/s, train/loss=3.030]\nEpoch 0: | | 591/? [03:51<00:00, 2.56it/s, train/loss=3.030]\nEpoch 0: | | 591/? [03:51<00:00, 2.56it/s, train/loss=1.200]\nEpoch 0: | | 592/? [03:51<00:00, 2.56it/s, train/loss=1.200]\nEpoch 0: | | 592/? [03:51<00:00, 2.56it/s, train/loss=0.798]\nEpoch 0: | | 593/? [03:51<00:00, 2.56it/s, train/loss=0.798]\nEpoch 0: | | 593/? [03:51<00:00, 2.56it/s, train/loss=3.990]\nEpoch 0: | | 594/? [03:52<00:00, 2.56it/s, train/loss=3.990]\nEpoch 0: | | 594/? [03:52<00:00, 2.56it/s, train/loss=1.160]\nEpoch 0: | | 595/? [03:52<00:00, 2.56it/s, train/loss=1.160]\nEpoch 0: | | 595/? [03:52<00:00, 2.56it/s, train/loss=4.010]\nEpoch 0: | | 596/? [03:52<00:00, 2.56it/s, train/loss=4.010]\nEpoch 0: | | 596/? [03:52<00:00, 2.56it/s, train/loss=3.640]\nEpoch 0: | | 597/? [03:52<00:00, 2.57it/s, train/loss=3.640]\nEpoch 0: | | 597/? [03:52<00:00, 2.57it/s, train/loss=4.010]\nEpoch 0: | | 598/? [03:53<00:00, 2.57it/s, train/loss=4.010]\nEpoch 0: | | 598/? [03:53<00:00, 2.57it/s, train/loss=2.290]\nEpoch 0: | | 599/? [03:53<00:00, 2.57it/s, train/loss=2.290]\nEpoch 0: | | 599/? [03:53<00:00, 2.57it/s, train/loss=4.020]\nEpoch 0: | | 600/? [03:53<00:00, 2.57it/s, train/loss=4.020]\nEpoch 0: | | 600/? [03:53<00:00, 2.57it/s, train/loss=2.900]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.54it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.56it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.57it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.60it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:04, 8.62it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.65it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.68it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.72it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:03, 8.75it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 8.82it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 8.86it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 8.55it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:03, 8.54it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:03, 8.59it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 8.61it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 8.62it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 8.63it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:02, 8.66it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 8.69it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 8.69it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 8.71it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:02, 8.72it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 8.75it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 8.78it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 8.78it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 8.80it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:03<00:01, 8.81it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 8.82it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 8.82it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 8.83it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:01, 8.85it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 8.86it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 8.86it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 8.88it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 8.87it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:04<00:00, 8.84it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 8.83it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 8.83it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 8.83it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 8.82it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 600/? [04:04<00:00, 2.46it/s, train/loss=2.900]\nEpoch 0: | | 601/? [04:19<00:00, 2.31it/s, train/loss=2.900]\nEpoch 0: | | 601/? [04:19<00:00, 2.31it/s, train/loss=1.340]\nEpoch 0: | | 602/? [04:19<00:00, 2.32it/s, train/loss=1.340]\nEpoch 0: | | 602/? [04:20<00:00, 2.32it/s, train/loss=1.860]\nEpoch 0: | | 603/? [04:20<00:00, 2.32it/s, train/loss=1.860]\nEpoch 0: | | 603/? [04:20<00:00, 2.32it/s, train/loss=4.060]\nEpoch 0: | | 604/? [04:20<00:00, 2.32it/s, train/loss=4.060]\nEpoch 0: | | 604/? [04:20<00:00, 2.32it/s, train/loss=2.570]\nEpoch 0: | | 605/? [04:20<00:00, 2.32it/s, train/loss=2.570]\nEpoch 0: | | 605/? [04:20<00:00, 2.32it/s, train/loss=4.070]\nEpoch 0: | | 606/? [04:20<00:00, 2.32it/s, train/loss=4.070]\nEpoch 0: | | 606/? [04:20<00:00, 2.32it/s, train/loss=3.590]\nEpoch 0: | | 607/? [04:20<00:00, 2.33it/s, train/loss=3.590]\nEpoch 0: | | 607/? [04:20<00:00, 2.33it/s, train/loss=4.070]\nEpoch 0: | | 608/? [04:21<00:00, 2.33it/s, train/loss=4.070]\nEpoch 0: | | 608/? [04:21<00:00, 2.33it/s, train/loss=3.050]\nEpoch 0: | | 609/? [04:21<00:00, 2.33it/s, train/loss=3.050]\nEpoch 0: | | 609/? [04:21<00:00, 2.33it/s, train/loss=4.060]\nEpoch 0: | | 610/? [04:21<00:00, 2.33it/s, train/loss=4.060]\nEpoch 0: | | 610/? [04:21<00:00, 2.33it/s, train/loss=1.530]\nEpoch 0: | | 611/? [04:22<00:00, 2.33it/s, train/loss=1.530]\nEpoch 0: | | 611/? [04:22<00:00, 2.32it/s, train/loss=1.450]\nEpoch 0: | | 612/? [04:23<00:00, 2.33it/s, train/loss=1.450]\nEpoch 0: | | 612/? [04:23<00:00, 2.33it/s, train/loss=1.410]\nEpoch 0: | | 613/? [04:23<00:00, 2.33it/s, train/loss=1.410]\nEpoch 0: | | 613/? [04:23<00:00, 2.33it/s, train/loss=4.070]\nEpoch 0: | | 614/? [04:23<00:00, 2.33it/s, train/loss=4.070]\nEpoch 0: | | 614/? [04:23<00:00, 2.33it/s, train/loss=2.290]\nEpoch 0: | | 615/? [04:23<00:00, 2.33it/s, train/loss=2.290]\nEpoch 0: | | 615/? [04:23<00:00, 2.33it/s, train/loss=4.050]\nEpoch 0: | | 616/? [04:24<00:00, 2.33it/s, train/loss=4.050]\nEpoch 0: | | 616/? [04:24<00:00, 2.33it/s, train/loss=2.550]\nEpoch 0: | | 617/? [04:24<00:00, 2.34it/s, train/loss=2.550]\nEpoch 0: | | 617/? [04:24<00:00, 2.34it/s, train/loss=4.010]\nEpoch 0: | | 618/? [04:24<00:00, 2.34it/s, train/loss=4.010]\nEpoch 0: | | 618/? [04:24<00:00, 2.34it/s, train/loss=2.220]\nEpoch 0: | | 619/? [04:24<00:00, 2.34it/s, train/loss=2.220]\nEpoch 0: | | 619/? [04:24<00:00, 2.34it/s, train/loss=3.990]\nEpoch 0: | | 620/? [04:25<00:00, 2.34it/s, train/loss=3.990]\nEpoch 0: | | 620/? [04:25<00:00, 2.34it/s, train/loss=0.898]\nEpoch 0: | | 621/? [04:25<00:00, 2.33it/s, train/loss=0.898]\nEpoch 0: | | 621/? [04:26<00:00, 2.33it/s, train/loss=1.590]\nEpoch 0: | | 622/? [04:26<00:00, 2.34it/s, train/loss=1.590]\nEpoch 0: | | 622/? [04:26<00:00, 2.34it/s, train/loss=0.873]\nEpoch 0: | | 623/? [04:26<00:00, 2.34it/s, train/loss=0.873]\nEpoch 0: | | 623/? [04:26<00:00, 2.34it/s, train/loss=3.970]\nEpoch 0: | | 624/? [04:26<00:00, 2.34it/s, train/loss=3.970]\nEpoch 0: | | 624/? [04:26<00:00, 2.34it/s, train/loss=2.080]\nEpoch 0: | | 625/? [04:26<00:00, 2.34it/s, train/loss=2.080]\nEpoch 0: | | 625/? [04:26<00:00, 2.34it/s, train/loss=3.940]\nEpoch 0: | | 626/? [04:27<00:00, 2.34it/s, train/loss=3.940]\nEpoch 0: | | 626/? [04:27<00:00, 2.34it/s, train/loss=2.700]\nEpoch 0: | | 627/? [04:27<00:00, 2.35it/s, train/loss=2.700]\nEpoch 0: | | 627/? [04:27<00:00, 2.35it/s, train/loss=3.920]\nEpoch 0: | | 628/? [04:27<00:00, 2.35it/s, train/loss=3.920]\nEpoch 0: | | 628/? [04:27<00:00, 2.35it/s, train/loss=1.280]\nEpoch 0: | | 629/? [04:27<00:00, 2.35it/s, train/loss=1.280]\nEpoch 0: | | 629/? [04:27<00:00, 2.35it/s, train/loss=3.910]\nEpoch 0: | | 630/? [04:28<00:00, 2.35it/s, train/loss=3.910]\nEpoch 0: | | 630/? [04:28<00:00, 2.35it/s, train/loss=1.190]\nEpoch 0: | | 631/? [04:29<00:00, 2.35it/s, train/loss=1.190]\nEpoch 0: | | 631/? [04:29<00:00, 2.34it/s, train/loss=0.802]\nEpoch 0: | | 632/? [04:29<00:00, 2.35it/s, train/loss=0.802]\nEpoch 0: | | 632/? [04:29<00:00, 2.35it/s, train/loss=1.520]\nEpoch 0: | | 633/? [04:29<00:00, 2.35it/s, train/loss=1.520]\nEpoch 0: | | 633/? [04:29<00:00, 2.35it/s, train/loss=3.940]\nEpoch 0: | | 634/? [04:29<00:00, 2.35it/s, train/loss=3.940]\nEpoch 0: | | 634/? [04:29<00:00, 2.35it/s, train/loss=3.810]\nEpoch 0: | | 635/? [04:29<00:00, 2.35it/s, train/loss=3.810]\nEpoch 0: | | 635/? [04:29<00:00, 2.35it/s, train/loss=3.930]\nEpoch 0: | | 636/? [04:30<00:00, 2.35it/s, train/loss=3.930]\nEpoch 0: | | 636/? [04:30<00:00, 2.35it/s, train/loss=2.680]\nEpoch 0: | | 637/? [04:30<00:00, 2.36it/s, train/loss=2.680]\nEpoch 0: | | 637/? [04:30<00:00, 2.36it/s, train/loss=3.910]\nEpoch 0: | | 638/? [04:30<00:00, 2.36it/s, train/loss=3.910]\nEpoch 0: | | 638/? [04:30<00:00, 2.36it/s, train/loss=2.430]\nEpoch 0: | | 639/? [04:30<00:00, 2.36it/s, train/loss=2.430]\nEpoch 0: | | 639/? [04:30<00:00, 2.36it/s, train/loss=3.890]\nEpoch 0: | | 640/? [04:31<00:00, 2.36it/s, train/loss=3.890]\nEpoch 0: | | 640/? [04:31<00:00, 2.36it/s, train/loss=3.000]\nEpoch 0: | | 641/? [04:32<00:00, 2.36it/s, train/loss=3.000]\nEpoch 0: | | 641/? [04:32<00:00, 2.35it/s, train/loss=0.737]\nEpoch 0: | | 642/? [04:32<00:00, 2.36it/s, train/loss=0.737]\nEpoch 0: | | 642/? [04:32<00:00, 2.36it/s, train/loss=1.870]\nEpoch 0: | | 643/? [04:32<00:00, 2.36it/s, train/loss=1.870]\nEpoch 0: | | 643/? [04:32<00:00, 2.36it/s, train/loss=3.870]\nEpoch 0: | | 644/? [04:33<00:00, 2.36it/s, train/loss=3.870]\nEpoch 0: | | 644/? [04:33<00:00, 2.36it/s, train/loss=2.900]\nEpoch 0: | | 645/? [04:33<00:00, 2.36it/s, train/loss=2.900]\nEpoch 0: | | 645/? [04:33<00:00, 2.36it/s, train/loss=3.850]\nEpoch 0: | | 646/? [04:33<00:00, 2.36it/s, train/loss=3.850]\nEpoch 0: | | 646/? [04:33<00:00, 2.36it/s, train/loss=2.790]\nEpoch 0: | | 647/? [04:33<00:00, 2.37it/s, train/loss=2.790]\nEpoch 0: | | 647/? [04:33<00:00, 2.37it/s, train/loss=3.830]\nEpoch 0: | | 648/? [04:33<00:00, 2.37it/s, train/loss=3.830]\nEpoch 0: | | 648/? [04:33<00:00, 2.37it/s, train/loss=3.090]\nEpoch 0: | | 649/? [04:33<00:00, 2.37it/s, train/loss=3.090]\nEpoch 0: | | 649/? [04:34<00:00, 2.37it/s, train/loss=3.810]\nEpoch 0: | | 650/? [04:34<00:00, 2.37it/s, train/loss=3.810]\nEpoch 0: | | 650/? [04:34<00:00, 2.37it/s, train/loss=5.800]\nEpoch 0: | | 651/? [04:35<00:00, 2.36it/s, train/loss=5.800]\nEpoch 0: | | 651/? [04:35<00:00, 2.36it/s, train/loss=1.430]\nEpoch 0: | | 652/? [04:35<00:00, 2.36it/s, train/loss=1.430]\nEpoch 0: | | 652/? [04:35<00:00, 2.36it/s, train/loss=0.542]\nEpoch 0: | | 653/? [04:35<00:00, 2.37it/s, train/loss=0.542]\nEpoch 0: | | 653/? [04:35<00:00, 2.37it/s, train/loss=3.840]\nEpoch 0: | | 654/? [04:36<00:00, 2.37it/s, train/loss=3.840]\nEpoch 0: | | 654/? [04:36<00:00, 2.37it/s, train/loss=1.890]\nEpoch 0: | | 655/? [04:36<00:00, 2.37it/s, train/loss=1.890]\nEpoch 0: | | 655/? [04:36<00:00, 2.37it/s, train/loss=3.850]\nEpoch 0: | | 656/? [04:36<00:00, 2.37it/s, train/loss=3.850]\nEpoch 0: | | 656/? [04:36<00:00, 2.37it/s, train/loss=1.940]\nEpoch 0: | | 657/? [04:36<00:00, 2.37it/s, train/loss=1.940]\nEpoch 0: | | 657/? [04:36<00:00, 2.37it/s, train/loss=3.850]\nEpoch 0: | | 658/? [04:37<00:00, 2.37it/s, train/loss=3.850]\nEpoch 0: | | 658/? [04:37<00:00, 2.37it/s, train/loss=2.310]\nEpoch 0: | | 659/? [04:37<00:00, 2.38it/s, train/loss=2.310]\nEpoch 0: | | 659/? [04:37<00:00, 2.38it/s, train/loss=3.850]\nEpoch 0: | | 660/? [04:37<00:00, 2.38it/s, train/loss=3.850]\nEpoch 0: | | 660/? [04:37<00:00, 2.38it/s, train/loss=3.240]\nEpoch 0: | | 661/? [04:38<00:00, 2.37it/s, train/loss=3.240]\nEpoch 0: | | 661/? [04:38<00:00, 2.37it/s, train/loss=1.370]\nEpoch 0: | | 662/? [04:38<00:00, 2.37it/s, train/loss=1.370]\nEpoch 0: | | 662/? [04:38<00:00, 2.37it/s, train/loss=0.638]\nEpoch 0: | | 663/? [04:38<00:00, 2.38it/s, train/loss=0.638]\nEpoch 0: | | 663/? [04:38<00:00, 2.38it/s, train/loss=3.890]\nEpoch 0: | | 664/? [04:39<00:00, 2.38it/s, train/loss=3.890]\nEpoch 0: | | 664/? [04:39<00:00, 2.38it/s, train/loss=2.390]\nEpoch 0: | | 665/? [04:39<00:00, 2.38it/s, train/loss=2.390]\nEpoch 0: | | 665/? [04:39<00:00, 2.38it/s, train/loss=3.900]\nEpoch 0: | | 666/? [04:39<00:00, 2.38it/s, train/loss=3.900]\nEpoch 0: | | 666/? [04:39<00:00, 2.38it/s, train/loss=1.330]\nEpoch 0: | | 667/? [04:39<00:00, 2.38it/s, train/loss=1.330]\nEpoch 0: | | 667/? [04:39<00:00, 2.38it/s, train/loss=3.870]\nEpoch 0: | | 668/? [04:40<00:00, 2.38it/s, train/loss=3.870]\nEpoch 0: | | 668/? [04:40<00:00, 2.38it/s, train/loss=2.550]\nEpoch 0: | | 669/? [04:40<00:00, 2.39it/s, train/loss=2.550]\nEpoch 0: | | 669/? [04:40<00:00, 2.39it/s, train/loss=3.870]\nEpoch 0: | | 670/? [04:40<00:00, 2.39it/s, train/loss=3.870]\nEpoch 0: | | 670/? [04:40<00:00, 2.39it/s, train/loss=1.670]\nEpoch 0: | | 671/? [04:41<00:00, 2.38it/s, train/loss=1.670]\nEpoch 0: | | 671/? [04:41<00:00, 2.38it/s, train/loss=0.788]\nEpoch 0: | | 672/? [04:41<00:00, 2.38it/s, train/loss=0.788]\nEpoch 0: | | 672/? [04:42<00:00, 2.38it/s, train/loss=1.160]\nEpoch 0: | | 673/? [04:42<00:00, 2.39it/s, train/loss=1.160]\nEpoch 0: | | 673/? [04:42<00:00, 2.39it/s, train/loss=3.890]\nEpoch 0: | | 674/? [04:42<00:00, 2.39it/s, train/loss=3.890]\nEpoch 0: | | 674/? [04:42<00:00, 2.39it/s, train/loss=1.260]\nEpoch 0: | | 675/? [04:42<00:00, 2.39it/s, train/loss=1.260]\nEpoch 0: | | 675/? [04:42<00:00, 2.39it/s, train/loss=3.880]\nEpoch 0: | | 676/? [04:42<00:00, 2.39it/s, train/loss=3.880]\nEpoch 0: | | 676/? [04:42<00:00, 2.39it/s, train/loss=3.090]\nEpoch 0: | | 677/? [04:43<00:00, 2.39it/s, train/loss=3.090]\nEpoch 0: | | 677/? [04:43<00:00, 2.39it/s, train/loss=3.870]\nEpoch 0: | | 678/? [04:43<00:00, 2.39it/s, train/loss=3.870]\nEpoch 0: | | 678/? [04:43<00:00, 2.39it/s, train/loss=3.090]\nEpoch 0: | | 679/? [04:43<00:00, 2.40it/s, train/loss=3.090]\nEpoch 0: | | 679/? [04:43<00:00, 2.40it/s, train/loss=3.850]\nEpoch 0: | | 680/? [04:43<00:00, 2.40it/s, train/loss=3.850]\nEpoch 0: | | 680/? [04:43<00:00, 2.40it/s, train/loss=2.110]\nEpoch 0: | | 681/? [04:44<00:00, 2.39it/s, train/loss=2.110]\nEpoch 0: | | 681/? [04:44<00:00, 2.39it/s, train/loss=0.638]\nEpoch 0: | | 682/? [04:45<00:00, 2.39it/s, train/loss=0.638]\nEpoch 0: | | 682/? [04:45<00:00, 2.39it/s, train/loss=1.190]\nEpoch 0: | | 683/? [04:45<00:00, 2.39it/s, train/loss=1.190]\nEpoch 0: | | 683/? [04:45<00:00, 2.39it/s, train/loss=3.870]\nEpoch 0: | | 684/? [04:45<00:00, 2.40it/s, train/loss=3.870]\nEpoch 0: | | 684/? [04:45<00:00, 2.40it/s, train/loss=2.190]\nEpoch 0: | | 685/? [04:45<00:00, 2.40it/s, train/loss=2.190]\nEpoch 0: | | 685/? [04:45<00:00, 2.40it/s, train/loss=3.850]\nEpoch 0: | | 686/? [04:46<00:00, 2.40it/s, train/loss=3.850]\nEpoch 0: | | 686/? [04:46<00:00, 2.40it/s, train/loss=2.970]\nEpoch 0: | | 687/? [04:46<00:00, 2.40it/s, train/loss=2.970]\nEpoch 0: | | 687/? [04:46<00:00, 2.40it/s, train/loss=3.830]\nEpoch 0: | | 688/? [04:46<00:00, 2.40it/s, train/loss=3.830]\nEpoch 0: | | 688/? [04:46<00:00, 2.40it/s, train/loss=3.460]\nEpoch 0: | | 689/? [04:46<00:00, 2.40it/s, train/loss=3.460]\nEpoch 0: | | 689/? [04:46<00:00, 2.40it/s, train/loss=3.830]\nEpoch 0: | | 690/? [04:46<00:00, 2.40it/s, train/loss=3.830]\nEpoch 0: | | 690/? [04:46<00:00, 2.40it/s, train/loss=3.190]\nEpoch 0: | | 691/? [04:47<00:00, 2.40it/s, train/loss=3.190]\nEpoch 0: | | 691/? [04:47<00:00, 2.40it/s, train/loss=5.260]\nEpoch 0: | | 692/? [04:48<00:00, 2.40it/s, train/loss=5.260]\nEpoch 0: | | 692/? [04:48<00:00, 2.40it/s, train/loss=1.940]\nEpoch 0: | | 693/? [04:48<00:00, 2.40it/s, train/loss=1.940]\nEpoch 0: | | 693/? [04:48<00:00, 2.40it/s, train/loss=3.870]\nEpoch 0: | | 694/? [04:48<00:00, 2.40it/s, train/loss=3.870]\nEpoch 0: | | 694/? [04:48<00:00, 2.40it/s, train/loss=1.400]\nEpoch 0: | | 695/? [04:48<00:00, 2.41it/s, train/loss=1.400]\nEpoch 0: | | 695/? [04:48<00:00, 2.41it/s, train/loss=3.880]\nEpoch 0: | | 696/? [04:49<00:00, 2.41it/s, train/loss=3.880]\nEpoch 0: | | 696/? [04:49<00:00, 2.41it/s, train/loss=3.600]\nEpoch 0: | | 697/? [04:49<00:00, 2.41it/s, train/loss=3.600]\nEpoch 0: | | 697/? [04:49<00:00, 2.41it/s, train/loss=3.870]\nEpoch 0: | | 698/? [04:49<00:00, 2.41it/s, train/loss=3.870]\nEpoch 0: | | 698/? [04:49<00:00, 2.41it/s, train/loss=0.728]\nEpoch 0: | | 699/? [04:49<00:00, 2.41it/s, train/loss=0.728]\nEpoch 0: | | 699/? [04:49<00:00, 2.41it/s, train/loss=3.880]\nEpoch 0: | | 700/? [04:50<00:00, 2.41it/s, train/loss=3.880]\nEpoch 0: | | 700/? [04:50<00:00, 2.41it/s, train/loss=4.150]\nEpoch 0: | | 701/? [04:50<00:00, 2.41it/s, train/loss=4.150]\nEpoch 0: | | 701/? [04:51<00:00, 2.41it/s, train/loss=3.100]\nEpoch 0: | | 702/? [04:51<00:00, 2.41it/s, train/loss=3.100]\nEpoch 0: | | 702/? [04:51<00:00, 2.41it/s, train/loss=1.620]\nEpoch 0: | | 703/? [04:51<00:00, 2.41it/s, train/loss=1.620]\nEpoch 0: | | 703/? [04:51<00:00, 2.41it/s, train/loss=3.910]\nEpoch 0: | | 704/? [04:51<00:00, 2.41it/s, train/loss=3.910]\nEpoch 0: | | 704/? [04:51<00:00, 2.41it/s, train/loss=2.630]\nEpoch 0: | | 705/? [04:51<00:00, 2.42it/s, train/loss=2.630]\nEpoch 0: | | 705/? [04:51<00:00, 2.42it/s, train/loss=3.910]\nEpoch 0: | | 706/? [04:52<00:00, 2.42it/s, train/loss=3.910]\nEpoch 0: | | 706/? [04:52<00:00, 2.42it/s, train/loss=2.230]\nEpoch 0: | | 707/? [04:52<00:00, 2.42it/s, train/loss=2.230]\nEpoch 0: | | 707/? [04:52<00:00, 2.42it/s, train/loss=3.910]\nEpoch 0: | | 708/? [04:52<00:00, 2.42it/s, train/loss=3.910]\nEpoch 0: | | 708/? [04:52<00:00, 2.42it/s, train/loss=1.250]\nEpoch 0: | | 709/? [04:52<00:00, 2.42it/s, train/loss=1.250]\nEpoch 0: | | 709/? [04:52<00:00, 2.42it/s, train/loss=3.920]\nEpoch 0: | | 710/? [04:53<00:00, 2.42it/s, train/loss=3.920]\nEpoch 0: | | 710/? [04:53<00:00, 2.42it/s, train/loss=4.350]\nEpoch 0: | | 711/? [04:54<00:00, 2.42it/s, train/loss=4.350]\nEpoch 0: | | 711/? [04:54<00:00, 2.42it/s, train/loss=1.360]\nEpoch 0: | | 712/? [04:54<00:00, 2.42it/s, train/loss=1.360]\nEpoch 0: | | 712/? [04:54<00:00, 2.42it/s, train/loss=0.907]\nEpoch 0: | | 713/? [04:54<00:00, 2.42it/s, train/loss=0.907]\nEpoch 0: | | 713/? [04:54<00:00, 2.42it/s, train/loss=3.970]\nEpoch 0: | | 714/? [04:54<00:00, 2.42it/s, train/loss=3.970]\nEpoch 0: | | 714/? [04:54<00:00, 2.42it/s, train/loss=1.470]\nEpoch 0: | | 715/? [04:54<00:00, 2.42it/s, train/loss=1.470]\nEpoch 0: | | 715/? [04:54<00:00, 2.42it/s, train/loss=3.970]\nEpoch 0: | | 716/? [04:55<00:00, 2.42it/s, train/loss=3.970]\nEpoch 0: | | 716/? [04:55<00:00, 2.42it/s, train/loss=3.030]\nEpoch 0: | | 717/? [04:55<00:00, 2.43it/s, train/loss=3.030]\nEpoch 0: | | 717/? [04:55<00:00, 2.43it/s, train/loss=3.970]\nEpoch 0: | | 718/? [04:55<00:00, 2.43it/s, train/loss=3.970]\nEpoch 0: | | 718/? [04:55<00:00, 2.43it/s, train/loss=3.100]\nEpoch 0: | | 719/? [04:55<00:00, 2.43it/s, train/loss=3.100]\nEpoch 0: | | 719/? [04:55<00:00, 2.43it/s, train/loss=3.960]\nEpoch 0: | | 720/? [04:56<00:00, 2.43it/s, train/loss=3.960]\nEpoch 0: | | 720/? [04:56<00:00, 2.43it/s, train/loss=0.764]\nEpoch 0: | | 721/? [04:57<00:00, 2.43it/s, train/loss=0.764]\nEpoch 0: | | 721/? [04:57<00:00, 2.43it/s, train/loss=1.450]\nEpoch 0: | | 722/? [04:57<00:00, 2.43it/s, train/loss=1.450]\nEpoch 0: | | 722/? [04:57<00:00, 2.43it/s, train/loss=0.801]\nEpoch 0: | | 723/? [04:57<00:00, 2.43it/s, train/loss=0.801]\nEpoch 0: | | 723/? [04:57<00:00, 2.43it/s, train/loss=3.990]\nEpoch 0: | | 724/? [04:58<00:00, 2.43it/s, train/loss=3.990]\nEpoch 0: | | 724/? [04:58<00:00, 2.43it/s, train/loss=4.620]\nEpoch 0: | | 725/? [04:58<00:00, 2.43it/s, train/loss=4.620]\nEpoch 0: | | 725/? [04:58<00:00, 2.43it/s, train/loss=3.990]\nEpoch 0: | | 726/? [04:58<00:00, 2.43it/s, train/loss=3.990]\nEpoch 0: | | 726/? [04:58<00:00, 2.43it/s, train/loss=2.560]\nEpoch 0: | | 727/? [04:58<00:00, 2.43it/s, train/loss=2.560]\nEpoch 0: | | 727/? [04:58<00:00, 2.43it/s, train/loss=3.970]\nEpoch 0: | | 728/? [04:58<00:00, 2.44it/s, train/loss=3.970]\nEpoch 0: | | 728/? [04:58<00:00, 2.44it/s, train/loss=2.670]\nEpoch 0: | | 729/? [04:59<00:00, 2.44it/s, train/loss=2.670]\nEpoch 0: | | 729/? [04:59<00:00, 2.44it/s, train/loss=3.950]\nEpoch 0: | | 730/? [04:59<00:00, 2.44it/s, train/loss=3.950]\nEpoch 0: | | 730/? [04:59<00:00, 2.44it/s, train/loss=1.660]\nEpoch 0: | | 731/? [05:00<00:00, 2.43it/s, train/loss=1.660]\nEpoch 0: | | 731/? [05:00<00:00, 2.43it/s, train/loss=0.466]\nEpoch 0: | | 732/? [05:00<00:00, 2.43it/s, train/loss=0.466]\nEpoch 0: | | 732/? [05:00<00:00, 2.43it/s, train/loss=1.160]\nEpoch 0: | | 733/? [05:00<00:00, 2.44it/s, train/loss=1.160]\nEpoch 0: | | 733/? [05:00<00:00, 2.44it/s, train/loss=3.940]\nEpoch 0: | | 734/? [05:01<00:00, 2.44it/s, train/loss=3.940]\nEpoch 0: | | 734/? [05:01<00:00, 2.44it/s, train/loss=1.240]\nEpoch 0: | | 735/? [05:01<00:00, 2.44it/s, train/loss=1.240]\nEpoch 0: | | 735/? [05:01<00:00, 2.44it/s, train/loss=3.910]\nEpoch 0: | | 736/? [05:01<00:00, 2.44it/s, train/loss=3.910]\nEpoch 0: | | 736/? [05:01<00:00, 2.44it/s, train/loss=1.670]\nEpoch 0: | | 737/? [05:01<00:00, 2.44it/s, train/loss=1.670]\nEpoch 0: | | 737/? [05:01<00:00, 2.44it/s, train/loss=3.890]\nEpoch 0: | | 738/? [05:02<00:00, 2.44it/s, train/loss=3.890]\nEpoch 0: | | 738/? [05:02<00:00, 2.44it/s, train/loss=3.870]\nEpoch 0: | | 739/? [05:02<00:00, 2.44it/s, train/loss=3.870]\nEpoch 0: | | 739/? [05:02<00:00, 2.44it/s, train/loss=3.870]\nEpoch 0: | | 740/? [05:02<00:00, 2.44it/s, train/loss=3.870]\nEpoch 0: | | 740/? [05:02<00:00, 2.44it/s, train/loss=2.820]\nEpoch 0: | | 741/? [05:03<00:00, 2.44it/s, train/loss=2.820]\nEpoch 0: | | 741/? [05:03<00:00, 2.44it/s, train/loss=1.030]\nEpoch 0: | | 742/? [05:03<00:00, 2.44it/s, train/loss=1.030]\nEpoch 0: | | 742/? [05:03<00:00, 2.44it/s, train/loss=4.110]\nEpoch 0: | | 743/? [05:04<00:00, 2.44it/s, train/loss=4.110]\nEpoch 0: | | 743/? [05:04<00:00, 2.44it/s, train/loss=3.850]\nEpoch 0: | | 744/? [05:04<00:00, 2.44it/s, train/loss=3.850]\nEpoch 0: | | 744/? [05:04<00:00, 2.44it/s, train/loss=3.620]\nEpoch 0: | | 745/? [05:04<00:00, 2.45it/s, train/loss=3.620]\nEpoch 0: | | 745/? [05:04<00:00, 2.45it/s, train/loss=3.840]\nEpoch 0: | | 746/? [05:04<00:00, 2.45it/s, train/loss=3.840]\nEpoch 0: | | 746/? [05:04<00:00, 2.45it/s, train/loss=4.150]\nEpoch 0: | | 747/? [05:04<00:00, 2.45it/s, train/loss=4.150]\nEpoch 0: | | 747/? [05:04<00:00, 2.45it/s, train/loss=3.830]\nEpoch 0: | | 748/? [05:05<00:00, 2.45it/s, train/loss=3.830]\nEpoch 0: | | 748/? [05:05<00:00, 2.45it/s, train/loss=2.550]\nEpoch 0: | | 749/? [05:05<00:00, 2.45it/s, train/loss=2.550]\nEpoch 0: | | 749/? [05:05<00:00, 2.45it/s, train/loss=3.820]\nEpoch 0: | | 750/? [05:05<00:00, 2.45it/s, train/loss=3.820]\nEpoch 0: | | 750/? [05:05<00:00, 2.45it/s, train/loss=3.150]\nEpoch 0: | | 751/? [05:06<00:00, 2.45it/s, train/loss=3.150]\nEpoch 0: | | 751/? [05:06<00:00, 2.45it/s, train/loss=1.720]\nEpoch 0: | | 752/? [05:07<00:00, 2.45it/s, train/loss=1.720]\nEpoch 0: | | 752/? [05:07<00:00, 2.45it/s, train/loss=1.990]\nEpoch 0: | | 753/? [05:07<00:00, 2.45it/s, train/loss=1.990]\nEpoch 0: | | 753/? [05:07<00:00, 2.45it/s, train/loss=3.870]\nEpoch 0: | | 754/? [05:07<00:00, 2.45it/s, train/loss=3.870]\nEpoch 0: | | 754/? [05:07<00:00, 2.45it/s, train/loss=1.640]\nEpoch 0: | | 755/? [05:07<00:00, 2.45it/s, train/loss=1.640]\nEpoch 0: | | 755/? [05:07<00:00, 2.45it/s, train/loss=3.870]\nEpoch 0: | | 756/? [05:07<00:00, 2.45it/s, train/loss=3.870]\nEpoch 0: | | 756/? [05:07<00:00, 2.45it/s, train/loss=1.770]\nEpoch 0: | | 757/? [05:08<00:00, 2.46it/s, train/loss=1.770]\nEpoch 0: | | 757/? [05:08<00:00, 2.46it/s, train/loss=3.860]\nEpoch 0: | | 758/? [05:08<00:00, 2.46it/s, train/loss=3.860]\nEpoch 0: | | 758/? [05:08<00:00, 2.46it/s, train/loss=0.981]\nEpoch 0: | | 759/? [05:08<00:00, 2.46it/s, train/loss=0.981]\nEpoch 0: | | 759/? [05:08<00:00, 2.46it/s, train/loss=3.860]\nEpoch 0: | | 760/? [05:08<00:00, 2.46it/s, train/loss=3.860]\nEpoch 0: | | 760/? [05:08<00:00, 2.46it/s, train/loss=0.939]\nEpoch 0: | | 761/? [05:09<00:00, 2.46it/s, train/loss=0.939]\nEpoch 0: | | 761/? [05:09<00:00, 2.46it/s, train/loss=0.714]\nEpoch 0: | | 762/? [05:10<00:00, 2.46it/s, train/loss=0.714]\nEpoch 0: | | 762/? [05:10<00:00, 2.46it/s, train/loss=1.130]\nEpoch 0: | | 763/? [05:10<00:00, 2.46it/s, train/loss=1.130]\nEpoch 0: | | 763/? [05:10<00:00, 2.46it/s, train/loss=3.880]\nEpoch 0: | | 764/? [05:10<00:00, 2.46it/s, train/loss=3.880]\nEpoch 0: | | 764/? [05:10<00:00, 2.46it/s, train/loss=0.977]\nEpoch 0: | | 765/? [05:10<00:00, 2.46it/s, train/loss=0.977]\nEpoch 0: | | 765/? [05:10<00:00, 2.46it/s, train/loss=3.870]\nEpoch 0: | | 766/? [05:11<00:00, 2.46it/s, train/loss=3.870]\nEpoch 0: | | 766/? [05:11<00:00, 2.46it/s, train/loss=0.962]\nEpoch 0: | | 767/? [05:11<00:00, 2.47it/s, train/loss=0.962]\nEpoch 0: | | 767/? [05:11<00:00, 2.47it/s, train/loss=3.830]\nEpoch 0: | | 768/? [05:11<00:00, 2.47it/s, train/loss=3.830]\nEpoch 0: | | 768/? [05:11<00:00, 2.47it/s, train/loss=1.210]\nEpoch 0: | | 769/? [05:11<00:00, 2.47it/s, train/loss=1.210]\nEpoch 0: | | 769/? [05:11<00:00, 2.47it/s, train/loss=3.820]\nEpoch 0: | | 770/? [05:11<00:00, 2.47it/s, train/loss=3.820]\nEpoch 0: | | 770/? [05:11<00:00, 2.47it/s, train/loss=3.870]\nEpoch 0: | | 771/? [05:12<00:00, 2.46it/s, train/loss=3.870]\nEpoch 0: | | 771/? [05:12<00:00, 2.46it/s, train/loss=1.360]\nEpoch 0: | | 772/? [05:13<00:00, 2.47it/s, train/loss=1.360]\nEpoch 0: | | 772/? [05:13<00:00, 2.46it/s, train/loss=3.670]\nEpoch 0: | | 773/? [05:13<00:00, 2.47it/s, train/loss=3.670]\nEpoch 0: | | 773/? [05:13<00:00, 2.47it/s, train/loss=3.870]\nEpoch 0: | | 774/? [05:13<00:00, 2.47it/s, train/loss=3.870]\nEpoch 0: | | 774/? [05:13<00:00, 2.47it/s, train/loss=3.310]\nEpoch 0: | | 775/? [05:13<00:00, 2.47it/s, train/loss=3.310]\nEpoch 0: | | 775/? [05:13<00:00, 2.47it/s, train/loss=3.890]\nEpoch 0: | | 776/? [05:14<00:00, 2.47it/s, train/loss=3.890]\nEpoch 0: | | 776/? [05:14<00:00, 2.47it/s, train/loss=2.750]\nEpoch 0: | | 777/? [05:14<00:00, 2.47it/s, train/loss=2.750]\nEpoch 0: | | 777/? [05:14<00:00, 2.47it/s, train/loss=3.880]\nEpoch 0: | | 778/? [05:14<00:00, 2.47it/s, train/loss=3.880]\nEpoch 0: | | 778/? [05:14<00:00, 2.47it/s, train/loss=2.020]\nEpoch 0: | | 779/? [05:14<00:00, 2.48it/s, train/loss=2.020]\nEpoch 0: | | 779/? [05:14<00:00, 2.48it/s, train/loss=3.880]\nEpoch 0: | | 780/? [05:15<00:00, 2.48it/s, train/loss=3.880]\nEpoch 0: | | 780/? [05:15<00:00, 2.48it/s, train/loss=2.680]\nEpoch 0: | | 781/? [05:15<00:00, 2.47it/s, train/loss=2.680]\nEpoch 0: | | 781/? [05:15<00:00, 2.47it/s, train/loss=0.906]\nEpoch 0: | | 782/? [05:16<00:00, 2.47it/s, train/loss=0.906]\nEpoch 0: | | 782/? [05:16<00:00, 2.47it/s, train/loss=0.567]\nEpoch 0: | | 783/? [05:16<00:00, 2.48it/s, train/loss=0.567]\nEpoch 0: | | 783/? [05:16<00:00, 2.48it/s, train/loss=3.910]\nEpoch 0: | | 784/? [05:16<00:00, 2.48it/s, train/loss=3.910]\nEpoch 0: | | 784/? [05:16<00:00, 2.48it/s, train/loss=1.590]\nEpoch 0: | | 785/? [05:16<00:00, 2.48it/s, train/loss=1.590]\nEpoch 0: | | 785/? [05:16<00:00, 2.48it/s, train/loss=3.900]\nEpoch 0: | | 786/? [05:17<00:00, 2.48it/s, train/loss=3.900]\nEpoch 0: | | 786/? [05:17<00:00, 2.48it/s, train/loss=2.630]\nEpoch 0: | | 787/? [05:17<00:00, 2.48it/s, train/loss=2.630]\nEpoch 0: | | 787/? [05:17<00:00, 2.48it/s, train/loss=3.870]\nEpoch 0: | | 788/? [05:17<00:00, 2.48it/s, train/loss=3.870]\nEpoch 0: | | 788/? [05:17<00:00, 2.48it/s, train/loss=0.732]\nEpoch 0: | | 789/? [05:17<00:00, 2.48it/s, train/loss=0.732]\nEpoch 0: | | 789/? [05:17<00:00, 2.48it/s, train/loss=3.840]\nEpoch 0: | | 790/? [05:18<00:00, 2.48it/s, train/loss=3.840]\nEpoch 0: | | 790/? [05:18<00:00, 2.48it/s, train/loss=3.090]\nEpoch 0: | | 791/? [05:19<00:00, 2.48it/s, train/loss=3.090]\nEpoch 0: | | 791/? [05:19<00:00, 2.48it/s, train/loss=1.140]\nEpoch 0: | | 792/? [05:19<00:00, 2.48it/s, train/loss=1.140]\nEpoch 0: | | 792/? [05:19<00:00, 2.48it/s, train/loss=1.070]\nEpoch 0: | | 793/? [05:19<00:00, 2.48it/s, train/loss=1.070]\nEpoch 0: | | 793/? [05:19<00:00, 2.48it/s, train/loss=3.830]\nEpoch 0: | | 794/? [05:19<00:00, 2.48it/s, train/loss=3.830]\nEpoch 0: | | 794/? [05:19<00:00, 2.48it/s, train/loss=4.230]\nEpoch 0: | | 795/? [05:19<00:00, 2.48it/s, train/loss=4.230]\nEpoch 0: | | 795/? [05:19<00:00, 2.48it/s, train/loss=3.810]\nEpoch 0: | | 796/? [05:20<00:00, 2.48it/s, train/loss=3.810]\nEpoch 0: | | 796/? [05:20<00:00, 2.48it/s, train/loss=3.320]\nEpoch 0: | | 797/? [05:20<00:00, 2.49it/s, train/loss=3.320]\nEpoch 0: | | 797/? [05:20<00:00, 2.49it/s, train/loss=3.790]\nEpoch 0: | | 798/? [05:20<00:00, 2.49it/s, train/loss=3.790]\nEpoch 0: | | 798/? [05:20<00:00, 2.49it/s, train/loss=3.670]\nEpoch 0: | | 799/? [05:20<00:00, 2.49it/s, train/loss=3.670]\nEpoch 0: | | 799/? [05:20<00:00, 2.49it/s, train/loss=3.800]\nEpoch 0: | | 800/? [05:21<00:00, 2.49it/s, train/loss=3.800]\nEpoch 0: | | 800/? [05:21<00:00, 2.49it/s, train/loss=1.040]\nValidation: | | 0/? [00:00<?, ?it/s]\u001b[A\nValidation: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s]\u001b[A\nValidation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.90it/s]\u001b[A\nValidation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.71it/s]\u001b[A\nValidation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.12it/s]\u001b[A\nValidation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.12it/s]\u001b[A\nValidation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:04, 8.32it/s]\u001b[A\nValidation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:04, 8.34it/s]\u001b[A\nValidation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.46it/s]\u001b[A\nValidation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.52it/s]\u001b[A\nValidation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:03, 8.57it/s]\u001b[A\nValidation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 8.66it/s]\u001b[A\nValidation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 8.64it/s]\u001b[A\nValidation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 8.72it/s]\u001b[A\nValidation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:03, 8.78it/s]\u001b[A\nValidation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 8.81it/s]\u001b[A\nValidation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 8.83it/s]\u001b[A\nValidation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 8.85it/s]\u001b[A\nValidation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 8.88it/s]\u001b[A\nValidation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:02, 8.90it/s]\u001b[A\nValidation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 8.92it/s]\u001b[A\nValidation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 8.94it/s]\u001b[A\nValidation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 8.93it/s]\u001b[A\nValidation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:02, 8.95it/s]\u001b[A\nValidation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 8.95it/s]\u001b[A\nValidation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 8.97it/s]\u001b[A\nValidation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 8.99it/s]\u001b[A\nValidation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 8.99it/s]\u001b[A\nValidation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.01it/s]\u001b[A\nValidation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.03it/s]\u001b[A\nValidation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 9.06it/s]\u001b[A\nValidation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 9.08it/s]\u001b[A\nValidation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:00, 9.09it/s]\u001b[A\nValidation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 9.11it/s]\u001b[A\nValidation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 9.10it/s]\u001b[A\nValidation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 9.10it/s]\u001b[A\nValidation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 9.09it/s]\u001b[A\nValidation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 9.08it/s]\u001b[A\nValidation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 9.07it/s]\u001b[A\nValidation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 9.07it/s]\u001b[A\nValidation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 9.07it/s]\u001b[A\nValidation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 9.06it/s]\u001b[A\n\u001b[A\nEpoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040]\n`Trainer.fit` stopped: `max_steps=800` reached.\nEpoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040]\nEpoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040]\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\nTesting: | | 0/? [00:00<?, ?it/s]\nTesting: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s]\nTesting DataLoader 0: 1%| | 1/120 [00:00<00:16, 7.23it/s]\nTesting DataLoader 0: 2%|▏ | 2/120 [00:00<00:15, 7.84it/s]\nTesting DataLoader 0: 2%|▎ | 3/120 [00:00<00:14, 8.07it/s]\nTesting DataLoader 0: 3%|▎ | 4/120 [00:00<00:14, 8.21it/s]\nTesting DataLoader 0: 4%|▍ | 5/120 [00:00<00:13, 8.37it/s]\nTesting DataLoader 0: 5%|▌ | 6/120 [00:00<00:13, 8.34it/s]\nTesting DataLoader 0: 6%|▌ | 7/120 [00:00<00:13, 8.37it/s]\nTesting DataLoader 0: 7%|▋ | 8/120 [00:00<00:13, 8.44it/s]\nTesting DataLoader 0: 8%|▊ | 9/120 [00:01<00:13, 8.49it/s]\nTesting DataLoader 0: 8%|▊ | 10/120 [00:01<00:12, 8.52it/s]\nTesting DataLoader 0: 9%|▉ | 11/120 [00:01<00:12, 8.54it/s]\nTesting DataLoader 0: 10%|█ | 12/120 [00:01<00:12, 8.55it/s]\nTesting DataLoader 0: 11%|█ | 13/120 [00:01<00:12, 8.58it/s]\nTesting DataLoader 0: 12%|█▏ | 14/120 [00:01<00:12, 8.61it/s]\nTesting DataLoader 0: 12%|█▎ | 15/120 [00:01<00:12, 8.62it/s]\nTesting DataLoader 0: 13%|█▎ | 16/120 [00:01<00:12, 8.65it/s]\nTesting DataLoader 0: 14%|█▍ | 17/120 [00:01<00:11, 8.63it/s]\nTesting DataLoader 0: 15%|█▌ | 18/120 [00:02<00:11, 8.59it/s]\nTesting DataLoader 0: 16%|█▌ | 19/120 [00:02<00:11, 8.54it/s]\nTesting DataLoader 0: 17%|█▋ | 20/120 [00:02<00:11, 8.50it/s]\nTesting DataLoader 0: 18%|█▊ | 21/120 [00:02<00:11, 8.35it/s]\nTesting DataLoader 0: 18%|█▊ | 22/120 [00:02<00:11, 8.31it/s]\nTesting DataLoader 0: 19%|█▉ | 23/120 [00:02<00:11, 8.34it/s]\nTesting DataLoader 0: 20%|██ | 24/120 [00:02<00:11, 8.38it/s]\nTesting DataLoader 0: 21%|██ | 25/120 [00:02<00:11, 8.42it/s]\nTesting DataLoader 0: 22%|██▏ | 26/120 [00:03<00:11, 8.45it/s]\nTesting DataLoader 0: 22%|██▎ | 27/120 [00:03<00:10, 8.47it/s]\nTesting DataLoader 0: 23%|██▎ | 28/120 [00:03<00:10, 8.50it/s]\nTesting DataLoader 0: 24%|██▍ | 29/120 [00:03<00:10, 8.53it/s]\nTesting DataLoader 0: 25%|██▌ | 30/120 [00:03<00:10, 8.55it/s]\nTesting DataLoader 0: 26%|██▌ | 31/120 [00:03<00:10, 8.55it/s]\nTesting DataLoader 0: 27%|██▋ | 32/120 [00:03<00:10, 8.51it/s]\nTesting DataLoader 0: 28%|██▊ | 33/120 [00:03<00:10, 8.53it/s]\nTesting DataLoader 0: 28%|██▊ | 34/120 [00:03<00:10, 8.56it/s]\nTesting DataLoader 0: 29%|██▉ | 35/120 [00:04<00:09, 8.58it/s]\nTesting DataLoader 0: 30%|███ | 36/120 [00:04<00:09, 8.60it/s]\nTesting DataLoader 0: 31%|███ | 37/120 [00:04<00:09, 8.54it/s]\nTesting DataLoader 0: 32%|███▏ | 38/120 [00:04<00:09, 8.55it/s]\nTesting DataLoader 0: 32%|███▎ | 39/120 [00:04<00:09, 8.57it/s]\nTesting DataLoader 0: 33%|███▎ | 40/120 [00:04<00:09, 8.58it/s]\nTesting DataLoader 0: 34%|███▍ | 41/120 [00:04<00:09, 8.59it/s]\nTesting DataLoader 0: 35%|███▌ | 42/120 [00:04<00:09, 8.60it/s]\nTesting DataLoader 0: 36%|███▌ | 43/120 [00:04<00:08, 8.60it/s]\nTesting DataLoader 0: 37%|███▋ | 44/120 [00:05<00:08, 8.61it/s]\nTesting DataLoader 0: 38%|███▊ | 45/120 [00:05<00:08, 8.62it/s]\nTesting DataLoader 0: 38%|███▊ | 46/120 [00:05<00:08, 8.63it/s]\nTesting DataLoader 0: 39%|███▉ | 47/120 [00:05<00:08, 8.63it/s]\nTesting DataLoader 0: 40%|████ | 48/120 [00:05<00:08, 8.64it/s]\nTesting DataLoader 0: 41%|████ | 49/120 [00:05<00:08, 8.65it/s]\nTesting DataLoader 0: 42%|████▏ | 50/120 [00:05<00:08, 8.66it/s]\nTesting DataLoader 0: 42%|████▎ | 51/120 [00:05<00:07, 8.67it/s]\nTesting DataLoader 0: 43%|████▎ | 52/120 [00:05<00:07, 8.67it/s]\nTesting DataLoader 0: 44%|████▍ | 53/120 [00:06<00:07, 8.68it/s]\nTesting DataLoader 0: 45%|████▌ | 54/120 [00:06<00:07, 8.69it/s]\nTesting DataLoader 0: 46%|████▌ | 55/120 [00:06<00:07, 8.69it/s]\nTesting DataLoader 0: 47%|████▋ | 56/120 [00:06<00:07, 8.70it/s]\nTesting DataLoader 0: 48%|████▊ | 57/120 [00:06<00:07, 8.69it/s]\nTesting DataLoader 0: 48%|████▊ | 58/120 [00:06<00:07, 8.70it/s]\nTesting DataLoader 0: 49%|████▉ | 59/120 [00:06<00:07, 8.71it/s]\nTesting DataLoader 0: 50%|█████ | 60/120 [00:06<00:06, 8.72it/s]\nTesting DataLoader 0: 51%|█████ | 61/120 [00:06<00:06, 8.73it/s]\nTesting DataLoader 0: 52%|█████▏ | 62/120 [00:07<00:06, 8.73it/s]\nTesting DataLoader 0: 52%|█████▎ | 63/120 [00:07<00:06, 8.74it/s]\nTesting DataLoader 0: 53%|█████▎ | 64/120 [00:07<00:06, 8.75it/s]\nTesting DataLoader 0: 54%|█████▍ | 65/120 [00:07<00:06, 8.76it/s]\nTesting DataLoader 0: 55%|█████▌ | 66/120 [00:07<00:06, 8.77it/s]\nTesting DataLoader 0: 56%|█████▌ | 67/120 [00:07<00:06, 8.75it/s]\nTesting DataLoader 0: 57%|█████▋ | 68/120 [00:07<00:05, 8.76it/s]\nTesting DataLoader 0: 57%|█████▊ | 69/120 [00:07<00:05, 8.77it/s]\nTesting DataLoader 0: 58%|█████▊ | 70/120 [00:07<00:05, 8.78it/s]\nTesting DataLoader 0: 59%|█████▉ | 71/120 [00:08<00:05, 8.79it/s]\nTesting DataLoader 0: 60%|██████ | 72/120 [00:08<00:05, 8.79it/s]\nTesting DataLoader 0: 61%|██████ | 73/120 [00:08<00:05, 8.80it/s]\nTesting DataLoader 0: 62%|██████▏ | 74/120 [00:08<00:05, 8.81it/s]\nTesting DataLoader 0: 62%|██████▎ | 75/120 [00:08<00:05, 8.81it/s]\nTesting DataLoader 0: 63%|██████▎ | 76/120 [00:08<00:04, 8.82it/s]\nTesting DataLoader 0: 64%|██████▍ | 77/120 [00:08<00:04, 8.82it/s]\nTesting DataLoader 0: 65%|██████▌ | 78/120 [00:08<00:04, 8.82it/s]\nTesting DataLoader 0: 66%|██████▌ | 79/120 [00:08<00:04, 8.83it/s]\nTesting DataLoader 0: 67%|██████▋ | 80/120 [00:09<00:04, 8.84it/s]\nTesting DataLoader 0: 68%|██████▊ | 81/120 [00:09<00:04, 8.84it/s]\nTesting DataLoader 0: 68%|██████▊ | 82/120 [00:09<00:04, 8.84it/s]\nTesting DataLoader 0: 69%|██████▉ | 83/120 [00:09<00:04, 8.84it/s]\nTesting DataLoader 0: 70%|███████ | 84/120 [00:09<00:04, 8.85it/s]\nTesting DataLoader 0: 71%|███████ | 85/120 [00:09<00:03, 8.86it/s]\nTesting DataLoader 0: 72%|███████▏ | 86/120 [00:09<00:03, 8.87it/s]\nTesting DataLoader 0: 72%|███████▎ | 87/120 [00:09<00:03, 8.87it/s]\nTesting DataLoader 0: 73%|███████▎ | 88/120 [00:09<00:03, 8.87it/s]\nTesting DataLoader 0: 74%|███████▍ | 89/120 [00:10<00:03, 8.88it/s]\nTesting DataLoader 0: 75%|███████▌ | 90/120 [00:10<00:03, 8.88it/s]\nTesting DataLoader 0: 76%|███████▌ | 91/120 [00:10<00:03, 8.89it/s]\nTesting DataLoader 0: 77%|███████▋ | 92/120 [00:10<00:03, 8.89it/s]\nTesting DataLoader 0: 78%|███████▊ | 93/120 [00:10<00:03, 8.90it/s]\nTesting DataLoader 0: 78%|███████▊ | 94/120 [00:10<00:02, 8.90it/s]\nTesting DataLoader 0: 79%|███████▉ | 95/120 [00:10<00:02, 8.91it/s]\nTesting DataLoader 0: 80%|████████ | 96/120 [00:10<00:02, 8.91it/s]\nTesting DataLoader 0: 81%|████████ | 97/120 [00:10<00:02, 8.92it/s]\nTesting DataLoader 0: 82%|████████▏ | 98/120 [00:10<00:02, 8.92it/s]\nTesting DataLoader 0: 82%|████████▎ | 99/120 [00:11<00:02, 8.92it/s]\nTesting DataLoader 0: 83%|████████▎ | 100/120 [00:11<00:02, 8.92it/s]\nTesting DataLoader 0: 84%|████████▍ | 101/120 [00:11<00:02, 8.93it/s]\nTesting DataLoader 0: 85%|████████▌ | 102/120 [00:11<00:02, 8.92it/s]\nTesting DataLoader 0: 86%|████████▌ | 103/120 [00:11<00:01, 8.92it/s]\nTesting DataLoader 0: 87%|████████▋ | 104/120 [00:11<00:01, 8.93it/s]\nTesting DataLoader 0: 88%|████████▊ | 105/120 [00:11<00:01, 8.92it/s]\nTesting DataLoader 0: 88%|████████▊ | 106/120 [00:11<00:01, 8.92it/s]\nTesting DataLoader 0: 89%|████████▉ | 107/120 [00:12<00:01, 8.92it/s]\nTesting DataLoader 0: 90%|█████████ | 108/120 [00:12<00:01, 8.91it/s]\nTesting DataLoader 0: 91%|█████████ | 109/120 [00:12<00:01, 8.92it/s]\nTesting DataLoader 0: 92%|█████████▏| 110/120 [00:12<00:01, 8.92it/s]\nTesting DataLoader 0: 92%|█████████▎| 111/120 [00:12<00:01, 8.91it/s]\nTesting DataLoader 0: 93%|█████████▎| 112/120 [00:12<00:00, 8.91it/s]\nTesting DataLoader 0: 94%|█████████▍| 113/120 [00:12<00:00, 8.91it/s]\nTesting DataLoader 0: 95%|█████████▌| 114/120 [00:12<00:00, 8.91it/s]\nTesting DataLoader 0: 96%|█████████▌| 115/120 [00:12<00:00, 8.91it/s]\nTesting DataLoader 0: 97%|█████████▋| 116/120 [00:13<00:00, 8.91it/s]\nTesting DataLoader 0: 98%|█████████▊| 117/120 [00:13<00:00, 8.91it/s]\nTesting DataLoader 0: 98%|█████████▊| 118/120 [00:13<00:00, 8.91it/s]\nTesting DataLoader 0: 99%|█████████▉| 119/120 [00:13<00:00, 8.91it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:13<00:00, 8.91it/s]\nTesting DataLoader 0: 100%|██████████| 120/120 [00:24<00:00, 4.99it/s]\nTest results saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save\nRunning step 5: Exporting meshes\n{'name': 'dreamcraft3d-texture', 'description': '', 'tag': 'replicate_user', 'seed': 0, 'use_timestamp': True, 'timestamp': '@20240222-135357', 'exp_root_dir': 'outputs', 'exp_dir': 'outputs/dreamcraft3d-texture', 'trial_name': 'replicate_user@20240222-135357', 'trial_dir': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357', 'n_gpus': 1, 'resume': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt', 'data_type': 'dreamcraft3d-single-image-datamodule', 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'system_type': 'dreamcraft3d-system', 'system': {'stage': 'texture', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True, 'isosurface_remove_outliers': True, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378}, 'fix_geometry': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'dreamcraft3d-mask-nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'stable-diffusion-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'prompt': 'A green leafy plant in a striped terracotta pot', 'front_threshold': 30.0, 'back_threshold': 30.0}, 'guidance_type': 'dreamcraft3d-stable-diffusion-bsd-lora-guidance', 'guidance': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'pretrained_model_name_or_path_lora': 'stabilityai/stable-diffusion-2-1-base', 'guidance_scale': 5.0, 'min_step_percent': 0.05, 'max_step_percent': 0.3, 'only_pretrain_step': 10, 'per_update_pretrain_step': 10}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': -1, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_vsd': 0.1, 'lambda_lora': 0.1, 'lambda_pretrain': 0.1, 'lambda_3d_sds': 0.01, 'lambda_rgb': 1000.0, 'lambda_mask': 0.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_z_variance': 0.0, 'lambda_reg': 0.0}, 'optimizer': {'name': 'AdamW', 'args': {'betas': [0.9, 0.99], 'eps': 0.0001}, 'params': {'geometry.encoding': {'lr': 0.005}, 'geometry.feature_network': {'lr': 0.001}, 'guidance': {'lr': 0.0001}}}, 'geometry_convert_from': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/ckpts/last.ckpt', 'exporter_type': 'mesh-exporter', 'exporter': {'context_type': 'cuda'}}, 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32, 'gradient_clip_val': 1.0}, 'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}}\nLoading Stable Diffusion ...\nLoading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s]\nLoading pipeline components...: 25%|██▌ | 1/4 [00:01<00:04, 1.37s/it]\nLoading pipeline components...: 50%|█████ | 2/4 [00:01<00:01, 1.58it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.57it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.03it/s]\nLoading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s]\nLoading pipeline components...: 25%|██▌ | 1/4 [00:00<00:02, 1.05it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 3.13it/s]\nLoading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.72it/s]\nLoaded Stable Diffusion!\nLoading Stable Zero123 ...\nget obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion\nLatentDiffusion: Running in eps-prediction mode\nDiffusionWrapper has 859.53 M params.\nKeeping EMAs of 688.\nmaking attention of type 'vanilla' with 512 in_channels\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla' with 512 in_channels\nLoaded Stable Zero123!\nUsing prompt [A green leafy plant in a striped terracotta pot] and negative prompt []\nUsing view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view]\nloaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth\nGPU available: True (cuda), used: True\nTPU available: False, using: 0 TPU cores\nIPU available: False, using: 0 IPUs\nHPU available: False, using: 0 HPUs\nMissing logger folder: /src/lightning_logs\n[INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3])\nRestoring states from the checkpoint path at outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt\nLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\nLoaded model weights from the checkpoint at outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'predict_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance.\nPredicting: | | 0/? [00:00<?, ?it/s]\nPredicting: 0%| | 0/120 [00:00<?, ?it/s]\nPredicting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/loops/prediction_loop.py:255: predict returned None if it was on purpose, ignore this warning...\nPredicting DataLoader 0: 1%| | 1/120 [00:00<00:00, 407.81it/s]\nPredicting DataLoader 0: 2%|▏ | 2/120 [00:00<00:00, 196.28it/s]\nPredicting DataLoader 0: 2%|▎ | 3/120 [00:00<00:00, 148.91it/s]\nPredicting DataLoader 0: 3%|▎ | 4/120 [00:00<00:00, 143.05it/s]\nPredicting DataLoader 0: 4%|▍ | 5/120 [00:00<00:00, 139.61it/s]\nPredicting DataLoader 0: 5%|▌ | 6/120 [00:00<00:00, 130.72it/s]\nPredicting DataLoader 0: 6%|▌ | 7/120 [00:00<00:00, 130.50it/s]\nPredicting DataLoader 0: 7%|▋ | 8/120 [00:00<00:01, 102.54it/s]\nPredicting DataLoader 0: 8%|▊ | 9/120 [00:00<00:01, 88.50it/s] \nPredicting DataLoader 0: 8%|▊ | 10/120 [00:00<00:01, 91.95it/s]\nPredicting DataLoader 0: 9%|▉ | 11/120 [00:00<00:01, 94.76it/s]\nPredicting DataLoader 0: 10%|█ | 12/120 [00:00<00:01, 97.37it/s]\nPredicting DataLoader 0: 11%|█ | 13/120 [00:00<00:01, 99.94it/s]\nPredicting DataLoader 0: 12%|█▏ | 14/120 [00:00<00:01, 102.38it/s]\nPredicting DataLoader 0: 12%|█▎ | 15/120 [00:00<00:01, 104.49it/s]\nPredicting DataLoader 0: 13%|█▎ | 16/120 [00:00<00:00, 106.34it/s]\nPredicting DataLoader 0: 14%|█▍ | 17/120 [00:00<00:00, 108.10it/s]\nPredicting DataLoader 0: 15%|█▌ | 18/120 [00:00<00:00, 109.78it/s]\nPredicting DataLoader 0: 16%|█▌ | 19/120 [00:00<00:00, 111.24it/s]\nPredicting DataLoader 0: 17%|█▋ | 20/120 [00:00<00:00, 112.62it/s]\nPredicting DataLoader 0: 18%|█▊ | 21/120 [00:00<00:00, 113.88it/s]\nPredicting DataLoader 0: 18%|█▊ | 22/120 [00:00<00:00, 115.20it/s]\nPredicting DataLoader 0: 19%|█▉ | 23/120 [00:00<00:00, 116.32it/s]\nPredicting DataLoader 0: 20%|██ | 24/120 [00:00<00:00, 117.41it/s]\nPredicting DataLoader 0: 21%|██ | 25/120 [00:00<00:00, 118.37it/s]\nPredicting DataLoader 0: 22%|██▏ | 26/120 [00:00<00:00, 119.12it/s]\nPredicting DataLoader 0: 22%|██▎ | 27/120 [00:00<00:00, 119.85it/s]\nPredicting DataLoader 0: 23%|██▎ | 28/120 [00:00<00:00, 120.64it/s]\nPredicting DataLoader 0: 24%|██▍ | 29/120 [00:00<00:00, 121.31it/s]\nPredicting DataLoader 0: 25%|██▌ | 30/120 [00:00<00:00, 122.05it/s]\nPredicting DataLoader 0: 26%|██▌ | 31/120 [00:00<00:00, 122.69it/s]\nPredicting DataLoader 0: 27%|██▋ | 32/120 [00:00<00:00, 123.33it/s]\nPredicting DataLoader 0: 28%|██▊ | 33/120 [00:00<00:00, 123.96it/s]\nPredicting DataLoader 0: 28%|██▊ | 34/120 [00:00<00:00, 124.64it/s]\nPredicting DataLoader 0: 29%|██▉ | 35/120 [00:00<00:00, 125.25it/s]\nPredicting DataLoader 0: 30%|███ | 36/120 [00:00<00:00, 125.84it/s]\nPredicting DataLoader 0: 31%|███ | 37/120 [00:00<00:00, 126.35it/s]\nPredicting DataLoader 0: 32%|███▏ | 38/120 [00:00<00:00, 126.92it/s]\nPredicting DataLoader 0: 32%|███▎ | 39/120 [00:00<00:00, 127.41it/s]\nPredicting DataLoader 0: 33%|███▎ | 40/120 [00:00<00:00, 127.85it/s]\nPredicting DataLoader 0: 34%|███▍ | 41/120 [00:00<00:00, 128.25it/s]\nPredicting DataLoader 0: 35%|███▌ | 42/120 [00:00<00:00, 128.73it/s]\nPredicting DataLoader 0: 36%|███▌ | 43/120 [00:00<00:00, 127.98it/s]\nPredicting DataLoader 0: 37%|███▋ | 44/120 [00:00<00:00, 128.19it/s]\nPredicting DataLoader 0: 38%|███▊ | 45/120 [00:00<00:00, 128.60it/s]\nPredicting DataLoader 0: 38%|███▊ | 46/120 [00:00<00:00, 129.02it/s]\nPredicting DataLoader 0: 39%|███▉ | 47/120 [00:00<00:00, 129.32it/s]\nPredicting DataLoader 0: 40%|████ | 48/120 [00:00<00:00, 129.72it/s]\nPredicting DataLoader 0: 41%|████ | 49/120 [00:00<00:00, 130.08it/s]\nPredicting DataLoader 0: 42%|████▏ | 50/120 [00:00<00:00, 130.47it/s]\nPredicting DataLoader 0: 42%|████▎ | 51/120 [00:00<00:00, 130.80it/s]\nPredicting DataLoader 0: 43%|████▎ | 52/120 [00:00<00:00, 131.13it/s]\nPredicting DataLoader 0: 44%|████▍ | 53/120 [00:00<00:00, 131.39it/s]\nPredicting DataLoader 0: 45%|████▌ | 54/120 [00:00<00:00, 131.53it/s]\nPredicting DataLoader 0: 46%|████▌ | 55/120 [00:00<00:00, 131.65it/s]\nPredicting DataLoader 0: 47%|████▋ | 56/120 [00:00<00:00, 131.67it/s]\nPredicting DataLoader 0: 48%|████▊ | 57/120 [00:00<00:00, 131.69it/s]\nPredicting DataLoader 0: 48%|████▊ | 58/120 [00:00<00:00, 131.71it/s]\nPredicting DataLoader 0: 49%|████▉ | 59/120 [00:00<00:00, 131.13it/s]\nPredicting DataLoader 0: 50%|█████ | 60/120 [00:00<00:00, 131.29it/s]\nPredicting DataLoader 0: 51%|█████ | 61/120 [00:00<00:00, 131.44it/s]\nPredicting DataLoader 0: 52%|█████▏ | 62/120 [00:00<00:00, 131.67it/s]\nPredicting DataLoader 0: 52%|█████▎ | 63/120 [00:00<00:00, 131.82it/s]\nPredicting DataLoader 0: 53%|█████▎ | 64/120 [00:00<00:00, 131.98it/s]\nPredicting DataLoader 0: 54%|█████▍ | 65/120 [00:00<00:00, 131.16it/s]\nPredicting DataLoader 0: 55%|█████▌ | 66/120 [00:00<00:00, 131.34it/s]\nPredicting DataLoader 0: 56%|█████▌ | 67/120 [00:00<00:00, 131.48it/s]\nPredicting DataLoader 0: 57%|█████▋ | 68/120 [00:00<00:00, 131.62it/s]\nPredicting DataLoader 0: 57%|█████▊ | 69/120 [00:00<00:00, 131.74it/s]\nPredicting DataLoader 0: 58%|█████▊ | 70/120 [00:00<00:00, 131.94it/s]\nPredicting DataLoader 0: 59%|█████▉ | 71/120 [00:00<00:00, 132.02it/s]\nPredicting DataLoader 0: 60%|██████ | 72/120 [00:00<00:00, 131.85it/s]\nPredicting DataLoader 0: 61%|██████ | 73/120 [00:00<00:00, 131.27it/s]\nPredicting DataLoader 0: 62%|██████▏ | 74/120 [00:00<00:00, 128.51it/s]\nPredicting DataLoader 0: 62%|██████▎ | 75/120 [00:00<00:00, 128.74it/s]\nPredicting DataLoader 0: 63%|██████▎ | 76/120 [00:00<00:00, 128.96it/s]\nPredicting DataLoader 0: 64%|██████▍ | 77/120 [00:00<00:00, 129.20it/s]\nPredicting DataLoader 0: 65%|██████▌ | 78/120 [00:00<00:00, 129.43it/s]\nPredicting DataLoader 0: 66%|██████▌ | 79/120 [00:00<00:00, 129.64it/s]\nPredicting DataLoader 0: 67%|██████▋ | 80/120 [00:00<00:00, 129.81it/s]\nPredicting DataLoader 0: 68%|██████▊ | 81/120 [00:00<00:00, 130.02it/s]\nPredicting DataLoader 0: 68%|██████▊ | 82/120 [00:00<00:00, 130.25it/s]\nPredicting DataLoader 0: 69%|██████▉ | 83/120 [00:00<00:00, 130.44it/s]\nPredicting DataLoader 0: 70%|███████ | 84/120 [00:00<00:00, 130.62it/s]\nPredicting DataLoader 0: 71%|███████ | 85/120 [00:00<00:00, 130.73it/s]\nPredicting DataLoader 0: 72%|███████▏ | 86/120 [00:00<00:00, 130.88it/s]\nPredicting DataLoader 0: 72%|███████▎ | 87/120 [00:00<00:00, 130.96it/s]\nPredicting DataLoader 0: 73%|███████▎ | 88/120 [00:00<00:00, 131.09it/s]\nPredicting DataLoader 0: 74%|███████▍ | 89/120 [00:00<00:00, 131.20it/s]\nPredicting DataLoader 0: 75%|███████▌ | 90/120 [00:00<00:00, 131.34it/s]\nPredicting DataLoader 0: 76%|███████▌ | 91/120 [00:00<00:00, 131.45it/s]\nPredicting DataLoader 0: 77%|███████▋ | 92/120 [00:00<00:00, 131.57it/s]\nPredicting DataLoader 0: 78%|███████▊ | 93/120 [00:00<00:00, 131.68it/s]\nPredicting DataLoader 0: 78%|███████▊ | 94/120 [00:00<00:00, 131.79it/s]\nPredicting DataLoader 0: 79%|███████▉ | 95/120 [00:00<00:00, 131.88it/s]\nPredicting DataLoader 0: 80%|████████ | 96/120 [00:00<00:00, 131.98it/s]\nPredicting DataLoader 0: 81%|████████ | 97/120 [00:00<00:00, 132.05it/s]\nPredicting DataLoader 0: 82%|████████▏ | 98/120 [00:00<00:00, 132.12it/s]\nPredicting DataLoader 0: 82%|████████▎ | 99/120 [00:00<00:00, 132.17it/s]\nPredicting DataLoader 0: 83%|████████▎ | 100/120 [00:00<00:00, 132.24it/s]\nPredicting DataLoader 0: 84%|████████▍ | 101/120 [00:00<00:00, 132.29it/s]\nPredicting DataLoader 0: 85%|████████▌ | 102/120 [00:00<00:00, 132.38it/s]\nPredicting DataLoader 0: 86%|████████▌ | 103/120 [00:00<00:00, 132.45it/s]\nPredicting DataLoader 0: 87%|████████▋ | 104/120 [00:00<00:00, 132.51it/s]\nPredicting DataLoader 0: 88%|████████▊ | 105/120 [00:00<00:00, 132.58it/s]\nPredicting DataLoader 0: 88%|████████▊ | 106/120 [00:00<00:00, 132.68it/s]\nPredicting DataLoader 0: 89%|████████▉ | 107/120 [00:00<00:00, 132.72it/s]\nPredicting DataLoader 0: 90%|█████████ | 108/120 [00:00<00:00, 132.77it/s]\nPredicting DataLoader 0: 91%|█████████ | 109/120 [00:00<00:00, 132.83it/s]\nPredicting DataLoader 0: 92%|█████████▏| 110/120 [00:00<00:00, 132.93it/s]\nPredicting DataLoader 0: 92%|█████████▎| 111/120 [00:00<00:00, 132.98it/s]\nPredicting DataLoader 0: 93%|█████████▎| 112/120 [00:00<00:00, 133.03it/s]\nPredicting DataLoader 0: 94%|█████████▍| 113/120 [00:00<00:00, 133.08it/s]\nPredicting DataLoader 0: 95%|█████████▌| 114/120 [00:00<00:00, 133.18it/s]\nPredicting DataLoader 0: 96%|█████████▌| 115/120 [00:00<00:00, 133.22it/s]\nPredicting DataLoader 0: 97%|█████████▋| 116/120 [00:00<00:00, 133.28it/s]\nPredicting DataLoader 0: 98%|█████████▊| 117/120 [00:00<00:00, 133.36it/s]\nPredicting DataLoader 0: 98%|█████████▊| 118/120 [00:00<00:00, 133.44it/s]\nPredicting DataLoader 0: 99%|█████████▉| 119/120 [00:00<00:00, 133.47it/s]\nUsing xatlas to perform UV unwrapping, may take a while ...\nExporting textures ...\nPerform UV padding on texture maps to avoid seams, may take a while ...\nPredicting DataLoader 0: 100%|██████████| 120/120 [00:00<00:00, 133.53it/s]\nPredicting DataLoader 0: 100%|██████████| 120/120 [01:06<00:00, 1.81it/s]\nExport assets saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save", "metrics": { "predict_time": 1345.14856, "total_time": 1684.596898 }, "output": "https://replicate.delivery/pbxt/eJtMWubDJQyRf04ohkteeHIlkfe1TIGObHsMlWKQQnBRBGUmE/mesh.zip", "started_at": "2024-02-22T13:40:22.441105Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/6zgbl6lbf3ftxjuaawjwu7ak4a", "cancel": "https://api.replicate.com/v1/predictions/6zgbl6lbf3ftxjuaawjwu7ak4a/cancel" }, "version": "cf19b73a3c605ffa94c29d95971cb89823a0faa5f2ba830a3e1579fa61577c30" }
Generated inUsing seed 3731177029 Seed set to 3731177029 Preprocessing image... [INFO] background removal... 2024-02-22 13:40:23.104407995 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1831, index: 1, mask: {1, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.104414275 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1830, index: 0, mask: {48, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.104502865 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1832, index: 2, mask: {49, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.104535295 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1833, index: 3, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.104613524 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1834, index: 4, mask: {50, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.107023935 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1841, index: 11, mask: {6, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.107094724 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1842, index: 12, mask: {54, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.107029744 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1908, index: 78, mask: {87, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.107404823 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1844, index: 14, mask: {55, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.119497582 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1843, index: 13, mask: {7, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.107393863 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1914, index: 84, mask: {90, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.123661054 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1911, index: 81, mask: {41, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.123722614 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1909, index: 79, mask: {40, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.123701134 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1910, index: 80, mask: {88, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.127291970 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1916, index: 86, mask: {91, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.127624198 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1915, index: 85, mask: {43, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.130148067 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1912, index: 82, mask: {89, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.131521142 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1835, index: 5, mask: {3, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135786034 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1902, index: 72, mask: {84, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.142269357 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1836, index: 6, mask: {51, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.147488775 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1919, index: 89, mask: {45, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.151492068 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1920, index: 90, mask: {93, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.151515108 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1845, index: 15, mask: {8, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.152578874 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1921, index: 91, mask: {46, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.155036124 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1922, index: 92, mask: {94, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.159492425 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1923, index: 93, mask: {47, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.159619344 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1847, index: 17, mask: {9, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.163491428 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1924, index: 94, mask: {95, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.167512541 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1848, index: 18, mask: {57, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.175204479 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1918, index: 88, mask: {92, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.175514908 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1849, index: 19, mask: {10, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.183547044 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1850, index: 20, mask: {58, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203673140 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1865, index: 35, mask: {18, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203714850 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1867, index: 37, mask: {19, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203730010 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1868, index: 38, mask: {67, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208804658 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1880, index: 50, mask: {73, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208933648 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1892, index: 62, mask: {79, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.211571717 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1896, index: 66, mask: {81, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.218757077 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1898, index: 68, mask: {82, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.219530623 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1899, index: 69, mask: {35, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.159503775 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1846, index: 16, mask: {56, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208690009 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1872, index: 42, mask: {69, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135794754 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1903, index: 73, mask: {37, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208878768 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1887, index: 57, mask: {29, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208739099 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1876, index: 46, mask: {71, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135799404 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1904, index: 74, mask: {85, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208820138 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1882, index: 52, mask: {74, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208661999 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1871, index: 41, mask: {21, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.211522277 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1894, index: 64, mask: {80, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.211549267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1895, index: 65, mask: {33, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208761849 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1877, index: 47, mask: {24, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135804604 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1905, index: 75, mask: {38, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203705640 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1866, index: 36, mask: {66, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.211499897 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1893, index: 63, mask: {32, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135809804 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1906, index: 76, mask: {86, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208906798 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1889, index: 59, mask: {30, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208719959 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1874, index: 44, mask: {70, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.135814794 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1907, index: 77, mask: {39, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.208775729 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1879, index: 49, mask: {25, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203510801 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1855, index: 25, mask: {13, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203596991 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1917, index: 87, mask: {44, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.191524490 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1854, index: 24, mask: {60, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.203625340 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1862, index: 32, mask: {64, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.255050885 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1856, index: 26, mask: {61, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.226268595 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1853, index: 23, mask: {12, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.226295085 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1883, index: 53, mask: {27, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231529973 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1869, index: 39, mask: {20, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.235482157 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1864, index: 34, mask: {65, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.239481860 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1897, index: 67, mask: {34, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.247489267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1913, index: 83, mask: {42, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231551533 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1878, index: 48, mask: {72, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.235490787 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1888, index: 58, mask: {77, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.235501267 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1891, index: 61, mask: {31, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231560853 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1884, index: 54, mask: {75, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.235479747 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1885, index: 55, mask: {28, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.226300705 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1873, index: 43, mask: {22, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.226262175 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1863, index: 33, mask: {17, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231541763 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1875, index: 45, mask: {23, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231485533 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1886, index: 56, mask: {76, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.231574443 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1890, index: 60, mask: {78, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.226293125 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1870, index: 40, mask: {68, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.255088475 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1881, index: 51, mask: {26, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.255135895 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1837, index: 7, mask: {4, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.287495189 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1901, index: 71, mask: {36, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2024-02-22 13:40:23.295484056 [E:onnxruntime:Default, env.cc:254 ThreadMain] pthread_setaffinity_np failed for thread: 1900, index: 70, mask: {83, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. [INFO] depth estimation... /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/timm/models/_factory.py:117: UserWarning: Mapping deprecated model name vit_base_resnet50_384 to current vit_base_r50_s16_384.orig_in21k_ft_in1k. model = create_fn( [INFO] normal estimation... Running step 1: NeRF {'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}, 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': [64, 128], 'width': [64, 128], 'resolution_milestones': [3000], 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': True, 'requires_normal': False, 'random_camera': {'height': [64, 128], 'width': [64, 128], 'batch_size': [1, 1], 'resolution_milestones': [3000], 'eval_height': 128, 'eval_width': 128, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 200, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'data_type': 'dreamcraft3d-single-image-datamodule', 'description': '', 'exp_dir': 'outputs/dreamcraft3d-coarse-nerf', 'exp_root_dir': 'outputs', 'n_gpus': 1, 'name': 'dreamcraft3d-coarse-nerf', 'resume': None, 'seed': 0, 'system': {'stage': 'coarse', 'geometry_type': 'implicit-volume', 'geometry': {'radius': 2.0, 'normal_type': 'finite_difference', 'density_bias': 'blob_magic3d', 'density_activation': 'softplus', 'density_blob_scale': 10.0, 'density_blob_std': 0.5, 'pos_encoding_config': {'otype': 'ProgressiveBandHashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378, 'start_level': 8, 'start_step': 2000, 'update_steps': 500}}, 'material_type': 'no-material', 'material': {'requires_normal': True}, 'background_type': 'solid-color-background', 'renderer_type': 'nerf-volume-renderer', 'renderer': {'radius': 2.0, 'num_samples_per_ray': 512, 'return_normal_perturb': True, 'return_comp_normal': True}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': [0, 0.7, 0.2, 200], 'max_step_percent': [0, 0.85, 0.5, 200]}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': [0, 0.7, 0.2, 200], 'max_step_percent': [0, 0.85, 0.5, 200]}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': 0, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.05, 'lambda_normal': 0.0, 'lambda_normal_smooth': 1.0, 'lambda_3d_normal_smooth': [1000, 5.0, 1.0, 1001], 'lambda_orient': [1000, 1.0, 10.0, 1001], 'lambda_sparsity': [1000, 0.1, 10.0, 1001], 'lambda_opaque': [1000, 0.1, 10.0, 1001], 'lambda_clip': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'lr': 0.01, 'betas': [0.9, 0.99], 'eps': 1e-08}}}, 'system_type': 'dreamcraft3d-system', 'tag': 'replicate_user', 'timestamp': '@20240222-134035', 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': '16-mixed'}, 'trial_dir': 'outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035', 'trial_name': 'replicate_user@20240222-134035', 'use_timestamp': True} Loading Deep Floyd ... Couldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d74ed3-77c3833b6edb1358569cd2db;c0fe2e5f-e2c0-465b-af4c-23a1c171d42e) Cannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0. Repo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it.. Will try to load from local cache. Loading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s] Loading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 3.80it/s] Loading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 9.15it/s] Loading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 8.02it/s] Loaded Deep Floyd! Loading Stable Zero123 ... get obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion LatentDiffusion: Running in eps-prediction mode DiffusionWrapper has 859.53 M params. Keeping EMAs of 688. making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels 0%| | 0.00/890M [00:00<?, ?iB/s] 1%|▍ | 11.0M/890M [00:00<00:07, 116MiB/s] 3%|█▏ | 26.0M/890M [00:00<00:06, 140MiB/s] 5%|█▊ | 42.3M/890M [00:00<00:05, 154MiB/s] 6%|██▍ | 57.0M/890M [00:00<00:06, 145MiB/s] 8%|███ | 70.9M/890M [00:00<00:06, 127MiB/s] 9%|███▌ | 83.3M/890M [00:00<00:12, 68.1MiB/s] 10%|███▉ | 92.5M/890M [00:01<00:13, 59.9MiB/s] 11%|████▍ | 100M/890M [00:01<00:23, 35.8MiB/s] 12%|████▋ | 106M/890M [00:02<00:40, 20.5MiB/s] 12%|████▊ | 110M/890M [00:02<00:40, 20.3MiB/s] 13%|████▉ | 113M/890M [00:02<00:41, 19.8MiB/s] 13%|█████ | 116M/890M [00:03<00:59, 13.7MiB/s] 13%|█████▏ | 118M/890M [00:03<00:56, 14.3MiB/s] 14%|█████▎ | 120M/890M [00:03<01:09, 11.7MiB/s] 14%|█████▎ | 122M/890M [00:04<01:06, 12.1MiB/s] 14%|█████▍ | 124M/890M [00:04<01:04, 12.4MiB/s] 14%|█████▍ | 125M/890M [00:04<01:11, 11.2MiB/s] 14%|█████▌ | 127M/890M [00:04<01:06, 12.1MiB/s] 14%|█████▌ | 128M/890M [00:04<01:10, 11.3MiB/s] 15%|█████▋ | 130M/890M [00:04<01:00, 13.2MiB/s] 15%|█████▊ | 131M/890M [00:04<01:01, 12.9MiB/s] 15%|█████▊ | 133M/890M [00:05<01:18, 10.1MiB/s] 15%|█████▉ | 135M/890M [00:05<00:59, 13.3MiB/s] 15%|██████ | 137M/890M [00:05<00:55, 14.3MiB/s] 16%|██████ | 139M/890M [00:05<01:00, 12.9MiB/s] 16%|██████▏ | 140M/890M [00:05<01:03, 12.4MiB/s] 16%|██████▏ | 142M/890M [00:05<00:59, 13.1MiB/s] 16%|██████▎ | 143M/890M [00:05<01:09, 11.3MiB/s] 16%|██████▎ | 144M/890M [00:06<01:10, 11.1MiB/s] 16%|██████▍ | 147M/890M [00:06<00:54, 14.2MiB/s] 17%|██████▌ | 150M/890M [00:06<00:38, 20.1MiB/s] 17%|██████▊ | 154M/890M [00:06<00:29, 25.9MiB/s] 18%|██████▉ | 157M/890M [00:06<00:31, 24.7MiB/s] 18%|██████▉ | 159M/890M [00:06<00:39, 19.4MiB/s] 18%|███████ | 161M/890M [00:06<00:52, 14.4MiB/s] 18%|███████▏ | 163M/890M [00:07<00:58, 13.1MiB/s] 19%|███████▏ | 165M/890M [00:07<00:55, 13.6MiB/s] 19%|███████▎ | 167M/890M [00:07<00:49, 15.2MiB/s] 19%|███████▍ | 168M/890M [00:07<00:52, 14.5MiB/s] 19%|███████▍ | 170M/890M [00:07<00:51, 14.6MiB/s] 19%|███████▌ | 171M/890M [00:07<00:50, 14.9MiB/s] 20%|███████▋ | 175M/890M [00:07<00:37, 20.0MiB/s] 20%|███████▊ | 178M/890M [00:07<00:30, 24.7MiB/s] 20%|███████▉ | 181M/890M [00:07<00:30, 24.1MiB/s] 21%|████████ | 183M/890M [00:08<00:30, 24.0MiB/s] 21%|████████▏ | 187M/890M [00:08<00:26, 28.0MiB/s] 21%|████████▎ | 190M/890M [00:08<00:29, 25.0MiB/s] 22%|████████▍ | 192M/890M [00:08<00:30, 23.6MiB/s] 22%|████████▌ | 195M/890M [00:08<00:29, 24.5MiB/s] 22%|████████▋ | 197M/890M [00:08<00:29, 24.5MiB/s] 22%|████████▊ | 200M/890M [00:08<00:29, 24.8MiB/s] 23%|████████▊ | 202M/890M [00:08<00:29, 24.5MiB/s] 23%|████████▉ | 204M/890M [00:08<00:29, 24.6MiB/s] 23%|█████████ | 207M/890M [00:09<00:28, 24.7MiB/s] 24%|█████████▏ | 210M/890M [00:09<00:25, 27.4MiB/s] 24%|█████████▍ | 216M/890M [00:09<00:19, 36.1MiB/s] 25%|█████████▌ | 219M/890M [00:09<00:21, 33.0MiB/s] 25%|█████████▊ | 223M/890M [00:09<00:20, 33.8MiB/s] 25%|█████████▉ | 226M/890M [00:09<00:22, 31.1MiB/s] 26%|██████████ | 230M/890M [00:09<00:20, 33.3MiB/s] 27%|██████████▎ | 236M/890M [00:09<00:16, 41.4MiB/s] 27%|██████████▌ | 241M/890M [00:09<00:14, 45.8MiB/s] 28%|██████████▊ | 247M/890M [00:10<00:13, 51.0MiB/s] 28%|███████████ | 252M/890M [00:10<00:15, 43.8MiB/s] 29%|███████████▎ | 257M/890M [00:10<00:14, 44.4MiB/s] 30%|███████████▌ | 264M/890M [00:10<00:12, 51.9MiB/s] 30%|███████████▉ | 271M/890M [00:10<00:11, 58.2MiB/s] 31%|████████████▏ | 279M/890M [00:10<00:09, 65.9MiB/s] 32%|████████████▌ | 287M/890M [00:10<00:08, 71.2MiB/s] 33%|████████████▉ | 295M/890M [00:10<00:08, 75.1MiB/s] 34%|█████████████▎ | 304M/890M [00:10<00:07, 78.0MiB/s] 35%|█████████████▋ | 312M/890M [00:11<00:07, 81.4MiB/s] 36%|██████████████ | 320M/890M [00:11<00:07, 79.5MiB/s] 37%|██████████████▍ | 328M/890M [00:11<00:07, 81.2MiB/s] 38%|██████████████▊ | 338M/890M [00:11<00:06, 85.5MiB/s] 39%|███████████████▏ | 346M/890M [00:11<00:06, 86.8MiB/s] 40%|███████████████▌ | 356M/890M [00:11<00:06, 91.1MiB/s] 41%|████████████████ | 366M/890M [00:11<00:05, 95.6MiB/s] 42%|████████████████▍ | 376M/890M [00:11<00:05, 98.3MiB/s] 43%|████████████████▉ | 385M/890M [00:11<00:05, 96.1MiB/s] 44%|█████████████████▎ | 395M/890M [00:11<00:05, 96.3MiB/s] 45%|█████████████████▋ | 405M/890M [00:12<00:05, 98.8MiB/s] 47%|██████████████████▏ | 414M/890M [00:12<00:05, 97.1MiB/s] 48%|███████████████████ | 425M/890M [00:12<00:04, 102MiB/s] 49%|███████████████████▌ | 435M/890M [00:12<00:04, 104MiB/s] 50%|████████████████████ | 446M/890M [00:12<00:04, 106MiB/s] 51%|████████████████████▌ | 456M/890M [00:12<00:04, 102MiB/s] 52%|████████████████████▍ | 466M/890M [00:12<00:05, 85.4MiB/s] 53%|████████████████████▊ | 475M/890M [00:12<00:05, 87.0MiB/s] 54%|█████████████████████▏ | 483M/890M [00:13<00:07, 55.9MiB/s] 55%|█████████████████████▍ | 490M/890M [00:13<00:07, 54.7MiB/s] 56%|█████████████████████▊ | 496M/890M [00:13<00:07, 57.2MiB/s] 57%|██████████████████████ | 503M/890M [00:13<00:07, 57.5MiB/s] 57%|██████████████████████▎ | 509M/890M [00:13<00:07, 53.4MiB/s] 58%|██████████████████████▌ | 514M/890M [00:13<00:08, 48.0MiB/s] 58%|██████████████████████▊ | 519M/890M [00:13<00:09, 41.7MiB/s] 59%|██████████████████████▉ | 524M/890M [00:14<00:09, 41.5MiB/s] 59%|███████████████████████▏ | 528M/890M [00:14<00:10, 37.8MiB/s] 60%|███████████████████████▎ | 532M/890M [00:14<00:10, 35.2MiB/s] 60%|███████████████████████▍ | 535M/890M [00:14<00:11, 33.6MiB/s] 61%|███████████████████████▋ | 540M/890M [00:14<00:09, 36.8MiB/s] 61%|███████████████████████▊ | 543M/890M [00:14<00:10, 35.8MiB/s] 61%|███████████████████████▉ | 547M/890M [00:14<00:10, 34.0MiB/s] 62%|████████████████████████ | 550M/890M [00:14<00:10, 34.0MiB/s] 62%|████████████████████████▎ | 554M/890M [00:15<00:09, 36.2MiB/s] 63%|████████████████████████▌ | 559M/890M [00:15<00:08, 41.7MiB/s] 64%|████████████████████████▊ | 567M/890M [00:15<00:06, 53.1MiB/s] 64%|█████████████████████████ | 572M/890M [00:15<00:06, 51.1MiB/s] 65%|█████████████████████████▎ | 577M/890M [00:15<00:06, 48.7MiB/s] 65%|█████████████████████████▌ | 582M/890M [00:15<00:06, 49.0MiB/s] 66%|█████████████████████████▉ | 591M/890M [00:15<00:05, 61.3MiB/s] 67%|██████████████████████████▏ | 598M/890M [00:15<00:04, 65.0MiB/s] 68%|██████████████████████████▌ | 605M/890M [00:15<00:04, 62.2MiB/s] 69%|██████████████████████████▊ | 611M/890M [00:16<00:05, 58.1MiB/s] 69%|███████████████████████████ | 617M/890M [00:16<00:04, 59.3MiB/s] 70%|███████████████████████████▎ | 623M/890M [00:16<00:04, 59.8MiB/s] 71%|███████████████████████████▌ | 628M/890M [00:16<00:05, 48.3MiB/s] 71%|███████████████████████████▊ | 634M/890M [00:16<00:05, 49.4MiB/s] 72%|████████████████████████████ | 639M/890M [00:16<00:05, 51.9MiB/s] 73%|████████████████████████████▎ | 645M/890M [00:16<00:04, 55.0MiB/s] 73%|████████████████████████████▌ | 652M/890M [00:16<00:04, 56.8MiB/s] 74%|████████████████████████████▊ | 657M/890M [00:16<00:04, 57.9MiB/s] 75%|█████████████████████████████▏ | 665M/890M [00:17<00:03, 63.7MiB/s] 76%|█████████████████████████████▌ | 675M/890M [00:17<00:03, 74.1MiB/s] 77%|█████████████████████████████▉ | 682M/890M [00:17<00:03, 70.3MiB/s] 77%|██████████████████████████████▏ | 689M/890M [00:17<00:03, 69.8MiB/s] 78%|██████████████████████████████▍ | 695M/890M [00:17<00:03, 63.9MiB/s] 79%|██████████████████████████████▊ | 702M/890M [00:17<00:03, 63.2MiB/s] 80%|███████████████████████████████ | 709M/890M [00:17<00:02, 66.7MiB/s] 80%|███████████████████████████████▍ | 716M/890M [00:17<00:02, 67.9MiB/s] 81%|███████████████████████████████▋ | 722M/890M [00:17<00:02, 64.0MiB/s] 82%|████████████████████████████████ | 731M/890M [00:18<00:02, 72.6MiB/s] 83%|████████████████████████████████▍ | 739M/890M [00:18<00:03, 50.1MiB/s] 84%|████████████████████████████████▋ | 744M/890M [00:18<00:03, 50.1MiB/s] 84%|████████████████████████████████▊ | 750M/890M [00:18<00:02, 51.1MiB/s] 85%|█████████████████████████████████ | 755M/890M [00:18<00:02, 52.7MiB/s] 86%|█████████████████████████████████▎ | 761M/890M [00:18<00:02, 52.1MiB/s] 86%|█████████████████████████████████▌ | 767M/890M [00:18<00:02, 55.3MiB/s] 87%|█████████████████████████████████▊ | 773M/890M [00:18<00:02, 55.0MiB/s] 88%|██████████████████████████████████▏ | 779M/890M [00:19<00:01, 59.5MiB/s] 88%|██████████████████████████████████▍ | 785M/890M [00:19<00:01, 60.8MiB/s] 89%|██████████████████████████████████▋ | 791M/890M [00:19<00:02, 51.3MiB/s] 90%|██████████████████████████████████▉ | 797M/890M [00:19<00:02, 48.5MiB/s] 90%|███████████████████████████████████▎ | 804M/890M [00:19<00:01, 56.5MiB/s] 92%|███████████████████████████████████▋ | 815M/890M [00:19<00:01, 71.6MiB/s] 93%|████████████████████████████████████▎ | 828M/890M [00:19<00:00, 88.1MiB/s] 94%|████████████████████████████████████▋ | 837M/890M [00:19<00:00, 91.4MiB/s] 95%|█████████████████████████████████████▏ | 847M/890M [00:19<00:00, 93.8MiB/s] 96%|█████████████████████████████████████▌ | 856M/890M [00:20<00:00, 93.1MiB/s] 98%|███████████████████████████████████████ | 868M/890M [00:20<00:00, 102MiB/s] 99%|██████████████████████████████████████▍| 878M/890M [00:20<00:00, 94.3MiB/s] 100%|██████████████████████████████████████▉| 888M/890M [00:20<00:00, 98.6MiB/s] 100%|███████████████████████████████████████| 890M/890M [00:20<00:00, 45.8MiB/s] Loaded Stable Zero123! Using prompt [A green leafy plant in a striped terracotta pot] and negative prompt [] Using view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_5m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_11m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_384 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_512 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) loaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth Using 16bit Automatic Mixed Precision (AMP) GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs You are using a CUDA device ('NVIDIA A40') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64]) [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params ---------------------------------------------------- 0 | geometry | ImplicitVolume | 12.6 M 1 | material | NoMaterial | 0 2 | background | SolidColorBackground | 0 3 | renderer | NeRFVolumeRenderer | 0 ---------------------------------------------------- 12.6 M Trainable params 0 Non-trainable params 12.6 M Total params 50.417 Total estimated model params size (MB) Validation results will be saved to outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/save /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Training: | | 0/? [00:00<?, ?it/s] Training: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 1/? [00:00<00:00, 5.54it/s] Epoch 0: | | 1/? [00:00<00:00, 5.51it/s, train/loss=58.90] Epoch 0: | | 2/? [00:00<00:00, 2.90it/s, train/loss=58.90] Epoch 0: | | 2/? [00:00<00:00, 2.90it/s, train/loss=40.50] Epoch 0: | | 3/? [00:00<00:00, 3.98it/s, train/loss=40.50] Epoch 0: | | 3/? [00:00<00:00, 3.97it/s, train/loss=58.60] Epoch 0: | | 4/? [00:01<00:00, 3.74it/s, train/loss=58.60] Epoch 0: | | 4/? [00:01<00:00, 3.74it/s, train/loss=69.90] Epoch 0: | | 5/? [00:01<00:00, 4.38it/s, train/loss=69.90] Epoch 0: | | 5/? [00:01<00:00, 4.38it/s, train/loss=57.90] Epoch 0: | | 6/? [00:01<00:00, 4.11it/s, train/loss=57.90] Epoch 0: | | 6/? [00:01<00:00, 4.11it/s, train/loss=73.10] Epoch 0: | | 7/? [00:01<00:00, 4.59it/s, train/loss=73.10] Epoch 0: | | 7/? [00:01<00:00, 4.59it/s, train/loss=56.60] Epoch 0: | | 8/? [00:01<00:00, 4.34it/s, train/loss=56.60] Epoch 0: | | 8/? [00:01<00:00, 4.34it/s, train/loss=41.30] Epoch 0: | | 9/? [00:01<00:00, 4.72it/s, train/loss=41.30] Epoch 0: | | 9/? [00:01<00:00, 4.71it/s, train/loss=54.50] Epoch 0: | | 10/? [00:02<00:00, 4.49it/s, train/loss=54.50] Epoch 0: | | 10/? [00:02<00:00, 4.49it/s, train/loss=80.40] Epoch 0: | | 11/? [00:02<00:00, 4.80it/s, train/loss=80.40] Epoch 0: | | 11/? [00:02<00:00, 4.80it/s, train/loss=51.40] Epoch 0: | | 12/? [00:02<00:00, 4.61it/s, train/loss=51.40] Epoch 0: | | 12/? [00:02<00:00, 4.60it/s, train/loss=108.0] Epoch 0: | | 13/? [00:02<00:00, 4.87it/s, train/loss=108.0] Epoch 0: | | 13/? [00:02<00:00, 4.87it/s, train/loss=47.50] Epoch 0: | | 14/? [00:02<00:00, 4.69it/s, train/loss=47.50] Epoch 0: | | 14/? [00:02<00:00, 4.69it/s, train/loss=52.10] Epoch 0: | | 15/? [00:03<00:00, 4.92it/s, train/loss=52.10] Epoch 0: | | 15/? [00:03<00:00, 4.92it/s, train/loss=42.80] Epoch 0: | | 16/? [00:03<00:00, 4.74it/s, train/loss=42.80] Epoch 0: | | 16/? [00:03<00:00, 4.74it/s, train/loss=76.90] Epoch 0: | | 17/? [00:03<00:00, 4.94it/s, train/loss=76.90] Epoch 0: | | 17/? [00:03<00:00, 4.94it/s, train/loss=37.60] Epoch 0: | | 18/? [00:03<00:00, 4.79it/s, train/loss=37.60] Epoch 0: | | 18/? [00:03<00:00, 4.79it/s, train/loss=123.0] Epoch 0: | | 19/? [00:03<00:00, 4.98it/s, train/loss=123.0] Epoch 0: | | 19/? [00:03<00:00, 4.97it/s, train/loss=32.60] Epoch 0: | | 20/? [00:04<00:00, 4.84it/s, train/loss=32.60] Epoch 0: | | 20/? [00:04<00:00, 4.84it/s, train/loss=62.40] Epoch 0: | | 21/? [00:04<00:00, 5.01it/s, train/loss=62.40] Epoch 0: | | 21/? [00:04<00:00, 5.01it/s, train/loss=28.20] Epoch 0: | | 22/? [00:04<00:00, 4.88it/s, train/loss=28.20] Epoch 0: | | 22/? [00:04<00:00, 4.88it/s, train/loss=49.50] Epoch 0: | | 23/? [00:04<00:00, 5.03it/s, train/loss=49.50] Epoch 0: | | 23/? [00:04<00:00, 5.03it/s, train/loss=24.40] Epoch 0: | | 24/? [00:04<00:00, 4.92it/s, train/loss=24.40] Epoch 0: | | 24/? [00:04<00:00, 4.91it/s, train/loss=74.90] Epoch 0: | | 25/? [00:04<00:00, 5.06it/s, train/loss=74.90] Epoch 0: | | 25/? [00:04<00:00, 5.06it/s, train/loss=21.10] Epoch 0: | | 26/? [00:05<00:00, 4.95it/s, train/loss=21.10] Epoch 0: | | 26/? [00:05<00:00, 4.95it/s, train/loss=66.30] Epoch 0: | | 27/? [00:05<00:00, 5.09it/s, train/loss=66.30] Epoch 0: | | 27/? [00:05<00:00, 5.09it/s, train/loss=18.90] Epoch 0: | | 28/? [00:05<00:00, 4.99it/s, train/loss=18.90] Epoch 0: | | 28/? [00:05<00:00, 4.98it/s, train/loss=67.70] Epoch 0: | | 29/? [00:05<00:00, 5.11it/s, train/loss=67.70] Epoch 0: | | 29/? [00:05<00:00, 5.11it/s, train/loss=17.40] Epoch 0: | | 30/? [00:05<00:00, 5.02it/s, train/loss=17.40] Epoch 0: | | 30/? [00:05<00:00, 5.02it/s, train/loss=79.10] Epoch 0: | | 31/? [00:06<00:00, 5.14it/s, train/loss=79.10] Epoch 0: | | 31/? [00:06<00:00, 5.14it/s, train/loss=16.20] Epoch 0: | | 32/? [00:06<00:00, 5.05it/s, train/loss=16.20] Epoch 0: | | 32/? [00:06<00:00, 5.05it/s, train/loss=41.90] Epoch 0: | | 33/? [00:06<00:00, 5.17it/s, train/loss=41.90] Epoch 0: | | 33/? [00:06<00:00, 5.17it/s, train/loss=15.50] Epoch 0: | | 34/? [00:06<00:00, 5.08it/s, train/loss=15.50] Epoch 0: | | 34/? [00:06<00:00, 5.08it/s, train/loss=47.50] Epoch 0: | | 35/? [00:06<00:00, 5.19it/s, train/loss=47.50] Epoch 0: | | 35/? [00:06<00:00, 5.18it/s, train/loss=14.20] Epoch 0: | | 36/? [00:07<00:00, 5.08it/s, train/loss=14.20] Epoch 0: | | 36/? [00:07<00:00, 5.08it/s, train/loss=41.60] Epoch 0: | | 37/? [00:07<00:00, 5.19it/s, train/loss=41.60] Epoch 0: | | 37/? [00:07<00:00, 5.19it/s, train/loss=12.90] Epoch 0: | | 38/? [00:07<00:00, 5.11it/s, train/loss=12.90] Epoch 0: | | 38/? [00:07<00:00, 5.11it/s, train/loss=50.40] Epoch 0: | | 39/? [00:07<00:00, 5.21it/s, train/loss=50.40] Epoch 0: | | 39/? [00:07<00:00, 5.21it/s, train/loss=11.80] Epoch 0: | | 40/? [00:07<00:00, 5.13it/s, train/loss=11.80] Epoch 0: | | 40/? [00:07<00:00, 5.13it/s, train/loss=82.60] Epoch 0: | | 41/? [00:07<00:00, 5.23it/s, train/loss=82.60] Epoch 0: | | 41/? [00:07<00:00, 5.23it/s, train/loss=10.90] Epoch 0: | | 42/? [00:08<00:00, 5.15it/s, train/loss=10.90] Epoch 0: | | 42/? [00:08<00:00, 5.15it/s, train/loss=63.40] Epoch 0: | | 43/? [00:08<00:00, 5.24it/s, train/loss=63.40] Epoch 0: | | 43/? [00:08<00:00, 5.24it/s, train/loss=10.30] Epoch 0: | | 44/? [00:08<00:00, 5.17it/s, train/loss=10.30] Epoch 0: | | 44/? [00:08<00:00, 5.17it/s, train/loss=70.20] Epoch 0: | | 45/? [00:08<00:00, 5.26it/s, train/loss=70.20] Epoch 0: | | 45/? [00:08<00:00, 5.26it/s, train/loss=10.00] Epoch 0: | | 46/? [00:08<00:00, 5.19it/s, train/loss=10.00] Epoch 0: | | 46/? [00:08<00:00, 5.19it/s, train/loss=60.70] Epoch 0: | | 47/? [00:08<00:00, 5.28it/s, train/loss=60.70] Epoch 0: | | 47/? [00:08<00:00, 5.28it/s, train/loss=9.830] Epoch 0: | | 48/? [00:09<00:00, 5.21it/s, train/loss=9.830] Epoch 0: | | 48/? [00:09<00:00, 5.21it/s, train/loss=61.30] Epoch 0: | | 49/? [00:09<00:00, 5.29it/s, train/loss=61.30] Epoch 0: | | 49/? [00:09<00:00, 5.29it/s, train/loss=9.610] Epoch 0: | | 50/? [00:09<00:00, 5.23it/s, train/loss=9.610] Epoch 0: | | 50/? [00:09<00:00, 5.23it/s, train/loss=61.80] Epoch 0: | | 51/? [00:09<00:00, 5.30it/s, train/loss=61.80] Epoch 0: | | 51/? [00:09<00:00, 5.30it/s, train/loss=9.420] Epoch 0: | | 52/? [00:09<00:00, 5.24it/s, train/loss=9.420] Epoch 0: | | 52/? [00:09<00:00, 5.24it/s, train/loss=38.50] Epoch 0: | | 53/? [00:09<00:00, 5.32it/s, train/loss=38.50] Epoch 0: | | 53/? [00:09<00:00, 5.32it/s, train/loss=9.250] Epoch 0: | | 54/? [00:10<00:00, 5.26it/s, train/loss=9.250] Epoch 0: | | 54/? [00:10<00:00, 5.26it/s, train/loss=43.80] Epoch 0: | | 55/? [00:10<00:00, 5.33it/s, train/loss=43.80] Epoch 0: | | 55/? [00:10<00:00, 5.33it/s, train/loss=9.020] Epoch 0: | | 56/? [00:10<00:00, 5.27it/s, train/loss=9.020] Epoch 0: | | 56/? [00:10<00:00, 5.27it/s, train/loss=88.30] Epoch 0: | | 57/? [00:10<00:00, 5.34it/s, train/loss=88.30] Epoch 0: | | 57/? [00:10<00:00, 5.34it/s, train/loss=8.820] Epoch 0: | | 58/? [00:10<00:00, 5.29it/s, train/loss=8.820] Epoch 0: | | 58/? [00:10<00:00, 5.29it/s, train/loss=65.20] Epoch 0: | | 59/? [00:11<00:00, 5.35it/s, train/loss=65.20] Epoch 0: | | 59/? [00:11<00:00, 5.35it/s, train/loss=8.700] Epoch 0: | | 60/? [00:11<00:00, 5.30it/s, train/loss=8.700] Epoch 0: | | 60/? [00:11<00:00, 5.30it/s, train/loss=48.50] Epoch 0: | | 61/? [00:11<00:00, 5.36it/s, train/loss=48.50] Epoch 0: | | 61/? [00:11<00:00, 5.36it/s, train/loss=8.640] Epoch 0: | | 62/? [00:11<00:00, 5.31it/s, train/loss=8.640] Epoch 0: | | 62/? [00:11<00:00, 5.30it/s, train/loss=63.30] Epoch 0: | | 63/? [00:11<00:00, 5.37it/s, train/loss=63.30] Epoch 0: | | 63/? [00:11<00:00, 5.37it/s, train/loss=8.580] Epoch 0: | | 64/? [00:12<00:00, 5.32it/s, train/loss=8.580] Epoch 0: | | 64/? [00:12<00:00, 5.31it/s, train/loss=73.00] Epoch 0: | | 65/? [00:12<00:00, 5.37it/s, train/loss=73.00] Epoch 0: | | 65/? [00:12<00:00, 5.37it/s, train/loss=8.530] Epoch 0: | | 66/? [00:12<00:00, 5.32it/s, train/loss=8.530] Epoch 0: | | 66/? [00:12<00:00, 5.32it/s, train/loss=114.0] Epoch 0: | | 67/? [00:12<00:00, 5.38it/s, train/loss=114.0] Epoch 0: | | 67/? [00:12<00:00, 5.38it/s, train/loss=8.480] Epoch 0: | | 68/? [00:12<00:00, 5.28it/s, train/loss=8.480] Epoch 0: | | 68/? [00:12<00:00, 5.28it/s, train/loss=47.50] Epoch 0: | | 69/? [00:12<00:00, 5.34it/s, train/loss=47.50] Epoch 0: | | 69/? [00:12<00:00, 5.34it/s, train/loss=8.460] Epoch 0: | | 70/? [00:13<00:00, 5.30it/s, train/loss=8.460] Epoch 0: | | 70/? [00:13<00:00, 5.30it/s, train/loss=71.40] Epoch 0: | | 71/? [00:13<00:00, 5.36it/s, train/loss=71.40] Epoch 0: | | 71/? [00:13<00:00, 5.35it/s, train/loss=8.390] Epoch 0: | | 72/? [00:13<00:00, 5.31it/s, train/loss=8.390] Epoch 0: | | 72/? [00:13<00:00, 5.31it/s, train/loss=54.80] Epoch 0: | | 73/? [00:13<00:00, 5.37it/s, train/loss=54.80] Epoch 0: | | 73/? [00:13<00:00, 5.37it/s, train/loss=8.210] Epoch 0: | | 74/? [00:13<00:00, 5.33it/s, train/loss=8.210] Epoch 0: | | 74/? [00:13<00:00, 5.33it/s, train/loss=46.20] Epoch 0: | | 75/? [00:13<00:00, 5.38it/s, train/loss=46.20] Epoch 0: | | 75/? [00:13<00:00, 5.38it/s, train/loss=8.040] Epoch 0: | | 76/? [00:14<00:00, 5.34it/s, train/loss=8.040] Epoch 0: | | 76/? [00:14<00:00, 5.34it/s, train/loss=79.50] Epoch 0: | | 77/? [00:14<00:00, 5.39it/s, train/loss=79.50] Epoch 0: | | 77/? [00:14<00:00, 5.39it/s, train/loss=7.990] Epoch 0: | | 78/? [00:14<00:00, 5.35it/s, train/loss=7.990] Epoch 0: | | 78/? [00:14<00:00, 5.35it/s, train/loss=41.70] Epoch 0: | | 79/? [00:14<00:00, 5.40it/s, train/loss=41.70] Epoch 0: | | 79/? [00:14<00:00, 5.40it/s, train/loss=8.030] Epoch 0: | | 80/? [00:14<00:00, 5.36it/s, train/loss=8.030] Epoch 0: | | 80/? [00:14<00:00, 5.36it/s, train/loss=64.90] Epoch 0: | | 81/? [00:14<00:00, 5.41it/s, train/loss=64.90] Epoch 0: | | 81/? [00:14<00:00, 5.41it/s, train/loss=8.050] Epoch 0: | | 82/? [00:15<00:00, 5.37it/s, train/loss=8.050] Epoch 0: | | 82/? [00:15<00:00, 5.37it/s, train/loss=62.00] Epoch 0: | | 83/? [00:15<00:00, 5.42it/s, train/loss=62.00] Epoch 0: | | 83/? [00:15<00:00, 5.42it/s, train/loss=8.020] Epoch 0: | | 84/? [00:15<00:00, 5.38it/s, train/loss=8.020] Epoch 0: | | 84/? [00:15<00:00, 5.38it/s, train/loss=45.70] Epoch 0: | | 85/? [00:15<00:00, 5.43it/s, train/loss=45.70] Epoch 0: | | 85/? [00:15<00:00, 5.43it/s, train/loss=7.980] Epoch 0: | | 86/? [00:15<00:00, 5.39it/s, train/loss=7.980] Epoch 0: | | 86/? [00:15<00:00, 5.39it/s, train/loss=61.90] Epoch 0: | | 87/? [00:16<00:00, 5.44it/s, train/loss=61.90] Epoch 0: | | 87/? [00:16<00:00, 5.44it/s, train/loss=7.940] Epoch 0: | | 88/? [00:16<00:00, 5.40it/s, train/loss=7.940] Epoch 0: | | 88/? [00:16<00:00, 5.40it/s, train/loss=72.20] Epoch 0: | | 89/? [00:16<00:00, 5.45it/s, train/loss=72.20] Epoch 0: | | 89/? [00:16<00:00, 5.45it/s, train/loss=7.930] Epoch 0: | | 90/? [00:16<00:00, 5.41it/s, train/loss=7.930] Epoch 0: | | 90/? [00:16<00:00, 5.41it/s, train/loss=70.50] Epoch 0: | | 91/? [00:16<00:00, 5.45it/s, train/loss=70.50] Epoch 0: | | 91/? [00:16<00:00, 5.45it/s, train/loss=7.950] Epoch 0: | | 92/? [00:16<00:00, 5.41it/s, train/loss=7.950] Epoch 0: | | 92/? [00:17<00:00, 5.41it/s, train/loss=55.00] Epoch 0: | | 93/? [00:17<00:00, 5.45it/s, train/loss=55.00] Epoch 0: | | 93/? [00:17<00:00, 5.45it/s, train/loss=7.930] Epoch 0: | | 94/? [00:17<00:00, 5.41it/s, train/loss=7.930] Epoch 0: | | 94/? [00:17<00:00, 5.41it/s, train/loss=47.60] Epoch 0: | | 95/? [00:17<00:00, 5.45it/s, train/loss=47.60] Epoch 0: | | 95/? [00:17<00:00, 5.45it/s, train/loss=7.880] Epoch 0: | | 96/? [00:17<00:00, 5.42it/s, train/loss=7.880] Epoch 0: | | 96/? [00:17<00:00, 5.42it/s, train/loss=53.40] Epoch 0: | | 97/? [00:17<00:00, 5.46it/s, train/loss=53.40] Epoch 0: | | 97/? [00:17<00:00, 5.46it/s, train/loss=7.830] Epoch 0: | | 98/? [00:18<00:00, 5.43it/s, train/loss=7.830] Epoch 0: | | 98/? [00:18<00:00, 5.43it/s, train/loss=52.20] Epoch 0: | | 99/? [00:18<00:00, 5.47it/s, train/loss=52.20] Epoch 0: | | 99/? [00:18<00:00, 5.47it/s, train/loss=7.710] Epoch 0: | | 100/? [00:18<00:00, 5.44it/s, train/loss=7.710] Epoch 0: | | 100/? [00:18<00:00, 5.44it/s, train/loss=46.20] Epoch 0: | | 101/? [00:18<00:00, 5.48it/s, train/loss=46.20] Epoch 0: | | 101/? [00:18<00:00, 5.48it/s, train/loss=7.540] Epoch 0: | | 102/? [00:18<00:00, 5.45it/s, train/loss=7.540] Epoch 0: | | 102/? [00:18<00:00, 5.45it/s, train/loss=63.90] Epoch 0: | | 103/? [00:18<00:00, 5.49it/s, train/loss=63.90] Epoch 0: | | 103/? [00:18<00:00, 5.49it/s, train/loss=7.310] Epoch 0: | | 104/? [00:19<00:00, 5.46it/s, train/loss=7.310] Epoch 0: | | 104/? [00:19<00:00, 5.46it/s, train/loss=70.90] Epoch 0: | | 105/? [00:19<00:00, 5.49it/s, train/loss=70.90] Epoch 0: | | 105/? [00:19<00:00, 5.49it/s, train/loss=7.160] Epoch 0: | | 106/? [00:19<00:00, 5.46it/s, train/loss=7.160] Epoch 0: | | 106/? [00:19<00:00, 5.46it/s, train/loss=59.10] Epoch 0: | | 107/? [00:19<00:00, 5.50it/s, train/loss=59.10] Epoch 0: | | 107/? [00:19<00:00, 5.50it/s, train/loss=7.080] Epoch 0: | | 108/? [00:19<00:00, 5.47it/s, train/loss=7.080] Epoch 0: | | 108/? [00:19<00:00, 5.47it/s, train/loss=57.80] Epoch 0: | | 109/? [00:19<00:00, 5.51it/s, train/loss=57.80] Epoch 0: | | 109/? [00:19<00:00, 5.51it/s, train/loss=7.080] Epoch 0: | | 110/? [00:20<00:00, 5.47it/s, train/loss=7.080] Epoch 0: | | 110/? [00:20<00:00, 5.47it/s, train/loss=41.90] Epoch 0: | | 111/? [00:20<00:00, 5.51it/s, train/loss=41.90] Epoch 0: | | 111/? [00:20<00:00, 5.51it/s, train/loss=7.140] Epoch 0: | | 112/? [00:20<00:00, 5.48it/s, train/loss=7.140] Epoch 0: | | 112/? [00:20<00:00, 5.48it/s, train/loss=56.10] Epoch 0: | | 113/? [00:20<00:00, 5.52it/s, train/loss=56.10] Epoch 0: | | 113/? [00:20<00:00, 5.52it/s, train/loss=7.250] Epoch 0: | | 114/? [00:20<00:00, 5.49it/s, train/loss=7.250] Epoch 0: | | 114/? [00:20<00:00, 5.49it/s, train/loss=48.80] Epoch 0: | | 115/? [00:20<00:00, 5.53it/s, train/loss=48.80] Epoch 0: | | 115/? [00:20<00:00, 5.53it/s, train/loss=7.310] Epoch 0: | | 116/? [00:21<00:00, 5.50it/s, train/loss=7.310] Epoch 0: | | 116/? [00:21<00:00, 5.50it/s, train/loss=51.80] Epoch 0: | | 117/? [00:21<00:00, 5.54it/s, train/loss=51.80] Epoch 0: | | 117/? [00:21<00:00, 5.54it/s, train/loss=7.300] Epoch 0: | | 118/? [00:21<00:00, 5.51it/s, train/loss=7.300] Epoch 0: | | 118/? [00:21<00:00, 5.51it/s, train/loss=47.40] Epoch 0: | | 119/? [00:21<00:00, 5.54it/s, train/loss=47.40] Epoch 0: | | 119/? [00:21<00:00, 5.54it/s, train/loss=7.190] Epoch 0: | | 120/? [00:21<00:00, 5.52it/s, train/loss=7.190] Epoch 0: | | 120/? [00:21<00:00, 5.52it/s, train/loss=49.40] Epoch 0: | | 121/? [00:21<00:00, 5.55it/s, train/loss=49.40] Epoch 0: | | 121/? [00:21<00:00, 5.55it/s, train/loss=7.070] Epoch 0: | | 122/? [00:22<00:00, 5.52it/s, train/loss=7.070] Epoch 0: | | 122/? [00:22<00:00, 5.52it/s, train/loss=48.40] Epoch 0: | | 123/? [00:22<00:00, 5.56it/s, train/loss=48.40] Epoch 0: | | 123/? [00:22<00:00, 5.56it/s, train/loss=6.940] Epoch 0: | | 124/? [00:22<00:00, 5.53it/s, train/loss=6.940] Epoch 0: | | 124/? [00:22<00:00, 5.53it/s, train/loss=98.00] Epoch 0: | | 125/? [00:22<00:00, 5.56it/s, train/loss=98.00] Epoch 0: | | 125/? [00:22<00:00, 5.56it/s, train/loss=6.790] Epoch 0: | | 126/? [00:22<00:00, 5.54it/s, train/loss=6.790] Epoch 0: | | 126/? [00:22<00:00, 5.54it/s, train/loss=34.70] Epoch 0: | | 127/? [00:22<00:00, 5.57it/s, train/loss=34.70] Epoch 0: | | 127/? [00:22<00:00, 5.57it/s, train/loss=6.770] Epoch 0: | | 128/? [00:23<00:00, 5.54it/s, train/loss=6.770] Epoch 0: | | 128/? [00:23<00:00, 5.54it/s, train/loss=24.60] Epoch 0: | | 129/? [00:23<00:00, 5.58it/s, train/loss=24.60] Epoch 0: | | 129/? [00:23<00:00, 5.58it/s, train/loss=6.750] Epoch 0: | | 130/? [00:23<00:00, 5.55it/s, train/loss=6.750] Epoch 0: | | 130/? [00:23<00:00, 5.55it/s, train/loss=42.10] Epoch 0: | | 131/? [00:23<00:00, 5.59it/s, train/loss=42.10] Epoch 0: | | 131/? [00:23<00:00, 5.59it/s, train/loss=6.640] Epoch 0: | | 132/? [00:23<00:00, 5.56it/s, train/loss=6.640] Epoch 0: | | 132/? [00:23<00:00, 5.56it/s, train/loss=64.70] Epoch 0: | | 133/? [00:23<00:00, 5.59it/s, train/loss=64.70] Epoch 0: | | 133/? [00:23<00:00, 5.59it/s, train/loss=6.450] Epoch 0: | | 134/? [00:24<00:00, 5.57it/s, train/loss=6.450] Epoch 0: | | 134/? [00:24<00:00, 5.57it/s, train/loss=47.10] Epoch 0: | | 135/? [00:24<00:00, 5.60it/s, train/loss=47.10] Epoch 0: | | 135/? [00:24<00:00, 5.60it/s, train/loss=6.330] Epoch 0: | | 136/? [00:24<00:00, 5.57it/s, train/loss=6.330] Epoch 0: | | 136/? [00:24<00:00, 5.57it/s, train/loss=42.00] Epoch 0: | | 137/? [00:24<00:00, 5.61it/s, train/loss=42.00] Epoch 0: | | 137/? [00:24<00:00, 5.61it/s, train/loss=6.280] Epoch 0: | | 138/? [00:24<00:00, 5.58it/s, train/loss=6.280] Epoch 0: | | 138/? [00:24<00:00, 5.58it/s, train/loss=46.60] Epoch 0: | | 139/? [00:24<00:00, 5.61it/s, train/loss=46.60] Epoch 0: | | 139/? [00:24<00:00, 5.61it/s, train/loss=6.390] Epoch 0: | | 140/? [00:25<00:00, 5.59it/s, train/loss=6.390] Epoch 0: | | 140/? [00:25<00:00, 5.59it/s, train/loss=33.50] Epoch 0: | | 141/? [00:25<00:00, 5.62it/s, train/loss=33.50] Epoch 0: | | 141/? [00:25<00:00, 5.62it/s, train/loss=6.580] Epoch 0: | | 142/? [00:25<00:00, 5.59it/s, train/loss=6.580] Epoch 0: | | 142/? [00:25<00:00, 5.59it/s, train/loss=30.50] Epoch 0: | | 143/? [00:25<00:00, 5.63it/s, train/loss=30.50] Epoch 0: | | 143/? [00:25<00:00, 5.63it/s, train/loss=6.660] Epoch 0: | | 144/? [00:25<00:00, 5.60it/s, train/loss=6.660] Epoch 0: | | 144/? [00:25<00:00, 5.60it/s, train/loss=38.60] Epoch 0: | | 145/? [00:25<00:00, 5.62it/s, train/loss=38.60] Epoch 0: | | 145/? [00:25<00:00, 5.62it/s, train/loss=6.590] Epoch 0: | | 146/? [00:26<00:00, 5.60it/s, train/loss=6.590] Epoch 0: | | 146/? [00:26<00:00, 5.60it/s, train/loss=34.10] Epoch 0: | | 147/? [00:26<00:00, 5.62it/s, train/loss=34.10] Epoch 0: | | 147/? [00:26<00:00, 5.62it/s, train/loss=6.380] Epoch 0: | | 148/? [00:26<00:00, 5.59it/s, train/loss=6.380] Epoch 0: | | 148/? [00:26<00:00, 5.59it/s, train/loss=64.90] Epoch 0: | | 149/? [00:26<00:00, 5.62it/s, train/loss=64.90] Epoch 0: | | 149/? [00:26<00:00, 5.62it/s, train/loss=6.170] Epoch 0: | | 150/? [00:26<00:00, 5.59it/s, train/loss=6.170] Epoch 0: | | 150/? [00:26<00:00, 5.59it/s, train/loss=38.60] Epoch 0: | | 151/? [00:26<00:00, 5.62it/s, train/loss=38.60] Epoch 0: | | 151/? [00:26<00:00, 5.62it/s, train/loss=6.060] Epoch 0: | | 152/? [00:27<00:00, 5.60it/s, train/loss=6.060] Epoch 0: | | 152/? [00:27<00:00, 5.60it/s, train/loss=45.40] Epoch 0: | | 153/? [00:27<00:00, 5.62it/s, train/loss=45.40] Epoch 0: | | 153/? [00:27<00:00, 5.62it/s, train/loss=5.980] Epoch 0: | | 154/? [00:27<00:00, 5.60it/s, train/loss=5.980] Epoch 0: | | 154/? [00:27<00:00, 5.60it/s, train/loss=33.70] Epoch 0: | | 155/? [00:27<00:00, 5.63it/s, train/loss=33.70] Epoch 0: | | 155/? [00:27<00:00, 5.63it/s, train/loss=5.930] Epoch 0: | | 156/? [00:27<00:00, 5.60it/s, train/loss=5.930] Epoch 0: | | 156/? [00:27<00:00, 5.60it/s, train/loss=35.70] Epoch 0: | | 157/? [00:27<00:00, 5.63it/s, train/loss=35.70] Epoch 0: | | 157/? [00:27<00:00, 5.63it/s, train/loss=5.870] Epoch 0: | | 158/? [00:28<00:00, 5.60it/s, train/loss=5.870] Epoch 0: | | 158/? [00:28<00:00, 5.60it/s, train/loss=26.40] Epoch 0: | | 159/? [00:28<00:00, 5.63it/s, train/loss=26.40] Epoch 0: | | 159/? [00:28<00:00, 5.63it/s, train/loss=5.840] Epoch 0: | | 160/? [00:28<00:00, 5.61it/s, train/loss=5.840] Epoch 0: | | 160/? [00:28<00:00, 5.61it/s, train/loss=49.70] Epoch 0: | | 161/? [00:28<00:00, 5.64it/s, train/loss=49.70] Epoch 0: | | 161/? [00:28<00:00, 5.64it/s, train/loss=5.760] Epoch 0: | | 162/? [00:28<00:00, 5.61it/s, train/loss=5.760] Epoch 0: | | 162/? [00:28<00:00, 5.61it/s, train/loss=51.80] Epoch 0: | | 163/? [00:28<00:00, 5.64it/s, train/loss=51.80] Epoch 0: | | 163/? [00:28<00:00, 5.64it/s, train/loss=5.590] Epoch 0: | | 164/? [00:29<00:00, 5.62it/s, train/loss=5.590] Epoch 0: | | 164/? [00:29<00:00, 5.62it/s, train/loss=25.90] Epoch 0: | | 165/? [00:29<00:00, 5.65it/s, train/loss=25.90] Epoch 0: | | 165/? [00:29<00:00, 5.65it/s, train/loss=5.480] Epoch 0: | | 166/? [00:29<00:00, 5.63it/s, train/loss=5.480] Epoch 0: | | 166/? [00:29<00:00, 5.62it/s, train/loss=44.60] Epoch 0: | | 167/? [00:29<00:00, 5.65it/s, train/loss=44.60] Epoch 0: | | 167/? [00:29<00:00, 5.65it/s, train/loss=5.450] Epoch 0: | | 168/? [00:29<00:00, 5.63it/s, train/loss=5.450] Epoch 0: | | 168/? [00:29<00:00, 5.63it/s, train/loss=28.10] Epoch 0: | | 169/? [00:29<00:00, 5.66it/s, train/loss=28.10] Epoch 0: | | 169/? [00:29<00:00, 5.66it/s, train/loss=5.520] Epoch 0: | | 170/? [00:30<00:00, 5.63it/s, train/loss=5.520] Epoch 0: | | 170/? [00:30<00:00, 5.63it/s, train/loss=40.30] Epoch 0: | | 171/? [00:30<00:00, 5.66it/s, train/loss=40.30] Epoch 0: | | 171/? [00:30<00:00, 5.66it/s, train/loss=5.610] Epoch 0: | | 172/? [00:30<00:00, 5.64it/s, train/loss=5.610] Epoch 0: | | 172/? [00:30<00:00, 5.64it/s, train/loss=31.20] Epoch 0: | | 173/? [00:30<00:00, 5.66it/s, train/loss=31.20] Epoch 0: | | 173/? [00:30<00:00, 5.66it/s, train/loss=5.690] Epoch 0: | | 174/? [00:30<00:00, 5.64it/s, train/loss=5.690] Epoch 0: | | 174/? [00:30<00:00, 5.64it/s, train/loss=22.80] Epoch 0: | | 175/? [00:30<00:00, 5.66it/s, train/loss=22.80] Epoch 0: | | 175/? [00:30<00:00, 5.66it/s, train/loss=5.640] Epoch 0: | | 176/? [00:31<00:00, 5.64it/s, train/loss=5.640] Epoch 0: | | 176/? [00:31<00:00, 5.64it/s, train/loss=38.40] Epoch 0: | | 177/? [00:31<00:00, 5.67it/s, train/loss=38.40] Epoch 0: | | 177/? [00:31<00:00, 5.66it/s, train/loss=5.450] Epoch 0: | | 178/? [00:31<00:00, 5.65it/s, train/loss=5.450] Epoch 0: | | 178/? [00:31<00:00, 5.64it/s, train/loss=25.80] Epoch 0: | | 179/? [00:31<00:00, 5.67it/s, train/loss=25.80] Epoch 0: | | 179/? [00:31<00:00, 5.67it/s, train/loss=5.300] Epoch 0: | | 180/? [00:31<00:00, 5.65it/s, train/loss=5.300] Epoch 0: | | 180/? [00:31<00:00, 5.65it/s, train/loss=46.20] Epoch 0: | | 181/? [00:31<00:00, 5.68it/s, train/loss=46.20] Epoch 0: | | 181/? [00:31<00:00, 5.68it/s, train/loss=5.170] Epoch 0: | | 182/? [00:32<00:00, 5.66it/s, train/loss=5.170] Epoch 0: | | 182/? [00:32<00:00, 5.66it/s, train/loss=28.60] Epoch 0: | | 183/? [00:32<00:00, 5.68it/s, train/loss=28.60] Epoch 0: | | 183/? [00:32<00:00, 5.68it/s, train/loss=5.060] Epoch 0: | | 184/? [00:32<00:00, 5.66it/s, train/loss=5.060] Epoch 0: | | 184/? [00:32<00:00, 5.66it/s, train/loss=25.50] Epoch 0: | | 185/? [00:32<00:00, 5.68it/s, train/loss=25.50] Epoch 0: | | 185/? [00:32<00:00, 5.68it/s, train/loss=5.020] Epoch 0: | | 186/? [00:32<00:00, 5.66it/s, train/loss=5.020] Epoch 0: | | 186/? [00:32<00:00, 5.66it/s, train/loss=20.50] Epoch 0: | | 187/? [00:32<00:00, 5.69it/s, train/loss=20.50] Epoch 0: | | 187/? [00:32<00:00, 5.69it/s, train/loss=4.970] Epoch 0: | | 188/? [00:33<00:00, 5.67it/s, train/loss=4.970] Epoch 0: | | 188/? [00:33<00:00, 5.67it/s, train/loss=21.20] Epoch 0: | | 189/? [00:33<00:00, 5.69it/s, train/loss=21.20] Epoch 0: | | 189/? [00:33<00:00, 5.69it/s, train/loss=4.920] Epoch 0: | | 190/? [00:33<00:00, 5.67it/s, train/loss=4.920] Epoch 0: | | 190/? [00:33<00:00, 5.67it/s, train/loss=31.50] Epoch 0: | | 191/? [00:33<00:00, 5.70it/s, train/loss=31.50] Epoch 0: | | 191/? [00:33<00:00, 5.70it/s, train/loss=4.870] Epoch 0: | | 192/? [00:33<00:00, 5.68it/s, train/loss=4.870] Epoch 0: | | 192/? [00:33<00:00, 5.68it/s, train/loss=65.00] Epoch 0: | | 193/? [00:33<00:00, 5.70it/s, train/loss=65.00] Epoch 0: | | 193/? [00:33<00:00, 5.70it/s, train/loss=4.860] Epoch 0: | | 194/? [00:34<00:00, 5.68it/s, train/loss=4.860] Epoch 0: | | 194/? [00:34<00:00, 5.68it/s, train/loss=19.90] Epoch 0: | | 195/? [00:34<00:00, 5.71it/s, train/loss=19.90] Epoch 0: | | 195/? [00:34<00:00, 5.71it/s, train/loss=4.850] Epoch 0: | | 196/? [00:34<00:00, 5.69it/s, train/loss=4.850] Epoch 0: | | 196/? [00:34<00:00, 5.69it/s, train/loss=25.90] Epoch 0: | | 197/? [00:34<00:00, 5.71it/s, train/loss=25.90] Epoch 0: | | 197/? [00:34<00:00, 5.71it/s, train/loss=4.860] Epoch 0: | | 198/? [00:34<00:00, 5.69it/s, train/loss=4.860] Epoch 0: | | 198/? [00:34<00:00, 5.69it/s, train/loss=41.40] Epoch 0: | | 199/? [00:34<00:00, 5.71it/s, train/loss=41.40] Epoch 0: | | 199/? [00:34<00:00, 5.71it/s, train/loss=4.860] Epoch 0: | | 200/? [00:35<00:00, 5.70it/s, train/loss=4.860] Epoch 0: | | 200/? [00:35<00:00, 5.70it/s, train/loss=22.20] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 53.35it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 54.05it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 54.08it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 54.15it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 54.23it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 54.34it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 54.29it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 54.34it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 54.38it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 54.49it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 54.56it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 54.56it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 54.60it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 54.60it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 54.60it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 54.59it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 53.41it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 53.67it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 53.89it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 54.02it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 54.18it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 54.30it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 54.46it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 54.60it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 54.73it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 54.86it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 54.97it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 55.03it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 54.81it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 54.89it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 54.48it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 54.12it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 53.75it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 53.80it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 53.90it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 54.01it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 54.00it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 53.98it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 53.96it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 53.95it/s] Epoch 0: | | 200/? [00:36<00:00, 5.50it/s, train/loss=22.20] Epoch 0: | | 201/? [00:36<00:00, 5.49it/s, train/loss=22.20] Epoch 0: | | 201/? [00:36<00:00, 5.49it/s, train/loss=4.850] Epoch 0: | | 202/? [00:36<00:00, 5.47it/s, train/loss=4.850] Epoch 0: | | 202/? [00:36<00:00, 5.47it/s, train/loss=16.20] Epoch 0: | | 203/? [00:36<00:00, 5.49it/s, train/loss=16.20] Epoch 0: | | 203/? [00:36<00:00, 5.49it/s, train/loss=4.840] Epoch 0: | | 204/? [00:37<00:00, 5.48it/s, train/loss=4.840] Epoch 0: | | 204/? [00:37<00:00, 5.48it/s, train/loss=40.60] Epoch 0: | | 205/? [00:37<00:00, 5.50it/s, train/loss=40.60] Epoch 0: | | 205/? [00:37<00:00, 5.50it/s, train/loss=4.810] Epoch 0: | | 206/? [00:37<00:00, 5.48it/s, train/loss=4.810] Epoch 0: | | 206/? [00:37<00:00, 5.48it/s, train/loss=15.70] Epoch 0: | | 207/? [00:37<00:00, 5.51it/s, train/loss=15.70] Epoch 0: | | 207/? [00:37<00:00, 5.51it/s, train/loss=4.780] Epoch 0: | | 208/? [00:37<00:00, 5.49it/s, train/loss=4.780] Epoch 0: | | 208/? [00:37<00:00, 5.49it/s, train/loss=10.70] Epoch 0: | | 209/? [00:37<00:00, 5.51it/s, train/loss=10.70] Epoch 0: | | 209/? [00:37<00:00, 5.51it/s, train/loss=4.740] Epoch 0: | | 210/? [00:38<00:00, 5.50it/s, train/loss=4.740] Epoch 0: | | 210/? [00:38<00:00, 5.50it/s, train/loss=34.00] Epoch 0: | | 211/? [00:38<00:00, 5.51it/s, train/loss=34.00] Epoch 0: | | 211/? [00:38<00:00, 5.51it/s, train/loss=4.660] Epoch 0: | | 212/? [00:38<00:00, 5.50it/s, train/loss=4.660] Epoch 0: | | 212/? [00:38<00:00, 5.50it/s, train/loss=30.70] Epoch 0: | | 213/? [00:38<00:00, 5.52it/s, train/loss=30.70] Epoch 0: | | 213/? [00:38<00:00, 5.52it/s, train/loss=4.570] Epoch 0: | | 214/? [00:38<00:00, 5.50it/s, train/loss=4.570] Epoch 0: | | 214/? [00:38<00:00, 5.50it/s, train/loss=15.90] Epoch 0: | | 215/? [00:38<00:00, 5.52it/s, train/loss=15.90] Epoch 0: | | 215/? [00:38<00:00, 5.52it/s, train/loss=4.540] Epoch 0: | | 216/? [00:39<00:00, 5.50it/s, train/loss=4.540] Epoch 0: | | 216/? [00:39<00:00, 5.50it/s, train/loss=25.80] Epoch 0: | | 217/? [00:39<00:00, 5.52it/s, train/loss=25.80] Epoch 0: | | 217/? [00:39<00:00, 5.52it/s, train/loss=4.500] Epoch 0: | | 218/? [00:39<00:00, 5.50it/s, train/loss=4.500] Epoch 0: | | 218/? [00:39<00:00, 5.50it/s, train/loss=30.50] Epoch 0: | | 219/? [00:39<00:00, 5.52it/s, train/loss=30.50] Epoch 0: | | 219/? [00:39<00:00, 5.52it/s, train/loss=4.460] Epoch 0: | | 220/? [00:39<00:00, 5.50it/s, train/loss=4.460] Epoch 0: | | 220/? [00:39<00:00, 5.50it/s, train/loss=67.90] Epoch 0: | | 221/? [00:40<00:00, 5.52it/s, train/loss=67.90] Epoch 0: | | 221/? [00:40<00:00, 5.52it/s, train/loss=4.400] Epoch 0: | | 222/? [00:40<00:00, 5.50it/s, train/loss=4.400] Epoch 0: | | 222/? [00:40<00:00, 5.50it/s, train/loss=21.40] Epoch 0: | | 223/? [00:40<00:00, 5.52it/s, train/loss=21.40] Epoch 0: | | 223/? [00:40<00:00, 5.52it/s, train/loss=4.370] Epoch 0: | | 224/? [00:40<00:00, 5.50it/s, train/loss=4.370] Epoch 0: | | 224/? [00:40<00:00, 5.50it/s, train/loss=37.50] Epoch 0: | | 225/? [00:40<00:00, 5.52it/s, train/loss=37.50] Epoch 0: | | 225/? [00:40<00:00, 5.52it/s, train/loss=4.340] Epoch 0: | | 226/? [00:41<00:00, 5.50it/s, train/loss=4.340] Epoch 0: | | 226/? [00:41<00:00, 5.50it/s, train/loss=8.740] Epoch 0: | | 227/? [00:41<00:00, 5.52it/s, train/loss=8.740] Epoch 0: | | 227/? [00:41<00:00, 5.52it/s, train/loss=4.320] Epoch 0: | | 228/? [00:41<00:00, 5.50it/s, train/loss=4.320] Epoch 0: | | 228/? [00:41<00:00, 5.50it/s, train/loss=11.40] Epoch 0: | | 229/? [00:41<00:00, 5.52it/s, train/loss=11.40] Epoch 0: | | 229/? [00:41<00:00, 5.52it/s, train/loss=4.270] Epoch 0: | | 230/? [00:41<00:00, 5.50it/s, train/loss=4.270] Epoch 0: | | 230/? [00:41<00:00, 5.50it/s, train/loss=16.20] Epoch 0: | | 231/? [00:41<00:00, 5.52it/s, train/loss=16.20] Epoch 0: | | 231/? [00:41<00:00, 5.52it/s, train/loss=4.210] Epoch 0: | | 232/? [00:42<00:00, 5.51it/s, train/loss=4.210] Epoch 0: | | 232/? [00:42<00:00, 5.51it/s, train/loss=14.70] Epoch 0: | | 233/? [00:42<00:00, 5.52it/s, train/loss=14.70] Epoch 0: | | 233/? [00:42<00:00, 5.52it/s, train/loss=4.140] Epoch 0: | | 234/? [00:42<00:00, 5.51it/s, train/loss=4.140] Epoch 0: | | 234/? [00:42<00:00, 5.51it/s, train/loss=13.80] Epoch 0: | | 235/? [00:42<00:00, 5.52it/s, train/loss=13.80] Epoch 0: | | 235/? [00:42<00:00, 5.52it/s, train/loss=4.070] Epoch 0: | | 236/? [00:42<00:00, 5.51it/s, train/loss=4.070] Epoch 0: | | 236/? [00:42<00:00, 5.51it/s, train/loss=21.90] Epoch 0: | | 237/? [00:42<00:00, 5.52it/s, train/loss=21.90] Epoch 0: | | 237/? [00:42<00:00, 5.52it/s, train/loss=3.970] Epoch 0: | | 238/? [00:43<00:00, 5.51it/s, train/loss=3.970] Epoch 0: | | 238/? [00:43<00:00, 5.51it/s, train/loss=30.50] Epoch 0: | | 239/? [00:43<00:00, 5.53it/s, train/loss=30.50] Epoch 0: | | 239/? [00:43<00:00, 5.53it/s, train/loss=3.910] Epoch 0: | | 240/? [00:43<00:00, 5.51it/s, train/loss=3.910] Epoch 0: | | 240/? [00:43<00:00, 5.51it/s, train/loss=12.20] Epoch 0: | | 241/? [00:43<00:00, 5.53it/s, train/loss=12.20] Epoch 0: | | 241/? [00:43<00:00, 5.53it/s, train/loss=3.890] Epoch 0: | | 242/? [00:43<00:00, 5.51it/s, train/loss=3.890] Epoch 0: | | 242/? [00:43<00:00, 5.51it/s, train/loss=52.70] Epoch 0: | | 243/? [00:43<00:00, 5.53it/s, train/loss=52.70] Epoch 0: | | 243/? [00:43<00:00, 5.53it/s, train/loss=3.820] Epoch 0: | | 244/? [00:44<00:00, 5.51it/s, train/loss=3.820] Epoch 0: | | 244/? [00:44<00:00, 5.51it/s, train/loss=12.60] Epoch 0: | | 245/? [00:44<00:00, 5.53it/s, train/loss=12.60] Epoch 0: | | 245/? [00:44<00:00, 5.53it/s, train/loss=3.750] Epoch 0: | | 246/? [00:44<00:00, 5.52it/s, train/loss=3.750] Epoch 0: | | 246/? [00:44<00:00, 5.52it/s, train/loss=22.40] Epoch 0: | | 247/? [00:44<00:00, 5.53it/s, train/loss=22.40] Epoch 0: | | 247/? [00:44<00:00, 5.53it/s, train/loss=3.740] Epoch 0: | | 248/? [00:44<00:00, 5.52it/s, train/loss=3.740] Epoch 0: | | 248/? [00:44<00:00, 5.52it/s, train/loss=31.60] Epoch 0: | | 249/? [00:44<00:00, 5.54it/s, train/loss=31.60] Epoch 0: | | 249/? [00:44<00:00, 5.54it/s, train/loss=3.760] Epoch 0: | | 250/? [00:45<00:00, 5.53it/s, train/loss=3.760] Epoch 0: | | 250/? [00:45<00:00, 5.53it/s, train/loss=9.880] Epoch 0: | | 251/? [00:45<00:00, 5.54it/s, train/loss=9.880] Epoch 0: | | 251/? [00:45<00:00, 5.54it/s, train/loss=3.770] Epoch 0: | | 252/? [00:45<00:00, 5.53it/s, train/loss=3.770] Epoch 0: | | 252/? [00:45<00:00, 5.53it/s, train/loss=28.30] Epoch 0: | | 253/? [00:45<00:00, 5.55it/s, train/loss=28.30] Epoch 0: | | 253/? [00:45<00:00, 5.55it/s, train/loss=3.730] Epoch 0: | | 254/? [00:45<00:00, 5.54it/s, train/loss=3.730] Epoch 0: | | 254/? [00:45<00:00, 5.54it/s, train/loss=11.40] Epoch 0: | | 255/? [00:45<00:00, 5.55it/s, train/loss=11.40] Epoch 0: | | 255/? [00:45<00:00, 5.55it/s, train/loss=3.640] Epoch 0: | | 256/? [00:46<00:00, 5.54it/s, train/loss=3.640] Epoch 0: | | 256/? [00:46<00:00, 5.54it/s, train/loss=24.80] Epoch 0: | | 257/? [00:46<00:00, 5.56it/s, train/loss=24.80] Epoch 0: | | 257/? [00:46<00:00, 5.56it/s, train/loss=3.570] Epoch 0: | | 258/? [00:46<00:00, 5.54it/s, train/loss=3.570] Epoch 0: | | 258/? [00:46<00:00, 5.54it/s, train/loss=37.10] Epoch 0: | | 259/? [00:46<00:00, 5.56it/s, train/loss=37.10] Epoch 0: | | 259/? [00:46<00:00, 5.56it/s, train/loss=3.530] Epoch 0: | | 260/? [00:46<00:00, 5.55it/s, train/loss=3.530] Epoch 0: | | 260/? [00:46<00:00, 5.55it/s, train/loss=23.60] Epoch 0: | | 261/? [00:46<00:00, 5.56it/s, train/loss=23.60] Epoch 0: | | 261/? [00:46<00:00, 5.56it/s, train/loss=3.540] Epoch 0: | | 262/? [00:47<00:00, 5.55it/s, train/loss=3.540] Epoch 0: | | 262/? [00:47<00:00, 5.55it/s, train/loss=45.00] Epoch 0: | | 263/? [00:47<00:00, 5.57it/s, train/loss=45.00] Epoch 0: | | 263/? [00:47<00:00, 5.57it/s, train/loss=3.530] Epoch 0: | | 264/? [00:47<00:00, 5.55it/s, train/loss=3.530] Epoch 0: | | 264/? [00:47<00:00, 5.55it/s, train/loss=10.10] Epoch 0: | | 265/? [00:47<00:00, 5.57it/s, train/loss=10.10] Epoch 0: | | 265/? [00:47<00:00, 5.57it/s, train/loss=3.530] Epoch 0: | | 266/? [00:47<00:00, 5.56it/s, train/loss=3.530] Epoch 0: | | 266/? [00:47<00:00, 5.56it/s, train/loss=12.90] Epoch 0: | | 267/? [00:47<00:00, 5.57it/s, train/loss=12.90] Epoch 0: | | 267/? [00:47<00:00, 5.57it/s, train/loss=3.530] Epoch 0: | | 268/? [00:48<00:00, 5.56it/s, train/loss=3.530] Epoch 0: | | 268/? [00:48<00:00, 5.56it/s, train/loss=32.20] Epoch 0: | | 269/? [00:48<00:00, 5.58it/s, train/loss=32.20] Epoch 0: | | 269/? [00:48<00:00, 5.58it/s, train/loss=3.480] Epoch 0: | | 270/? [00:48<00:00, 5.57it/s, train/loss=3.480] Epoch 0: | | 270/? [00:48<00:00, 5.57it/s, train/loss=10.20] Epoch 0: | | 271/? [00:48<00:00, 5.58it/s, train/loss=10.20] Epoch 0: | | 271/? [00:48<00:00, 5.58it/s, train/loss=3.440] Epoch 0: | | 272/? [00:48<00:00, 5.57it/s, train/loss=3.440] Epoch 0: | | 272/? [00:48<00:00, 5.57it/s, train/loss=9.860] Epoch 0: | | 273/? [00:48<00:00, 5.59it/s, train/loss=9.860] Epoch 0: | | 273/? [00:48<00:00, 5.59it/s, train/loss=3.400] Epoch 0: | | 274/? [00:49<00:00, 5.57it/s, train/loss=3.400] Epoch 0: | | 274/? [00:49<00:00, 5.57it/s, train/loss=25.90] Epoch 0: | | 275/? [00:49<00:00, 5.59it/s, train/loss=25.90] Epoch 0: | | 275/? [00:49<00:00, 5.59it/s, train/loss=3.400] Epoch 0: | | 276/? [00:49<00:00, 5.58it/s, train/loss=3.400] Epoch 0: | | 276/? [00:49<00:00, 5.58it/s, train/loss=37.60] Epoch 0: | | 277/? [00:49<00:00, 5.59it/s, train/loss=37.60] Epoch 0: | | 277/? [00:49<00:00, 5.59it/s, train/loss=3.430] Epoch 0: | | 278/? [00:49<00:00, 5.58it/s, train/loss=3.430] Epoch 0: | | 278/? [00:49<00:00, 5.58it/s, train/loss=18.80] Epoch 0: | | 279/? [00:49<00:00, 5.60it/s, train/loss=18.80] Epoch 0: | | 279/? [00:49<00:00, 5.60it/s, train/loss=3.440] Epoch 0: | | 280/? [00:50<00:00, 5.58it/s, train/loss=3.440] Epoch 0: | | 280/? [00:50<00:00, 5.58it/s, train/loss=28.50] Epoch 0: | | 281/? [00:50<00:00, 5.60it/s, train/loss=28.50] Epoch 0: | | 281/? [00:50<00:00, 5.60it/s, train/loss=3.410] Epoch 0: | | 282/? [00:50<00:00, 5.59it/s, train/loss=3.410] Epoch 0: | | 282/? [00:50<00:00, 5.59it/s, train/loss=9.970] Epoch 0: | | 283/? [00:50<00:00, 5.60it/s, train/loss=9.970] Epoch 0: | | 283/? [00:50<00:00, 5.60it/s, train/loss=3.390] Epoch 0: | | 284/? [00:50<00:00, 5.59it/s, train/loss=3.390] Epoch 0: | | 284/? [00:50<00:00, 5.59it/s, train/loss=40.30] Epoch 0: | | 285/? [00:50<00:00, 5.60it/s, train/loss=40.30] Epoch 0: | | 285/? [00:50<00:00, 5.60it/s, train/loss=3.380] Epoch 0: | | 286/? [00:51<00:00, 5.59it/s, train/loss=3.380] Epoch 0: | | 286/? [00:51<00:00, 5.59it/s, train/loss=31.70] Epoch 0: | | 287/? [00:51<00:00, 5.61it/s, train/loss=31.70] Epoch 0: | | 287/? [00:51<00:00, 5.61it/s, train/loss=3.400] Epoch 0: | | 288/? [00:51<00:00, 5.60it/s, train/loss=3.400] Epoch 0: | | 288/? [00:51<00:00, 5.60it/s, train/loss=15.20] Epoch 0: | | 289/? [00:51<00:00, 5.61it/s, train/loss=15.20] Epoch 0: | | 289/? [00:51<00:00, 5.61it/s, train/loss=3.410] Epoch 0: | | 290/? [00:51<00:00, 5.60it/s, train/loss=3.410] Epoch 0: | | 290/? [00:51<00:00, 5.60it/s, train/loss=14.10] Epoch 0: | | 291/? [00:51<00:00, 5.61it/s, train/loss=14.10] Epoch 0: | | 291/? [00:51<00:00, 5.61it/s, train/loss=3.420] Epoch 0: | | 292/? [00:52<00:00, 5.60it/s, train/loss=3.420] Epoch 0: | | 292/? [00:52<00:00, 5.60it/s, train/loss=19.10] Epoch 0: | | 293/? [00:52<00:00, 5.61it/s, train/loss=19.10] Epoch 0: | | 293/? [00:52<00:00, 5.61it/s, train/loss=3.400] Epoch 0: | | 294/? [00:52<00:00, 5.60it/s, train/loss=3.400] Epoch 0: | | 294/? [00:52<00:00, 5.60it/s, train/loss=24.80] Epoch 0: | | 295/? [00:52<00:00, 5.62it/s, train/loss=24.80] Epoch 0: | | 295/? [00:52<00:00, 5.62it/s, train/loss=3.340] Epoch 0: | | 296/? [00:52<00:00, 5.61it/s, train/loss=3.340] Epoch 0: | | 296/? [00:52<00:00, 5.60it/s, train/loss=39.10] Epoch 0: | | 297/? [00:52<00:00, 5.62it/s, train/loss=39.10] Epoch 0: | | 297/? [00:52<00:00, 5.62it/s, train/loss=3.290] Epoch 0: | | 298/? [00:53<00:00, 5.61it/s, train/loss=3.290] Epoch 0: | | 298/? [00:53<00:00, 5.61it/s, train/loss=8.320] Epoch 0: | | 299/? [00:53<00:00, 5.62it/s, train/loss=8.320] Epoch 0: | | 299/? [00:53<00:00, 5.62it/s, train/loss=3.340] Epoch 0: | | 300/? [00:53<00:00, 5.61it/s, train/loss=3.340] Epoch 0: | | 300/? [00:53<00:00, 5.61it/s, train/loss=19.60] Epoch 0: | | 301/? [00:53<00:00, 5.63it/s, train/loss=19.60] Epoch 0: | | 301/? [00:53<00:00, 5.63it/s, train/loss=3.370] Epoch 0: | | 302/? [00:53<00:00, 5.61it/s, train/loss=3.370] Epoch 0: | | 302/? [00:53<00:00, 5.61it/s, train/loss=28.90] Epoch 0: | | 303/? [00:53<00:00, 5.63it/s, train/loss=28.90] Epoch 0: | | 303/? [00:53<00:00, 5.63it/s, train/loss=3.270] Epoch 0: | | 304/? [00:54<00:00, 5.62it/s, train/loss=3.270] Epoch 0: | | 304/? [00:54<00:00, 5.62it/s, train/loss=24.00] Epoch 0: | | 305/? [00:54<00:00, 5.63it/s, train/loss=24.00] Epoch 0: | | 305/? [00:54<00:00, 5.63it/s, train/loss=3.110] Epoch 0: | | 306/? [00:54<00:00, 5.62it/s, train/loss=3.110] Epoch 0: | | 306/? [00:54<00:00, 5.62it/s, train/loss=18.70] Epoch 0: | | 307/? [00:54<00:00, 5.63it/s, train/loss=18.70] Epoch 0: | | 307/? [00:54<00:00, 5.63it/s, train/loss=3.060] Epoch 0: | | 308/? [00:54<00:00, 5.62it/s, train/loss=3.060] Epoch 0: | | 308/? [00:54<00:00, 5.62it/s, train/loss=24.10] Epoch 0: | | 309/? [00:54<00:00, 5.63it/s, train/loss=24.10] Epoch 0: | | 309/? [00:54<00:00, 5.63it/s, train/loss=3.140] Epoch 0: | | 310/? [00:55<00:00, 5.62it/s, train/loss=3.140] Epoch 0: | | 310/? [00:55<00:00, 5.62it/s, train/loss=24.70] Epoch 0: | | 311/? [00:55<00:00, 5.63it/s, train/loss=24.70] Epoch 0: | | 311/? [00:55<00:00, 5.63it/s, train/loss=3.210] Epoch 0: | | 312/? [00:55<00:00, 5.62it/s, train/loss=3.210] Epoch 0: | | 312/? [00:55<00:00, 5.62it/s, train/loss=15.20] Epoch 0: | | 313/? [00:55<00:00, 5.64it/s, train/loss=15.20] Epoch 0: | | 313/? [00:55<00:00, 5.64it/s, train/loss=3.240] Epoch 0: | | 314/? [00:55<00:00, 5.63it/s, train/loss=3.240] Epoch 0: | | 314/? [00:55<00:00, 5.63it/s, train/loss=31.30] Epoch 0: | | 315/? [00:55<00:00, 5.64it/s, train/loss=31.30] Epoch 0: | | 315/? [00:55<00:00, 5.64it/s, train/loss=3.230] Epoch 0: | | 316/? [00:56<00:00, 5.63it/s, train/loss=3.230] Epoch 0: | | 316/? [00:56<00:00, 5.63it/s, train/loss=16.70] Epoch 0: | | 317/? [00:56<00:00, 5.64it/s, train/loss=16.70] Epoch 0: | | 317/? [00:56<00:00, 5.64it/s, train/loss=3.200] Epoch 0: | | 318/? [00:56<00:00, 5.63it/s, train/loss=3.200] Epoch 0: | | 318/? [00:56<00:00, 5.63it/s, train/loss=18.80] Epoch 0: | | 319/? [00:56<00:00, 5.65it/s, train/loss=18.80] Epoch 0: | | 319/? [00:56<00:00, 5.65it/s, train/loss=3.190] Epoch 0: | | 320/? [00:56<00:00, 5.64it/s, train/loss=3.190] Epoch 0: | | 320/? [00:56<00:00, 5.64it/s, train/loss=37.10] Epoch 0: | | 321/? [00:56<00:00, 5.65it/s, train/loss=37.10] Epoch 0: | | 321/? [00:56<00:00, 5.65it/s, train/loss=3.160] Epoch 0: | | 322/? [00:57<00:00, 5.64it/s, train/loss=3.160] Epoch 0: | | 322/? [00:57<00:00, 5.64it/s, train/loss=29.70] Epoch 0: | | 323/? [00:57<00:00, 5.65it/s, train/loss=29.70] Epoch 0: | | 323/? [00:57<00:00, 5.65it/s, train/loss=3.120] Epoch 0: | | 324/? [00:57<00:00, 5.64it/s, train/loss=3.120] Epoch 0: | | 324/? [00:57<00:00, 5.64it/s, train/loss=22.20] Epoch 0: | | 325/? [00:57<00:00, 5.66it/s, train/loss=22.20] Epoch 0: | | 325/? [00:57<00:00, 5.66it/s, train/loss=3.130] Epoch 0: | | 326/? [00:57<00:00, 5.65it/s, train/loss=3.130] Epoch 0: | | 326/? [00:57<00:00, 5.65it/s, train/loss=23.50] Epoch 0: | | 327/? [00:57<00:00, 5.66it/s, train/loss=23.50] Epoch 0: | | 327/? [00:57<00:00, 5.66it/s, train/loss=3.110] Epoch 0: | | 328/? [00:58<00:00, 5.65it/s, train/loss=3.110] Epoch 0: | | 328/? [00:58<00:00, 5.65it/s, train/loss=37.80] Epoch 0: | | 329/? [00:58<00:00, 5.66it/s, train/loss=37.80] Epoch 0: | | 329/? [00:58<00:00, 5.66it/s, train/loss=3.010] Epoch 0: | | 330/? [00:58<00:00, 5.65it/s, train/loss=3.010] Epoch 0: | | 330/? [00:58<00:00, 5.65it/s, train/loss=30.40] Epoch 0: | | 331/? [00:58<00:00, 5.66it/s, train/loss=30.40] Epoch 0: | | 331/? [00:58<00:00, 5.66it/s, train/loss=2.920] Epoch 0: | | 332/? [00:58<00:00, 5.65it/s, train/loss=2.920] Epoch 0: | | 332/? [00:58<00:00, 5.65it/s, train/loss=20.70] Epoch 0: | | 333/? [00:58<00:00, 5.67it/s, train/loss=20.70] Epoch 0: | | 333/? [00:58<00:00, 5.67it/s, train/loss=2.860] Epoch 0: | | 334/? [00:59<00:00, 5.66it/s, train/loss=2.860] Epoch 0: | | 334/? [00:59<00:00, 5.66it/s, train/loss=10.10] Epoch 0: | | 335/? [00:59<00:00, 5.67it/s, train/loss=10.10] Epoch 0: | | 335/? [00:59<00:00, 5.67it/s, train/loss=2.800] Epoch 0: | | 336/? [00:59<00:00, 5.66it/s, train/loss=2.800] Epoch 0: | | 336/? [00:59<00:00, 5.66it/s, train/loss=38.50] Epoch 0: | | 337/? [00:59<00:00, 5.67it/s, train/loss=38.50] Epoch 0: | | 337/? [00:59<00:00, 5.67it/s, train/loss=2.760] Epoch 0: | | 338/? [00:59<00:00, 5.66it/s, train/loss=2.760] Epoch 0: | | 338/? [00:59<00:00, 5.66it/s, train/loss=17.30] Epoch 0: | | 339/? [00:59<00:00, 5.68it/s, train/loss=17.30] Epoch 0: | | 339/? [00:59<00:00, 5.68it/s, train/loss=2.760] Epoch 0: | | 340/? [01:00<00:00, 5.66it/s, train/loss=2.760] Epoch 0: | | 340/? [01:00<00:00, 5.66it/s, train/loss=30.30] Epoch 0: | | 341/? [01:00<00:00, 5.68it/s, train/loss=30.30] Epoch 0: | | 341/? [01:00<00:00, 5.68it/s, train/loss=2.770] Epoch 0: | | 342/? [01:00<00:00, 5.67it/s, train/loss=2.770] Epoch 0: | | 342/? [01:00<00:00, 5.67it/s, train/loss=40.10] Epoch 0: | | 343/? [01:00<00:00, 5.68it/s, train/loss=40.10] Epoch 0: | | 343/? [01:00<00:00, 5.68it/s, train/loss=2.790] Epoch 0: | | 344/? [01:00<00:00, 5.67it/s, train/loss=2.790] Epoch 0: | | 344/? [01:00<00:00, 5.67it/s, train/loss=7.000] Epoch 0: | | 345/? [01:00<00:00, 5.68it/s, train/loss=7.000] Epoch 0: | | 345/? [01:00<00:00, 5.68it/s, train/loss=2.850] Epoch 0: | | 346/? [01:00<00:00, 5.67it/s, train/loss=2.850] Epoch 0: | | 346/? [01:00<00:00, 5.67it/s, train/loss=23.60] Epoch 0: | | 347/? [01:01<00:00, 5.69it/s, train/loss=23.60] Epoch 0: | | 347/? [01:01<00:00, 5.69it/s, train/loss=2.880] Epoch 0: | | 348/? [01:01<00:00, 5.68it/s, train/loss=2.880] Epoch 0: | | 348/? [01:01<00:00, 5.68it/s, train/loss=57.60] Epoch 0: | | 349/? [01:01<00:00, 5.69it/s, train/loss=57.60] Epoch 0: | | 349/? [01:01<00:00, 5.69it/s, train/loss=2.860] Epoch 0: | | 350/? [01:01<00:00, 5.68it/s, train/loss=2.860] Epoch 0: | | 350/? [01:01<00:00, 5.68it/s, train/loss=14.50] Epoch 0: | | 351/? [01:01<00:00, 5.69it/s, train/loss=14.50] Epoch 0: | | 351/? [01:01<00:00, 5.69it/s, train/loss=2.870] Epoch 0: | | 352/? [01:01<00:00, 5.68it/s, train/loss=2.870] Epoch 0: | | 352/? [01:01<00:00, 5.68it/s, train/loss=11.60] Epoch 0: | | 353/? [01:01<00:00, 5.69it/s, train/loss=11.60] Epoch 0: | | 353/? [01:01<00:00, 5.69it/s, train/loss=2.890] Epoch 0: | | 354/? [01:02<00:00, 5.68it/s, train/loss=2.890] Epoch 0: | | 354/? [01:02<00:00, 5.68it/s, train/loss=49.20] Epoch 0: | | 355/? [01:02<00:00, 5.70it/s, train/loss=49.20] Epoch 0: | | 355/? [01:02<00:00, 5.70it/s, train/loss=2.900] Epoch 0: | | 356/? [01:02<00:00, 5.69it/s, train/loss=2.900] Epoch 0: | | 356/? [01:02<00:00, 5.69it/s, train/loss=7.090] Epoch 0: | | 357/? [01:02<00:00, 5.70it/s, train/loss=7.090] Epoch 0: | | 357/? [01:02<00:00, 5.70it/s, train/loss=2.930] Epoch 0: | | 358/? [01:02<00:00, 5.69it/s, train/loss=2.930] Epoch 0: | | 358/? [01:02<00:00, 5.69it/s, train/loss=68.30] Epoch 0: | | 359/? [01:02<00:00, 5.70it/s, train/loss=68.30] Epoch 0: | | 359/? [01:02<00:00, 5.70it/s, train/loss=3.030] Epoch 0: | | 360/? [01:03<00:00, 5.69it/s, train/loss=3.030] Epoch 0: | | 360/? [01:03<00:00, 5.69it/s, train/loss=14.50] Epoch 0: | | 361/? [01:03<00:00, 5.70it/s, train/loss=14.50] Epoch 0: | | 361/? [01:03<00:00, 5.70it/s, train/loss=3.160] Epoch 0: | | 362/? [01:03<00:00, 5.69it/s, train/loss=3.160] Epoch 0: | | 362/? [01:03<00:00, 5.69it/s, train/loss=9.390] Epoch 0: | | 363/? [01:03<00:00, 5.71it/s, train/loss=9.390] Epoch 0: | | 363/? [01:03<00:00, 5.71it/s, train/loss=3.190] Epoch 0: | | 364/? [01:03<00:00, 5.70it/s, train/loss=3.190] Epoch 0: | | 364/? [01:03<00:00, 5.70it/s, train/loss=34.60] Epoch 0: | | 365/? [01:03<00:00, 5.71it/s, train/loss=34.60] Epoch 0: | | 365/? [01:03<00:00, 5.71it/s, train/loss=3.110] Epoch 0: | | 366/? [01:04<00:00, 5.70it/s, train/loss=3.110] Epoch 0: | | 366/? [01:04<00:00, 5.70it/s, train/loss=13.80] Epoch 0: | | 367/? [01:04<00:00, 5.71it/s, train/loss=13.80] Epoch 0: | | 367/? [01:04<00:00, 5.71it/s, train/loss=2.990] Epoch 0: | | 368/? [01:04<00:00, 5.70it/s, train/loss=2.990] Epoch 0: | | 368/? [01:04<00:00, 5.70it/s, train/loss=24.20] Epoch 0: | | 369/? [01:04<00:00, 5.71it/s, train/loss=24.20] Epoch 0: | | 369/? [01:04<00:00, 5.71it/s, train/loss=2.900] Epoch 0: | | 370/? [01:04<00:00, 5.70it/s, train/loss=2.900] Epoch 0: | | 370/? [01:04<00:00, 5.70it/s, train/loss=19.60] Epoch 0: | | 371/? [01:04<00:00, 5.72it/s, train/loss=19.60] Epoch 0: | | 371/? [01:04<00:00, 5.72it/s, train/loss=2.840] Epoch 0: | | 372/? [01:05<00:00, 5.71it/s, train/loss=2.840] Epoch 0: | | 372/? [01:05<00:00, 5.71it/s, train/loss=24.40] Epoch 0: | | 373/? [01:05<00:00, 5.72it/s, train/loss=24.40] Epoch 0: | | 373/? [01:05<00:00, 5.72it/s, train/loss=2.810] Epoch 0: | | 374/? [01:05<00:00, 5.71it/s, train/loss=2.810] Epoch 0: | | 374/? [01:05<00:00, 5.71it/s, train/loss=10.40] Epoch 0: | | 375/? [01:05<00:00, 5.72it/s, train/loss=10.40] Epoch 0: | | 375/? [01:05<00:00, 5.72it/s, train/loss=2.780] Epoch 0: | | 376/? [01:05<00:00, 5.71it/s, train/loss=2.780] Epoch 0: | | 376/? [01:05<00:00, 5.71it/s, train/loss=34.00] Epoch 0: | | 377/? [01:05<00:00, 5.72it/s, train/loss=34.00] Epoch 0: | | 377/? [01:05<00:00, 5.72it/s, train/loss=2.710] Epoch 0: | | 378/? [01:06<00:00, 5.71it/s, train/loss=2.710] Epoch 0: | | 378/? [01:06<00:00, 5.71it/s, train/loss=24.10] Epoch 0: | | 379/? [01:06<00:00, 5.72it/s, train/loss=24.10] Epoch 0: | | 379/? [01:06<00:00, 5.72it/s, train/loss=2.650] Epoch 0: | | 380/? [01:06<00:00, 5.71it/s, train/loss=2.650] Epoch 0: | | 380/? [01:06<00:00, 5.71it/s, train/loss=17.60] Epoch 0: | | 381/? [01:06<00:00, 5.73it/s, train/loss=17.60] Epoch 0: | | 381/? [01:06<00:00, 5.73it/s, train/loss=2.650] Epoch 0: | | 382/? [01:06<00:00, 5.72it/s, train/loss=2.650] Epoch 0: | | 382/? [01:06<00:00, 5.72it/s, train/loss=31.10] Epoch 0: | | 383/? [01:06<00:00, 5.73it/s, train/loss=31.10] Epoch 0: | | 383/? [01:06<00:00, 5.73it/s, train/loss=2.690] Epoch 0: | | 384/? [01:07<00:00, 5.72it/s, train/loss=2.690] Epoch 0: | | 384/? [01:07<00:00, 5.72it/s, train/loss=27.60] Epoch 0: | | 385/? [01:07<00:00, 5.73it/s, train/loss=27.60] Epoch 0: | | 385/? [01:07<00:00, 5.73it/s, train/loss=2.720] Epoch 0: | | 386/? [01:07<00:00, 5.72it/s, train/loss=2.720] Epoch 0: | | 386/? [01:07<00:00, 5.72it/s, train/loss=19.10] Epoch 0: | | 387/? [01:07<00:00, 5.73it/s, train/loss=19.10] Epoch 0: | | 387/? [01:07<00:00, 5.73it/s, train/loss=2.690] Epoch 0: | | 388/? [01:07<00:00, 5.72it/s, train/loss=2.690] Epoch 0: | | 388/? [01:07<00:00, 5.72it/s, train/loss=9.580] Epoch 0: | | 389/? [01:07<00:00, 5.74it/s, train/loss=9.580] Epoch 0: | | 389/? [01:07<00:00, 5.74it/s, train/loss=2.640] Epoch 0: | | 390/? [01:08<00:00, 5.73it/s, train/loss=2.640] Epoch 0: | | 390/? [01:08<00:00, 5.73it/s, train/loss=16.10] Epoch 0: | | 391/? [01:08<00:00, 5.74it/s, train/loss=16.10] Epoch 0: | | 391/? [01:08<00:00, 5.74it/s, train/loss=2.580] Epoch 0: | | 392/? [01:08<00:00, 5.73it/s, train/loss=2.580] Epoch 0: | | 392/? [01:08<00:00, 5.73it/s, train/loss=37.50] Epoch 0: | | 393/? [01:08<00:00, 5.74it/s, train/loss=37.50] Epoch 0: | | 393/? [01:08<00:00, 5.74it/s, train/loss=2.530] Epoch 0: | | 394/? [01:08<00:00, 5.73it/s, train/loss=2.530] Epoch 0: | | 394/? [01:08<00:00, 5.73it/s, train/loss=15.50] Epoch 0: | | 395/? [01:08<00:00, 5.74it/s, train/loss=15.50] Epoch 0: | | 395/? [01:08<00:00, 5.74it/s, train/loss=2.500] Epoch 0: | | 396/? [01:09<00:00, 5.73it/s, train/loss=2.500] Epoch 0: | | 396/? [01:09<00:00, 5.73it/s, train/loss=19.40] Epoch 0: | | 397/? [01:09<00:00, 5.74it/s, train/loss=19.40] Epoch 0: | | 397/? [01:09<00:00, 5.74it/s, train/loss=2.490] Epoch 0: | | 398/? [01:09<00:00, 5.74it/s, train/loss=2.490] Epoch 0: | | 398/? [01:09<00:00, 5.73it/s, train/loss=19.80] Epoch 0: | | 399/? [01:09<00:00, 5.75it/s, train/loss=19.80] Epoch 0: | | 399/? [01:09<00:00, 5.75it/s, train/loss=2.490] Epoch 0: | | 400/? [01:09<00:00, 5.74it/s, train/loss=2.490] Epoch 0: | | 400/? [01:09<00:00, 5.74it/s, train/loss=34.10] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 71.57it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 70.04it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 70.02it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 70.00it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 69.62it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 69.44it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 69.47it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 69.54it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 69.70it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 69.82it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 69.97it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 69.85it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 68.85it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 68.93it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 68.83it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 68.29it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 67.23it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 67.04it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 66.67it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 66.50it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 66.28it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 63.16it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 63.25it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 63.45it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 63.66it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 63.87it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 64.11it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 64.35it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 64.58it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 64.80it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 64.93it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 64.18it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 64.16it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 63.86it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 63.84it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 63.81it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 63.78it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 62.42it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 62.44it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 62.45it/s] Epoch 0: | | 400/? [01:10<00:00, 5.65it/s, train/loss=34.10] Epoch 0: | | 401/? [01:11<00:00, 5.57it/s, train/loss=34.10] Epoch 0: | | 401/? [01:11<00:00, 5.57it/s, train/loss=2.480] Epoch 0: | | 402/? [01:12<00:00, 5.57it/s, train/loss=2.480] Epoch 0: | | 402/? [01:12<00:00, 5.57it/s, train/loss=15.00] Epoch 0: | | 403/? [01:12<00:00, 5.58it/s, train/loss=15.00] Epoch 0: | | 403/? [01:12<00:00, 5.58it/s, train/loss=2.480] Epoch 0: | | 404/? [01:12<00:00, 5.57it/s, train/loss=2.480] Epoch 0: | | 404/? [01:12<00:00, 5.57it/s, train/loss=23.00] Epoch 0: | | 405/? [01:12<00:00, 5.58it/s, train/loss=23.00] Epoch 0: | | 405/? [01:12<00:00, 5.58it/s, train/loss=2.470] Epoch 0: | | 406/? [01:12<00:00, 5.57it/s, train/loss=2.470] Epoch 0: | | 406/? [01:12<00:00, 5.57it/s, train/loss=9.820] Epoch 0: | | 407/? [01:12<00:00, 5.58it/s, train/loss=9.820] Epoch 0: | | 407/? [01:12<00:00, 5.58it/s, train/loss=2.460] Epoch 0: | | 408/? [01:13<00:00, 5.57it/s, train/loss=2.460] Epoch 0: | | 408/? [01:13<00:00, 5.57it/s, train/loss=18.50] Epoch 0: | | 409/? [01:13<00:00, 5.58it/s, train/loss=18.50] Epoch 0: | | 409/? [01:13<00:00, 5.58it/s, train/loss=2.450] Epoch 0: | | 410/? [01:13<00:00, 5.58it/s, train/loss=2.450] Epoch 0: | | 410/? [01:13<00:00, 5.58it/s, train/loss=21.70] Epoch 0: | | 411/? [01:13<00:00, 5.59it/s, train/loss=21.70] Epoch 0: | | 411/? [01:13<00:00, 5.59it/s, train/loss=2.470] Epoch 0: | | 412/? [01:13<00:00, 5.58it/s, train/loss=2.470] Epoch 0: | | 412/? [01:13<00:00, 5.58it/s, train/loss=25.70] Epoch 0: | | 413/? [01:13<00:00, 5.59it/s, train/loss=25.70] Epoch 0: | | 413/? [01:13<00:00, 5.59it/s, train/loss=2.480] Epoch 0: | | 414/? [01:14<00:00, 5.58it/s, train/loss=2.480] Epoch 0: | | 414/? [01:14<00:00, 5.58it/s, train/loss=49.00] Epoch 0: | | 415/? [01:14<00:00, 5.59it/s, train/loss=49.00] Epoch 0: | | 415/? [01:14<00:00, 5.59it/s, train/loss=2.460] Epoch 0: | | 416/? [01:14<00:00, 5.58it/s, train/loss=2.460] Epoch 0: | | 416/? [01:14<00:00, 5.58it/s, train/loss=14.30] Epoch 0: | | 417/? [01:14<00:00, 5.59it/s, train/loss=14.30] Epoch 0: | | 417/? [01:14<00:00, 5.59it/s, train/loss=2.490] Epoch 0: | | 418/? [01:14<00:00, 5.58it/s, train/loss=2.490] Epoch 0: | | 418/? [01:14<00:00, 5.58it/s, train/loss=12.00] Epoch 0: | | 419/? [01:14<00:00, 5.60it/s, train/loss=12.00] Epoch 0: | | 419/? [01:14<00:00, 5.60it/s, train/loss=2.520] Epoch 0: | | 420/? [01:15<00:00, 5.59it/s, train/loss=2.520] Epoch 0: | | 420/? [01:15<00:00, 5.59it/s, train/loss=10.10] Epoch 0: | | 421/? [01:15<00:00, 5.60it/s, train/loss=10.10] Epoch 0: | | 421/? [01:15<00:00, 5.60it/s, train/loss=2.520] Epoch 0: | | 422/? [01:15<00:00, 5.59it/s, train/loss=2.520] Epoch 0: | | 422/? [01:15<00:00, 5.59it/s, train/loss=27.00] Epoch 0: | | 423/? [01:15<00:00, 5.60it/s, train/loss=27.00] Epoch 0: | | 423/? [01:15<00:00, 5.60it/s, train/loss=2.470] Epoch 0: | | 424/? [01:15<00:00, 5.59it/s, train/loss=2.470] Epoch 0: | | 424/? [01:15<00:00, 5.59it/s, train/loss=22.70] Epoch 0: | | 425/? [01:15<00:00, 5.60it/s, train/loss=22.70] Epoch 0: | | 425/? [01:15<00:00, 5.60it/s, train/loss=2.420] Epoch 0: | | 426/? [01:16<00:00, 5.60it/s, train/loss=2.420] Epoch 0: | | 426/? [01:16<00:00, 5.60it/s, train/loss=9.020] Epoch 0: | | 427/? [01:16<00:00, 5.61it/s, train/loss=9.020] Epoch 0: | | 427/? [01:16<00:00, 5.61it/s, train/loss=2.360] Epoch 0: | | 428/? [01:16<00:00, 5.60it/s, train/loss=2.360] Epoch 0: | | 428/? [01:16<00:00, 5.60it/s, train/loss=41.80] Epoch 0: | | 429/? [01:16<00:00, 5.61it/s, train/loss=41.80] Epoch 0: | | 429/? [01:16<00:00, 5.61it/s, train/loss=2.330] Epoch 0: | | 430/? [01:16<00:00, 5.60it/s, train/loss=2.330] Epoch 0: | | 430/? [01:16<00:00, 5.60it/s, train/loss=36.30] Epoch 0: | | 431/? [01:16<00:00, 5.61it/s, train/loss=36.30] Epoch 0: | | 431/? [01:16<00:00, 5.61it/s, train/loss=2.320] Epoch 0: | | 432/? [01:17<00:00, 5.60it/s, train/loss=2.320] Epoch 0: | | 432/? [01:17<00:00, 5.60it/s, train/loss=16.50] Epoch 0: | | 433/? [01:17<00:00, 5.61it/s, train/loss=16.50] Epoch 0: | | 433/? [01:17<00:00, 5.61it/s, train/loss=2.340] Epoch 0: | | 434/? [01:17<00:00, 5.61it/s, train/loss=2.340] Epoch 0: | | 434/? [01:17<00:00, 5.61it/s, train/loss=23.30] Epoch 0: | | 435/? [01:17<00:00, 5.62it/s, train/loss=23.30] Epoch 0: | | 435/? [01:17<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 436/? [01:17<00:00, 5.61it/s, train/loss=2.350] Epoch 0: | | 436/? [01:17<00:00, 5.61it/s, train/loss=32.70] Epoch 0: | | 437/? [01:17<00:00, 5.62it/s, train/loss=32.70] Epoch 0: | | 437/? [01:17<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 438/? [01:18<00:00, 5.61it/s, train/loss=2.350] Epoch 0: | | 438/? [01:18<00:00, 5.61it/s, train/loss=33.70] Epoch 0: | | 439/? [01:18<00:00, 5.62it/s, train/loss=33.70] Epoch 0: | | 439/? [01:18<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 440/? [01:18<00:00, 5.61it/s, train/loss=2.350] Epoch 0: | | 440/? [01:18<00:00, 5.61it/s, train/loss=12.70] Epoch 0: | | 441/? [01:18<00:00, 5.62it/s, train/loss=12.70] Epoch 0: | | 441/? [01:18<00:00, 5.62it/s, train/loss=2.360] Epoch 0: | | 442/? [01:18<00:00, 5.62it/s, train/loss=2.360] Epoch 0: | | 442/? [01:18<00:00, 5.62it/s, train/loss=16.30] Epoch 0: | | 443/? [01:18<00:00, 5.63it/s, train/loss=16.30] Epoch 0: | | 443/? [01:18<00:00, 5.63it/s, train/loss=2.330] Epoch 0: | | 444/? [01:19<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 444/? [01:19<00:00, 5.62it/s, train/loss=21.40] Epoch 0: | | 445/? [01:19<00:00, 5.63it/s, train/loss=21.40] Epoch 0: | | 445/? [01:19<00:00, 5.63it/s, train/loss=2.320] Epoch 0: | | 446/? [01:19<00:00, 5.62it/s, train/loss=2.320] Epoch 0: | | 446/? [01:19<00:00, 5.62it/s, train/loss=19.00] Epoch 0: | | 447/? [01:19<00:00, 5.63it/s, train/loss=19.00] Epoch 0: | | 447/? [01:19<00:00, 5.63it/s, train/loss=2.330] Epoch 0: | | 448/? [01:19<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 448/? [01:19<00:00, 5.62it/s, train/loss=16.60] Epoch 0: | | 449/? [01:19<00:00, 5.63it/s, train/loss=16.60] Epoch 0: | | 449/? [01:19<00:00, 5.63it/s, train/loss=2.320] Epoch 0: | | 450/? [01:20<00:00, 5.62it/s, train/loss=2.320] Epoch 0: | | 450/? [01:20<00:00, 5.62it/s, train/loss=18.70] Epoch 0: | | 451/? [01:20<00:00, 5.63it/s, train/loss=18.70] Epoch 0: | | 451/? [01:20<00:00, 5.63it/s, train/loss=2.290] Epoch 0: | | 452/? [01:20<00:00, 5.62it/s, train/loss=2.290] Epoch 0: | | 452/? [01:20<00:00, 5.62it/s, train/loss=10.30] Epoch 0: | | 453/? [01:20<00:00, 5.63it/s, train/loss=10.30] Epoch 0: | | 453/? [01:20<00:00, 5.63it/s, train/loss=2.250] Epoch 0: | | 454/? [01:20<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 454/? [01:20<00:00, 5.62it/s, train/loss=25.40] Epoch 0: | | 455/? [01:20<00:00, 5.63it/s, train/loss=25.40] Epoch 0: | | 455/? [01:20<00:00, 5.63it/s, train/loss=2.210] Epoch 0: | | 456/? [01:21<00:00, 5.62it/s, train/loss=2.210] Epoch 0: | | 456/? [01:21<00:00, 5.62it/s, train/loss=8.850] Epoch 0: | | 457/? [01:21<00:00, 5.63it/s, train/loss=8.850] Epoch 0: | | 457/? [01:21<00:00, 5.63it/s, train/loss=2.160] Epoch 0: | | 458/? [01:21<00:00, 5.62it/s, train/loss=2.160] Epoch 0: | | 458/? [01:21<00:00, 5.62it/s, train/loss=13.90] Epoch 0: | | 459/? [01:21<00:00, 5.63it/s, train/loss=13.90] Epoch 0: | | 459/? [01:21<00:00, 5.63it/s, train/loss=2.120] Epoch 0: | | 460/? [01:21<00:00, 5.62it/s, train/loss=2.120] Epoch 0: | | 460/? [01:21<00:00, 5.62it/s, train/loss=32.80] Epoch 0: | | 461/? [01:21<00:00, 5.63it/s, train/loss=32.80] Epoch 0: | | 461/? [01:21<00:00, 5.63it/s, train/loss=2.120] Epoch 0: | | 462/? [01:22<00:00, 5.62it/s, train/loss=2.120] Epoch 0: | | 462/? [01:22<00:00, 5.62it/s, train/loss=12.30] Epoch 0: | | 463/? [01:22<00:00, 5.63it/s, train/loss=12.30] Epoch 0: | | 463/? [01:22<00:00, 5.63it/s, train/loss=2.140] Epoch 0: | | 464/? [01:22<00:00, 5.62it/s, train/loss=2.140] Epoch 0: | | 464/? [01:22<00:00, 5.62it/s, train/loss=24.00] Epoch 0: | | 465/? [01:22<00:00, 5.63it/s, train/loss=24.00] Epoch 0: | | 465/? [01:22<00:00, 5.63it/s, train/loss=2.120] Epoch 0: | | 466/? [01:22<00:00, 5.62it/s, train/loss=2.120] Epoch 0: | | 466/? [01:22<00:00, 5.62it/s, train/loss=28.10] Epoch 0: | | 467/? [01:22<00:00, 5.63it/s, train/loss=28.10] Epoch 0: | | 467/? [01:22<00:00, 5.63it/s, train/loss=2.070] Epoch 0: | | 468/? [01:23<00:00, 5.62it/s, train/loss=2.070] Epoch 0: | | 468/? [01:23<00:00, 5.62it/s, train/loss=12.20] Epoch 0: | | 469/? [01:23<00:00, 5.63it/s, train/loss=12.20] Epoch 0: | | 469/? [01:23<00:00, 5.63it/s, train/loss=2.060] Epoch 0: | | 470/? [01:23<00:00, 5.62it/s, train/loss=2.060] Epoch 0: | | 470/? [01:23<00:00, 5.62it/s, train/loss=20.10] Epoch 0: | | 471/? [01:23<00:00, 5.63it/s, train/loss=20.10] Epoch 0: | | 471/? [01:23<00:00, 5.63it/s, train/loss=2.090] Epoch 0: | | 472/? [01:24<00:00, 5.62it/s, train/loss=2.090] Epoch 0: | | 472/? [01:24<00:00, 5.62it/s, train/loss=16.70] Epoch 0: | | 473/? [01:24<00:00, 5.63it/s, train/loss=16.70] Epoch 0: | | 473/? [01:24<00:00, 5.63it/s, train/loss=2.170] Epoch 0: | | 474/? [01:24<00:00, 5.62it/s, train/loss=2.170] Epoch 0: | | 474/? [01:24<00:00, 5.62it/s, train/loss=36.50] Epoch 0: | | 475/? [01:24<00:00, 5.63it/s, train/loss=36.50] Epoch 0: | | 475/? [01:24<00:00, 5.63it/s, train/loss=2.250] Epoch 0: | | 476/? [01:24<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 476/? [01:24<00:00, 5.62it/s, train/loss=45.30] Epoch 0: | | 477/? [01:24<00:00, 5.63it/s, train/loss=45.30] Epoch 0: | | 477/? [01:24<00:00, 5.63it/s, train/loss=2.370] Epoch 0: | | 478/? [01:25<00:00, 5.62it/s, train/loss=2.370] Epoch 0: | | 478/? [01:25<00:00, 5.62it/s, train/loss=29.20] Epoch 0: | | 479/? [01:25<00:00, 5.63it/s, train/loss=29.20] Epoch 0: | | 479/? [01:25<00:00, 5.63it/s, train/loss=2.420] Epoch 0: | | 480/? [01:25<00:00, 5.62it/s, train/loss=2.420] Epoch 0: | | 480/? [01:25<00:00, 5.62it/s, train/loss=20.70] Epoch 0: | | 481/? [01:25<00:00, 5.63it/s, train/loss=20.70] Epoch 0: | | 481/? [01:25<00:00, 5.63it/s, train/loss=2.400] Epoch 0: | | 482/? [01:25<00:00, 5.62it/s, train/loss=2.400] Epoch 0: | | 482/? [01:25<00:00, 5.62it/s, train/loss=24.80] Epoch 0: | | 483/? [01:25<00:00, 5.62it/s, train/loss=24.80] Epoch 0: | | 483/? [01:25<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 484/? [01:26<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 484/? [01:26<00:00, 5.62it/s, train/loss=17.00] Epoch 0: | | 485/? [01:26<00:00, 5.62it/s, train/loss=17.00] Epoch 0: | | 485/? [01:26<00:00, 5.62it/s, train/loss=2.290] Epoch 0: | | 486/? [01:26<00:00, 5.62it/s, train/loss=2.290] Epoch 0: | | 486/? [01:26<00:00, 5.62it/s, train/loss=29.70] Epoch 0: | | 487/? [01:26<00:00, 5.62it/s, train/loss=29.70] Epoch 0: | | 487/? [01:26<00:00, 5.62it/s, train/loss=2.260] Epoch 0: | | 488/? [01:26<00:00, 5.62it/s, train/loss=2.260] Epoch 0: | | 488/? [01:26<00:00, 5.62it/s, train/loss=24.80] Epoch 0: | | 489/? [01:26<00:00, 5.62it/s, train/loss=24.80] Epoch 0: | | 489/? [01:26<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 490/? [01:27<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 490/? [01:27<00:00, 5.62it/s, train/loss=34.60] Epoch 0: | | 491/? [01:27<00:00, 5.62it/s, train/loss=34.60] Epoch 0: | | 491/? [01:27<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 492/? [01:27<00:00, 5.62it/s, train/loss=2.250] Epoch 0: | | 492/? [01:27<00:00, 5.62it/s, train/loss=27.40] Epoch 0: | | 493/? [01:27<00:00, 5.62it/s, train/loss=27.40] Epoch 0: | | 493/? [01:27<00:00, 5.62it/s, train/loss=2.270] Epoch 0: | | 494/? [01:27<00:00, 5.62it/s, train/loss=2.270] Epoch 0: | | 494/? [01:27<00:00, 5.62it/s, train/loss=17.20] Epoch 0: | | 495/? [01:28<00:00, 5.62it/s, train/loss=17.20] Epoch 0: | | 495/? [01:28<00:00, 5.62it/s, train/loss=2.320] Epoch 0: | | 496/? [01:28<00:00, 5.62it/s, train/loss=2.320] Epoch 0: | | 496/? [01:28<00:00, 5.62it/s, train/loss=31.80] Epoch 0: | | 497/? [01:28<00:00, 5.62it/s, train/loss=31.80] Epoch 0: | | 497/? [01:28<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 498/? [01:28<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 498/? [01:28<00:00, 5.62it/s, train/loss=33.30] Epoch 0: | | 499/? [01:28<00:00, 5.62it/s, train/loss=33.30] Epoch 0: | | 499/? [01:28<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 500/? [01:29<00:00, 5.62it/s, train/loss=2.350] Epoch 0: | | 500/? [01:29<00:00, 5.62it/s, train/loss=15.50] Epoch 0: | | 501/? [01:29<00:00, 5.62it/s, train/loss=15.50] Epoch 0: | | 501/? [01:29<00:00, 5.62it/s, train/loss=2.380] Epoch 0: | | 502/? [01:29<00:00, 5.62it/s, train/loss=2.380] Epoch 0: | | 502/? [01:29<00:00, 5.62it/s, train/loss=11.30] Epoch 0: | | 503/? [01:29<00:00, 5.62it/s, train/loss=11.30] Epoch 0: | | 503/? [01:29<00:00, 5.62it/s, train/loss=2.360] Epoch 0: | | 504/? [01:29<00:00, 5.62it/s, train/loss=2.360] Epoch 0: | | 504/? [01:29<00:00, 5.62it/s, train/loss=9.480] Epoch 0: | | 505/? [01:29<00:00, 5.62it/s, train/loss=9.480] Epoch 0: | | 505/? [01:29<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 506/? [01:30<00:00, 5.62it/s, train/loss=2.330] Epoch 0: | | 506/? [01:30<00:00, 5.62it/s, train/loss=15.00] Epoch 0: | | 507/? [01:30<00:00, 5.62it/s, train/loss=15.00] Epoch 0: | | 507/? [01:30<00:00, 5.62it/s, train/loss=2.290] Epoch 0: | | 508/? [01:30<00:00, 5.62it/s, train/loss=2.290] Epoch 0: | | 508/? [01:30<00:00, 5.62it/s, train/loss=9.350] Epoch 0: | | 509/? [01:30<00:00, 5.62it/s, train/loss=9.350] Epoch 0: | | 509/? [01:30<00:00, 5.62it/s, train/loss=2.240] Epoch 0: | | 510/? [01:30<00:00, 5.62it/s, train/loss=2.240] Epoch 0: | | 510/? [01:30<00:00, 5.62it/s, train/loss=21.50] Epoch 0: | | 511/? [01:30<00:00, 5.63it/s, train/loss=21.50] Epoch 0: | | 511/? [01:30<00:00, 5.63it/s, train/loss=2.190] Epoch 0: | | 512/? [01:31<00:00, 5.62it/s, train/loss=2.190] Epoch 0: | | 512/? [01:31<00:00, 5.62it/s, train/loss=24.70] Epoch 0: | | 513/? [01:31<00:00, 5.63it/s, train/loss=24.70] Epoch 0: | | 513/? [01:31<00:00, 5.63it/s, train/loss=2.150] Epoch 0: | | 514/? [01:31<00:00, 5.62it/s, train/loss=2.150] Epoch 0: | | 514/? [01:31<00:00, 5.62it/s, train/loss=27.40] Epoch 0: | | 515/? [01:31<00:00, 5.63it/s, train/loss=27.40] Epoch 0: | | 515/? [01:31<00:00, 5.63it/s, train/loss=2.130] Epoch 0: | | 516/? [01:31<00:00, 5.62it/s, train/loss=2.130] Epoch 0: | | 516/? [01:31<00:00, 5.62it/s, train/loss=33.50] Epoch 0: | | 517/? [01:31<00:00, 5.63it/s, train/loss=33.50] Epoch 0: | | 517/? [01:31<00:00, 5.63it/s, train/loss=2.140] Epoch 0: | | 518/? [01:32<00:00, 5.63it/s, train/loss=2.140] Epoch 0: | | 518/? [01:32<00:00, 5.62it/s, train/loss=14.40] Epoch 0: | | 519/? [01:32<00:00, 5.63it/s, train/loss=14.40] Epoch 0: | | 519/? [01:32<00:00, 5.63it/s, train/loss=2.180] Epoch 0: | | 520/? [01:32<00:00, 5.63it/s, train/loss=2.180] Epoch 0: | | 520/? [01:32<00:00, 5.63it/s, train/loss=60.00] Epoch 0: | | 521/? [01:32<00:00, 5.64it/s, train/loss=60.00] Epoch 0: | | 521/? [01:32<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 522/? [01:32<00:00, 5.63it/s, train/loss=2.210] Epoch 0: | | 522/? [01:32<00:00, 5.63it/s, train/loss=20.10] Epoch 0: | | 523/? [01:32<00:00, 5.64it/s, train/loss=20.10] Epoch 0: | | 523/? [01:32<00:00, 5.64it/s, train/loss=2.260] Epoch 0: | | 524/? [01:33<00:00, 5.63it/s, train/loss=2.260] Epoch 0: | | 524/? [01:33<00:00, 5.63it/s, train/loss=32.00] Epoch 0: | | 525/? [01:33<00:00, 5.64it/s, train/loss=32.00] Epoch 0: | | 525/? [01:33<00:00, 5.64it/s, train/loss=2.300] Epoch 0: | | 526/? [01:33<00:00, 5.63it/s, train/loss=2.300] Epoch 0: | | 526/? [01:33<00:00, 5.63it/s, train/loss=32.60] Epoch 0: | | 527/? [01:33<00:00, 5.64it/s, train/loss=32.60] Epoch 0: | | 527/? [01:33<00:00, 5.64it/s, train/loss=2.300] Epoch 0: | | 528/? [01:33<00:00, 5.63it/s, train/loss=2.300] Epoch 0: | | 528/? [01:33<00:00, 5.63it/s, train/loss=29.10] Epoch 0: | | 529/? [01:33<00:00, 5.64it/s, train/loss=29.10] Epoch 0: | | 529/? [01:33<00:00, 5.64it/s, train/loss=2.290] Epoch 0: | | 530/? [01:34<00:00, 5.63it/s, train/loss=2.290] Epoch 0: | | 530/? [01:34<00:00, 5.63it/s, train/loss=37.40] Epoch 0: | | 531/? [01:34<00:00, 5.64it/s, train/loss=37.40] Epoch 0: | | 531/? [01:34<00:00, 5.64it/s, train/loss=2.250] Epoch 0: | | 532/? [01:34<00:00, 5.64it/s, train/loss=2.250] Epoch 0: | | 532/? [01:34<00:00, 5.64it/s, train/loss=50.00] Epoch 0: | | 533/? [01:34<00:00, 5.64it/s, train/loss=50.00] Epoch 0: | | 533/? [01:34<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 534/? [01:34<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 534/? [01:34<00:00, 5.64it/s, train/loss=18.50] Epoch 0: | | 535/? [01:34<00:00, 5.65it/s, train/loss=18.50] Epoch 0: | | 535/? [01:34<00:00, 5.65it/s, train/loss=2.210] Epoch 0: | | 536/? [01:35<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 536/? [01:35<00:00, 5.64it/s, train/loss=15.60] Epoch 0: | | 537/? [01:35<00:00, 5.65it/s, train/loss=15.60] Epoch 0: | | 537/? [01:35<00:00, 5.65it/s, train/loss=2.220] Epoch 0: | | 538/? [01:35<00:00, 5.64it/s, train/loss=2.220] Epoch 0: | | 538/? [01:35<00:00, 5.64it/s, train/loss=10.90] Epoch 0: | | 539/? [01:35<00:00, 5.65it/s, train/loss=10.90] Epoch 0: | | 539/? [01:35<00:00, 5.65it/s, train/loss=2.210] Epoch 0: | | 540/? [01:35<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 540/? [01:35<00:00, 5.64it/s, train/loss=46.40] Epoch 0: | | 541/? [01:35<00:00, 5.65it/s, train/loss=46.40] Epoch 0: | | 541/? [01:35<00:00, 5.65it/s, train/loss=2.180] Epoch 0: | | 542/? [01:36<00:00, 5.64it/s, train/loss=2.180] Epoch 0: | | 542/? [01:36<00:00, 5.64it/s, train/loss=11.40] Epoch 0: | | 543/? [01:36<00:00, 5.65it/s, train/loss=11.40] Epoch 0: | | 543/? [01:36<00:00, 5.65it/s, train/loss=2.160] Epoch 0: | | 544/? [01:36<00:00, 5.65it/s, train/loss=2.160] Epoch 0: | | 544/? [01:36<00:00, 5.65it/s, train/loss=48.70] Epoch 0: | | 545/? [01:36<00:00, 5.65it/s, train/loss=48.70] Epoch 0: | | 545/? [01:36<00:00, 5.65it/s, train/loss=2.150] Epoch 0: | | 546/? [01:36<00:00, 5.65it/s, train/loss=2.150] Epoch 0: | | 546/? [01:36<00:00, 5.65it/s, train/loss=22.10] Epoch 0: | | 547/? [01:36<00:00, 5.66it/s, train/loss=22.10] Epoch 0: | | 547/? [01:36<00:00, 5.65it/s, train/loss=2.240] Epoch 0: | | 548/? [01:37<00:00, 5.65it/s, train/loss=2.240] Epoch 0: | | 548/? [01:37<00:00, 5.65it/s, train/loss=29.10] Epoch 0: | | 549/? [01:37<00:00, 5.66it/s, train/loss=29.10] Epoch 0: | | 549/? [01:37<00:00, 5.66it/s, train/loss=2.350] Epoch 0: | | 550/? [01:37<00:00, 5.65it/s, train/loss=2.350] Epoch 0: | | 550/? [01:37<00:00, 5.65it/s, train/loss=12.00] Epoch 0: | | 551/? [01:37<00:00, 5.66it/s, train/loss=12.00] Epoch 0: | | 551/? [01:37<00:00, 5.66it/s, train/loss=2.400] Epoch 0: | | 552/? [01:37<00:00, 5.65it/s, train/loss=2.400] Epoch 0: | | 552/? [01:37<00:00, 5.65it/s, train/loss=17.40] Epoch 0: | | 553/? [01:37<00:00, 5.66it/s, train/loss=17.40] Epoch 0: | | 553/? [01:37<00:00, 5.66it/s, train/loss=2.390] Epoch 0: | | 554/? [01:37<00:00, 5.65it/s, train/loss=2.390] Epoch 0: | | 554/? [01:37<00:00, 5.65it/s, train/loss=17.00] Epoch 0: | | 555/? [01:38<00:00, 5.66it/s, train/loss=17.00] Epoch 0: | | 555/? [01:38<00:00, 5.66it/s, train/loss=2.330] Epoch 0: | | 556/? [01:38<00:00, 5.66it/s, train/loss=2.330] Epoch 0: | | 556/? [01:38<00:00, 5.66it/s, train/loss=19.20] Epoch 0: | | 557/? [01:38<00:00, 5.66it/s, train/loss=19.20] Epoch 0: | | 557/? [01:38<00:00, 5.66it/s, train/loss=2.260] Epoch 0: | | 558/? [01:38<00:00, 5.66it/s, train/loss=2.260] Epoch 0: | | 558/? [01:38<00:00, 5.66it/s, train/loss=24.90] Epoch 0: | | 559/? [01:38<00:00, 5.66it/s, train/loss=24.90] Epoch 0: | | 559/? [01:38<00:00, 5.66it/s, train/loss=2.240] Epoch 0: | | 560/? [01:38<00:00, 5.66it/s, train/loss=2.240] Epoch 0: | | 560/? [01:38<00:00, 5.66it/s, train/loss=37.70] Epoch 0: | | 561/? [01:39<00:00, 5.67it/s, train/loss=37.70] Epoch 0: | | 561/? [01:39<00:00, 5.67it/s, train/loss=2.240] Epoch 0: | | 562/? [01:39<00:00, 5.66it/s, train/loss=2.240] Epoch 0: | | 562/? [01:39<00:00, 5.66it/s, train/loss=29.60] Epoch 0: | | 563/? [01:39<00:00, 5.67it/s, train/loss=29.60] Epoch 0: | | 563/? [01:39<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 564/? [01:39<00:00, 5.66it/s, train/loss=2.200] Epoch 0: | | 564/? [01:39<00:00, 5.66it/s, train/loss=13.10] Epoch 0: | | 565/? [01:39<00:00, 5.67it/s, train/loss=13.10] Epoch 0: | | 565/? [01:39<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 566/? [01:39<00:00, 5.66it/s, train/loss=2.180] Epoch 0: | | 566/? [01:39<00:00, 5.66it/s, train/loss=14.70] Epoch 0: | | 567/? [01:39<00:00, 5.67it/s, train/loss=14.70] Epoch 0: | | 567/? [01:39<00:00, 5.67it/s, train/loss=2.170] Epoch 0: | | 568/? [01:40<00:00, 5.66it/s, train/loss=2.170] Epoch 0: | | 568/? [01:40<00:00, 5.66it/s, train/loss=25.70] Epoch 0: | | 569/? [01:40<00:00, 5.67it/s, train/loss=25.70] Epoch 0: | | 569/? [01:40<00:00, 5.67it/s, train/loss=2.150] Epoch 0: | | 570/? [01:40<00:00, 5.67it/s, train/loss=2.150] Epoch 0: | | 570/? [01:40<00:00, 5.67it/s, train/loss=20.20] Epoch 0: | | 571/? [01:40<00:00, 5.67it/s, train/loss=20.20] Epoch 0: | | 571/? [01:40<00:00, 5.67it/s, train/loss=2.120] Epoch 0: | | 572/? [01:40<00:00, 5.66it/s, train/loss=2.120] Epoch 0: | | 572/? [01:40<00:00, 5.66it/s, train/loss=24.90] Epoch 0: | | 573/? [01:41<00:00, 5.67it/s, train/loss=24.90] Epoch 0: | | 573/? [01:41<00:00, 5.67it/s, train/loss=2.140] Epoch 0: | | 574/? [01:41<00:00, 5.67it/s, train/loss=2.140] Epoch 0: | | 574/? [01:41<00:00, 5.67it/s, train/loss=19.00] Epoch 0: | | 575/? [01:41<00:00, 5.67it/s, train/loss=19.00] Epoch 0: | | 575/? [01:41<00:00, 5.67it/s, train/loss=2.190] Epoch 0: | | 576/? [01:41<00:00, 5.67it/s, train/loss=2.190] Epoch 0: | | 576/? [01:41<00:00, 5.67it/s, train/loss=11.50] Epoch 0: | | 577/? [01:41<00:00, 5.67it/s, train/loss=11.50] Epoch 0: | | 577/? [01:41<00:00, 5.67it/s, train/loss=2.240] Epoch 0: | | 578/? [01:41<00:00, 5.67it/s, train/loss=2.240] Epoch 0: | | 578/? [01:41<00:00, 5.67it/s, train/loss=19.60] Epoch 0: | | 579/? [01:42<00:00, 5.68it/s, train/loss=19.60] Epoch 0: | | 579/? [01:42<00:00, 5.68it/s, train/loss=2.230] Epoch 0: | | 580/? [01:42<00:00, 5.67it/s, train/loss=2.230] Epoch 0: | | 580/? [01:42<00:00, 5.67it/s, train/loss=39.90] Epoch 0: | | 581/? [01:42<00:00, 5.68it/s, train/loss=39.90] Epoch 0: | | 581/? [01:42<00:00, 5.68it/s, train/loss=2.140] Epoch 0: | | 582/? [01:42<00:00, 5.67it/s, train/loss=2.140] Epoch 0: | | 582/? [01:42<00:00, 5.67it/s, train/loss=14.50] Epoch 0: | | 583/? [01:42<00:00, 5.68it/s, train/loss=14.50] Epoch 0: | | 583/? [01:42<00:00, 5.68it/s, train/loss=2.050] Epoch 0: | | 584/? [01:42<00:00, 5.67it/s, train/loss=2.050] Epoch 0: | | 584/? [01:42<00:00, 5.67it/s, train/loss=28.80] Epoch 0: | | 585/? [01:43<00:00, 5.68it/s, train/loss=28.80] Epoch 0: | | 585/? [01:43<00:00, 5.68it/s, train/loss=2.020] Epoch 0: | | 586/? [01:43<00:00, 5.67it/s, train/loss=2.020] Epoch 0: | | 586/? [01:43<00:00, 5.67it/s, train/loss=32.90] Epoch 0: | | 587/? [01:43<00:00, 5.68it/s, train/loss=32.90] Epoch 0: | | 587/? [01:43<00:00, 5.68it/s, train/loss=2.000] Epoch 0: | | 588/? [01:43<00:00, 5.67it/s, train/loss=2.000] Epoch 0: | | 588/? [01:43<00:00, 5.67it/s, train/loss=26.10] Epoch 0: | | 589/? [01:43<00:00, 5.68it/s, train/loss=26.10] Epoch 0: | | 589/? [01:43<00:00, 5.68it/s, train/loss=2.020] Epoch 0: | | 590/? [01:43<00:00, 5.68it/s, train/loss=2.020] Epoch 0: | | 590/? [01:43<00:00, 5.68it/s, train/loss=37.00] Epoch 0: | | 591/? [01:43<00:00, 5.68it/s, train/loss=37.00] Epoch 0: | | 591/? [01:43<00:00, 5.68it/s, train/loss=2.080] Epoch 0: | | 592/? [01:44<00:00, 5.68it/s, train/loss=2.080] Epoch 0: | | 592/? [01:44<00:00, 5.68it/s, train/loss=17.80] Epoch 0: | | 593/? [01:44<00:00, 5.68it/s, train/loss=17.80] Epoch 0: | | 593/? [01:44<00:00, 5.68it/s, train/loss=2.140] Epoch 0: | | 594/? [01:44<00:00, 5.68it/s, train/loss=2.140] Epoch 0: | | 594/? [01:44<00:00, 5.68it/s, train/loss=27.40] Epoch 0: | | 595/? [01:44<00:00, 5.69it/s, train/loss=27.40] Epoch 0: | | 595/? [01:44<00:00, 5.69it/s, train/loss=2.160] Epoch 0: | | 596/? [01:44<00:00, 5.68it/s, train/loss=2.160] Epoch 0: | | 596/? [01:44<00:00, 5.68it/s, train/loss=26.80] Epoch 0: | | 597/? [01:44<00:00, 5.69it/s, train/loss=26.80] Epoch 0: | | 597/? [01:44<00:00, 5.69it/s, train/loss=2.160] Epoch 0: | | 598/? [01:45<00:00, 5.68it/s, train/loss=2.160] Epoch 0: | | 598/? [01:45<00:00, 5.68it/s, train/loss=32.30] Epoch 0: | | 599/? [01:45<00:00, 5.69it/s, train/loss=32.30] Epoch 0: | | 599/? [01:45<00:00, 5.69it/s, train/loss=2.180] Epoch 0: | | 600/? [01:45<00:00, 5.68it/s, train/loss=2.180] Epoch 0: | | 600/? [01:45<00:00, 5.68it/s, train/loss=27.90] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 62.82it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:00, 63.32it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 64.21it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 65.06it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 65.52it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 65.97it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 66.31it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 66.59it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 66.79it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 66.84it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 66.80it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 66.97it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 66.92it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 66.42it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 66.48it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 66.46it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 66.55it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 66.63it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 66.70it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 66.75it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 66.67it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 66.75it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 66.76it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 66.78it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 66.79it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 66.81it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 66.88it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 66.93it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 67.00it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 66.79it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 65.50it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 65.37it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 64.63it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 64.36it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 64.40it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 64.43it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 64.44it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 64.43it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 64.41it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 64.39it/s] Epoch 0: | | 600/? [01:46<00:00, 5.62it/s, train/loss=27.90] Epoch 0: | | 601/? [01:47<00:00, 5.60it/s, train/loss=27.90] Epoch 0: | | 601/? [01:47<00:00, 5.60it/s, train/loss=2.240] Epoch 0: | | 602/? [01:47<00:00, 5.60it/s, train/loss=2.240] Epoch 0: | | 602/? [01:47<00:00, 5.60it/s, train/loss=27.10] Epoch 0: | | 603/? [01:47<00:00, 5.61it/s, train/loss=27.10] Epoch 0: | | 603/? [01:47<00:00, 5.61it/s, train/loss=2.310] Epoch 0: | | 604/? [01:47<00:00, 5.60it/s, train/loss=2.310] Epoch 0: | | 604/? [01:47<00:00, 5.60it/s, train/loss=33.40] Epoch 0: | | 605/? [01:47<00:00, 5.61it/s, train/loss=33.40] Epoch 0: | | 605/? [01:47<00:00, 5.61it/s, train/loss=2.350] Epoch 0: | | 606/? [01:48<00:00, 5.60it/s, train/loss=2.350] Epoch 0: | | 606/? [01:48<00:00, 5.60it/s, train/loss=13.90] Epoch 0: | | 607/? [01:48<00:00, 5.61it/s, train/loss=13.90] Epoch 0: | | 607/? [01:48<00:00, 5.61it/s, train/loss=2.310] Epoch 0: | | 608/? [01:48<00:00, 5.60it/s, train/loss=2.310] Epoch 0: | | 608/? [01:48<00:00, 5.60it/s, train/loss=19.40] Epoch 0: | | 609/? [01:48<00:00, 5.61it/s, train/loss=19.40] Epoch 0: | | 609/? [01:48<00:00, 5.61it/s, train/loss=2.240] Epoch 0: | | 610/? [01:48<00:00, 5.60it/s, train/loss=2.240] Epoch 0: | | 610/? [01:48<00:00, 5.60it/s, train/loss=10.60] Epoch 0: | | 611/? [01:48<00:00, 5.61it/s, train/loss=10.60] Epoch 0: | | 611/? [01:48<00:00, 5.61it/s, train/loss=2.180] Epoch 0: | | 612/? [01:49<00:00, 5.61it/s, train/loss=2.180] Epoch 0: | | 612/? [01:49<00:00, 5.61it/s, train/loss=23.00] Epoch 0: | | 613/? [01:49<00:00, 5.61it/s, train/loss=23.00] Epoch 0: | | 613/? [01:49<00:00, 5.61it/s, train/loss=2.130] Epoch 0: | | 614/? [01:49<00:00, 5.61it/s, train/loss=2.130] Epoch 0: | | 614/? [01:49<00:00, 5.61it/s, train/loss=15.30] Epoch 0: | | 615/? [01:49<00:00, 5.61it/s, train/loss=15.30] Epoch 0: | | 615/? [01:49<00:00, 5.61it/s, train/loss=2.090] Epoch 0: | | 616/? [01:49<00:00, 5.61it/s, train/loss=2.090] Epoch 0: | | 616/? [01:49<00:00, 5.61it/s, train/loss=34.00] Epoch 0: | | 617/? [01:49<00:00, 5.62it/s, train/loss=34.00] Epoch 0: | | 617/? [01:49<00:00, 5.62it/s, train/loss=2.060] Epoch 0: | | 618/? [01:50<00:00, 5.61it/s, train/loss=2.060] Epoch 0: | | 618/? [01:50<00:00, 5.61it/s, train/loss=10.70] Epoch 0: | | 619/? [01:50<00:00, 5.62it/s, train/loss=10.70] Epoch 0: | | 619/? [01:50<00:00, 5.62it/s, train/loss=2.020] Epoch 0: | | 620/? [01:50<00:00, 5.61it/s, train/loss=2.020] Epoch 0: | | 620/? [01:50<00:00, 5.61it/s, train/loss=12.90] Epoch 0: | | 621/? [01:50<00:00, 5.62it/s, train/loss=12.90] Epoch 0: | | 621/? [01:50<00:00, 5.62it/s, train/loss=1.970] Epoch 0: | | 622/? [01:50<00:00, 5.61it/s, train/loss=1.970] Epoch 0: | | 622/? [01:50<00:00, 5.61it/s, train/loss=21.60] Epoch 0: | | 623/? [01:50<00:00, 5.62it/s, train/loss=21.60] Epoch 0: | | 623/? [01:50<00:00, 5.62it/s, train/loss=1.930] Epoch 0: | | 624/? [01:51<00:00, 5.61it/s, train/loss=1.930] Epoch 0: | | 624/? [01:51<00:00, 5.61it/s, train/loss=36.80] Epoch 0: | | 625/? [01:51<00:00, 5.62it/s, train/loss=36.80] Epoch 0: | | 625/? [01:51<00:00, 5.62it/s, train/loss=1.920] Epoch 0: | | 626/? [01:51<00:00, 5.62it/s, train/loss=1.920] Epoch 0: | | 626/? [01:51<00:00, 5.62it/s, train/loss=26.50] Epoch 0: | | 627/? [01:51<00:00, 5.62it/s, train/loss=26.50] Epoch 0: | | 627/? [01:51<00:00, 5.62it/s, train/loss=1.930] Epoch 0: | | 628/? [01:51<00:00, 5.62it/s, train/loss=1.930] Epoch 0: | | 628/? [01:51<00:00, 5.62it/s, train/loss=28.90] Epoch 0: | | 629/? [01:51<00:00, 5.62it/s, train/loss=28.90] Epoch 0: | | 629/? [01:51<00:00, 5.62it/s, train/loss=1.910] Epoch 0: | | 630/? [01:52<00:00, 5.62it/s, train/loss=1.910] Epoch 0: | | 630/? [01:52<00:00, 5.62it/s, train/loss=35.60] Epoch 0: | | 631/? [01:52<00:00, 5.63it/s, train/loss=35.60] Epoch 0: | | 631/? [01:52<00:00, 5.63it/s, train/loss=1.900] Epoch 0: | | 632/? [01:52<00:00, 5.62it/s, train/loss=1.900] Epoch 0: | | 632/? [01:52<00:00, 5.62it/s, train/loss=15.00] Epoch 0: | | 633/? [01:52<00:00, 5.63it/s, train/loss=15.00] Epoch 0: | | 633/? [01:52<00:00, 5.63it/s, train/loss=1.970] Epoch 0: | | 634/? [01:52<00:00, 5.62it/s, train/loss=1.970] Epoch 0: | | 634/? [01:52<00:00, 5.62it/s, train/loss=19.70] Epoch 0: | | 635/? [01:52<00:00, 5.63it/s, train/loss=19.70] Epoch 0: | | 635/? [01:52<00:00, 5.63it/s, train/loss=2.050] Epoch 0: | | 636/? [01:53<00:00, 5.62it/s, train/loss=2.050] Epoch 0: | | 636/? [01:53<00:00, 5.62it/s, train/loss=33.90] Epoch 0: | | 637/? [01:53<00:00, 5.63it/s, train/loss=33.90] Epoch 0: | | 637/? [01:53<00:00, 5.63it/s, train/loss=2.140] Epoch 0: | | 638/? [01:53<00:00, 5.63it/s, train/loss=2.140] Epoch 0: | | 638/? [01:53<00:00, 5.62it/s, train/loss=30.40] Epoch 0: | | 639/? [01:53<00:00, 5.63it/s, train/loss=30.40] Epoch 0: | | 639/? [01:53<00:00, 5.63it/s, train/loss=2.220] Epoch 0: | | 640/? [01:53<00:00, 5.63it/s, train/loss=2.220] Epoch 0: | | 640/? [01:53<00:00, 5.63it/s, train/loss=25.00] Epoch 0: | | 641/? [01:53<00:00, 5.63it/s, train/loss=25.00] Epoch 0: | | 641/? [01:53<00:00, 5.63it/s, train/loss=2.240] Epoch 0: | | 642/? [01:54<00:00, 5.63it/s, train/loss=2.240] Epoch 0: | | 642/? [01:54<00:00, 5.63it/s, train/loss=10.00] Epoch 0: | | 643/? [01:54<00:00, 5.63it/s, train/loss=10.00] Epoch 0: | | 643/? [01:54<00:00, 5.63it/s, train/loss=2.220] Epoch 0: | | 644/? [01:54<00:00, 5.63it/s, train/loss=2.220] Epoch 0: | | 644/? [01:54<00:00, 5.63it/s, train/loss=22.80] Epoch 0: | | 645/? [01:54<00:00, 5.63it/s, train/loss=22.80] Epoch 0: | | 645/? [01:54<00:00, 5.63it/s, train/loss=2.190] Epoch 0: | | 646/? [01:54<00:00, 5.63it/s, train/loss=2.190] Epoch 0: | | 646/? [01:54<00:00, 5.63it/s, train/loss=22.90] Epoch 0: | | 647/? [01:54<00:00, 5.64it/s, train/loss=22.90] Epoch 0: | | 647/? [01:54<00:00, 5.64it/s, train/loss=2.190] Epoch 0: | | 648/? [01:55<00:00, 5.63it/s, train/loss=2.190] Epoch 0: | | 648/? [01:55<00:00, 5.63it/s, train/loss=42.40] Epoch 0: | | 649/? [01:55<00:00, 5.64it/s, train/loss=42.40] Epoch 0: | | 649/? [01:55<00:00, 5.64it/s, train/loss=2.190] Epoch 0: | | 650/? [01:55<00:00, 5.63it/s, train/loss=2.190] Epoch 0: | | 650/? [01:55<00:00, 5.63it/s, train/loss=61.90] Epoch 0: | | 651/? [01:55<00:00, 5.64it/s, train/loss=61.90] Epoch 0: | | 651/? [01:55<00:00, 5.64it/s, train/loss=2.180] Epoch 0: | | 652/? [01:55<00:00, 5.63it/s, train/loss=2.180] Epoch 0: | | 652/? [01:55<00:00, 5.63it/s, train/loss=38.10] Epoch 0: | | 653/? [01:55<00:00, 5.64it/s, train/loss=38.10] Epoch 0: | | 653/? [01:55<00:00, 5.64it/s, train/loss=2.180] Epoch 0: | | 654/? [01:56<00:00, 5.63it/s, train/loss=2.180] Epoch 0: | | 654/? [01:56<00:00, 5.63it/s, train/loss=20.60] Epoch 0: | | 655/? [01:56<00:00, 5.64it/s, train/loss=20.60] Epoch 0: | | 655/? [01:56<00:00, 5.64it/s, train/loss=2.230] Epoch 0: | | 656/? [01:56<00:00, 5.64it/s, train/loss=2.230] Epoch 0: | | 656/? [01:56<00:00, 5.64it/s, train/loss=18.20] Epoch 0: | | 657/? [01:56<00:00, 5.64it/s, train/loss=18.20] Epoch 0: | | 657/? [01:56<00:00, 5.64it/s, train/loss=2.270] Epoch 0: | | 658/? [01:56<00:00, 5.64it/s, train/loss=2.270] Epoch 0: | | 658/? [01:56<00:00, 5.64it/s, train/loss=17.30] Epoch 0: | | 659/? [01:56<00:00, 5.64it/s, train/loss=17.30] Epoch 0: | | 659/? [01:56<00:00, 5.64it/s, train/loss=2.290] Epoch 0: | | 660/? [01:57<00:00, 5.64it/s, train/loss=2.290] Epoch 0: | | 660/? [01:57<00:00, 5.64it/s, train/loss=11.40] Epoch 0: | | 661/? [01:57<00:00, 5.64it/s, train/loss=11.40] Epoch 0: | | 661/? [01:57<00:00, 5.64it/s, train/loss=2.270] Epoch 0: | | 662/? [01:57<00:00, 5.64it/s, train/loss=2.270] Epoch 0: | | 662/? [01:57<00:00, 5.64it/s, train/loss=14.50] Epoch 0: | | 663/? [01:57<00:00, 5.65it/s, train/loss=14.50] Epoch 0: | | 663/? [01:57<00:00, 5.65it/s, train/loss=2.210] Epoch 0: | | 664/? [01:57<00:00, 5.64it/s, train/loss=2.210] Epoch 0: | | 664/? [01:57<00:00, 5.64it/s, train/loss=24.50] Epoch 0: | | 665/? [01:57<00:00, 5.65it/s, train/loss=24.50] Epoch 0: | | 665/? [01:57<00:00, 5.65it/s, train/loss=2.100] Epoch 0: | | 666/? [01:58<00:00, 5.64it/s, train/loss=2.100] Epoch 0: | | 666/? [01:58<00:00, 5.64it/s, train/loss=29.30] Epoch 0: | | 667/? [01:58<00:00, 5.65it/s, train/loss=29.30] Epoch 0: | | 667/? [01:58<00:00, 5.65it/s, train/loss=2.000] Epoch 0: | | 668/? [01:58<00:00, 5.64it/s, train/loss=2.000] Epoch 0: | | 668/? [01:58<00:00, 5.64it/s, train/loss=24.10] Epoch 0: | | 669/? [01:58<00:00, 5.65it/s, train/loss=24.10] Epoch 0: | | 669/? [01:58<00:00, 5.65it/s, train/loss=1.960] Epoch 0: | | 670/? [01:58<00:00, 5.64it/s, train/loss=1.960] Epoch 0: | | 670/? [01:58<00:00, 5.64it/s, train/loss=32.10] Epoch 0: | | 671/? [01:58<00:00, 5.65it/s, train/loss=32.10] Epoch 0: | | 671/? [01:58<00:00, 5.65it/s, train/loss=1.950] Epoch 0: | | 672/? [01:59<00:00, 5.65it/s, train/loss=1.950] Epoch 0: | | 672/? [01:59<00:00, 5.65it/s, train/loss=21.70] Epoch 0: | | 673/? [01:59<00:00, 5.65it/s, train/loss=21.70] Epoch 0: | | 673/? [01:59<00:00, 5.65it/s, train/loss=1.960] Epoch 0: | | 674/? [01:59<00:00, 5.65it/s, train/loss=1.960] Epoch 0: | | 674/? [01:59<00:00, 5.65it/s, train/loss=31.20] Epoch 0: | | 675/? [01:59<00:00, 5.65it/s, train/loss=31.20] Epoch 0: | | 675/? [01:59<00:00, 5.65it/s, train/loss=1.980] Epoch 0: | | 676/? [01:59<00:00, 5.65it/s, train/loss=1.980] Epoch 0: | | 676/? [01:59<00:00, 5.65it/s, train/loss=10.90] Epoch 0: | | 677/? [01:59<00:00, 5.65it/s, train/loss=10.90] Epoch 0: | | 677/? [01:59<00:00, 5.65it/s, train/loss=2.000] Epoch 0: | | 678/? [02:00<00:00, 5.65it/s, train/loss=2.000] Epoch 0: | | 678/? [02:00<00:00, 5.65it/s, train/loss=11.30] Epoch 0: | | 679/? [02:00<00:00, 5.66it/s, train/loss=11.30] Epoch 0: | | 679/? [02:00<00:00, 5.66it/s, train/loss=2.020] Epoch 0: | | 680/? [02:00<00:00, 5.65it/s, train/loss=2.020] Epoch 0: | | 680/? [02:00<00:00, 5.65it/s, train/loss=26.00] Epoch 0: | | 681/? [02:00<00:00, 5.66it/s, train/loss=26.00] Epoch 0: | | 681/? [02:00<00:00, 5.66it/s, train/loss=2.000] Epoch 0: | | 682/? [02:00<00:00, 5.65it/s, train/loss=2.000] Epoch 0: | | 682/? [02:00<00:00, 5.65it/s, train/loss=26.70] Epoch 0: | | 683/? [02:00<00:00, 5.66it/s, train/loss=26.70] Epoch 0: | | 683/? [02:00<00:00, 5.66it/s, train/loss=1.980] Epoch 0: | | 684/? [02:01<00:00, 5.65it/s, train/loss=1.980] Epoch 0: | | 684/? [02:01<00:00, 5.65it/s, train/loss=8.930] Epoch 0: | | 685/? [02:01<00:00, 5.66it/s, train/loss=8.930] Epoch 0: | | 685/? [02:01<00:00, 5.66it/s, train/loss=1.980] Epoch 0: | | 686/? [02:01<00:00, 5.65it/s, train/loss=1.980] Epoch 0: | | 686/? [02:01<00:00, 5.65it/s, train/loss=37.30] Epoch 0: | | 687/? [02:01<00:00, 5.66it/s, train/loss=37.30] Epoch 0: | | 687/? [02:01<00:00, 5.66it/s, train/loss=1.970] Epoch 0: | | 688/? [02:01<00:00, 5.65it/s, train/loss=1.970] Epoch 0: | | 688/? [02:01<00:00, 5.65it/s, train/loss=30.80] Epoch 0: | | 689/? [02:01<00:00, 5.66it/s, train/loss=30.80] Epoch 0: | | 689/? [02:01<00:00, 5.66it/s, train/loss=2.160] Epoch 0: | | 690/? [02:02<00:00, 5.65it/s, train/loss=2.160] Epoch 0: | | 690/? [02:02<00:00, 5.65it/s, train/loss=32.70] Epoch 0: | | 691/? [02:02<00:00, 5.66it/s, train/loss=32.70] Epoch 0: | | 691/? [02:02<00:00, 5.66it/s, train/loss=2.230] Epoch 0: | | 692/? [02:02<00:00, 5.65it/s, train/loss=2.230] Epoch 0: | | 692/? [02:02<00:00, 5.65it/s, train/loss=22.50] Epoch 0: | | 693/? [02:02<00:00, 5.66it/s, train/loss=22.50] Epoch 0: | | 693/? [02:02<00:00, 5.66it/s, train/loss=2.280] Epoch 0: | | 694/? [02:02<00:00, 5.65it/s, train/loss=2.280] Epoch 0: | | 694/? [02:02<00:00, 5.65it/s, train/loss=23.20] Epoch 0: | | 695/? [02:02<00:00, 5.66it/s, train/loss=23.20] Epoch 0: | | 695/? [02:02<00:00, 5.66it/s, train/loss=2.250] Epoch 0: | | 696/? [02:03<00:00, 5.65it/s, train/loss=2.250] Epoch 0: | | 696/? [02:03<00:00, 5.65it/s, train/loss=40.20] Epoch 0: | | 697/? [02:03<00:00, 5.66it/s, train/loss=40.20] Epoch 0: | | 697/? [02:03<00:00, 5.66it/s, train/loss=2.170] Epoch 0: | | 698/? [02:03<00:00, 5.66it/s, train/loss=2.170] Epoch 0: | | 698/? [02:03<00:00, 5.66it/s, train/loss=16.40] Epoch 0: | | 699/? [02:03<00:00, 5.66it/s, train/loss=16.40] Epoch 0: | | 699/? [02:03<00:00, 5.66it/s, train/loss=2.140] Epoch 0: | | 700/? [02:03<00:00, 5.66it/s, train/loss=2.140] Epoch 0: | | 700/? [02:03<00:00, 5.66it/s, train/loss=13.90] Epoch 0: | | 701/? [02:03<00:00, 5.66it/s, train/loss=13.90] Epoch 0: | | 701/? [02:03<00:00, 5.66it/s, train/loss=2.160] Epoch 0: | | 702/? [02:04<00:00, 5.66it/s, train/loss=2.160] Epoch 0: | | 702/? [02:04<00:00, 5.66it/s, train/loss=18.10] Epoch 0: | | 703/? [02:04<00:00, 5.67it/s, train/loss=18.10] Epoch 0: | | 703/? [02:04<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 704/? [02:04<00:00, 5.66it/s, train/loss=2.180] Epoch 0: | | 704/? [02:04<00:00, 5.66it/s, train/loss=23.20] Epoch 0: | | 705/? [02:04<00:00, 5.67it/s, train/loss=23.20] Epoch 0: | | 705/? [02:04<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 706/? [02:04<00:00, 5.66it/s, train/loss=2.180] Epoch 0: | | 706/? [02:04<00:00, 5.66it/s, train/loss=31.30] Epoch 0: | | 707/? [02:04<00:00, 5.67it/s, train/loss=31.30] Epoch 0: | | 707/? [02:04<00:00, 5.67it/s, train/loss=2.160] Epoch 0: | | 708/? [02:04<00:00, 5.66it/s, train/loss=2.160] Epoch 0: | | 708/? [02:04<00:00, 5.66it/s, train/loss=19.40] Epoch 0: | | 709/? [02:05<00:00, 5.67it/s, train/loss=19.40] Epoch 0: | | 709/? [02:05<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 710/? [02:05<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 710/? [02:05<00:00, 5.67it/s, train/loss=31.20] Epoch 0: | | 711/? [02:05<00:00, 5.67it/s, train/loss=31.20] Epoch 0: | | 711/? [02:05<00:00, 5.67it/s, train/loss=2.220] Epoch 0: | | 712/? [02:05<00:00, 5.67it/s, train/loss=2.220] Epoch 0: | | 712/? [02:05<00:00, 5.67it/s, train/loss=46.40] Epoch 0: | | 713/? [02:05<00:00, 5.67it/s, train/loss=46.40] Epoch 0: | | 713/? [02:05<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 714/? [02:06<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 714/? [02:06<00:00, 5.67it/s, train/loss=31.40] Epoch 0: | | 715/? [02:06<00:00, 5.67it/s, train/loss=31.40] Epoch 0: | | 715/? [02:06<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 716/? [02:06<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 716/? [02:06<00:00, 5.67it/s, train/loss=35.10] Epoch 0: | | 717/? [02:06<00:00, 5.67it/s, train/loss=35.10] Epoch 0: | | 717/? [02:06<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 718/? [02:06<00:00, 5.67it/s, train/loss=2.200] Epoch 0: | | 718/? [02:06<00:00, 5.67it/s, train/loss=23.40] Epoch 0: | | 719/? [02:06<00:00, 5.67it/s, train/loss=23.40] Epoch 0: | | 719/? [02:06<00:00, 5.67it/s, train/loss=2.210] Epoch 0: | | 720/? [02:07<00:00, 5.67it/s, train/loss=2.210] Epoch 0: | | 720/? [02:07<00:00, 5.67it/s, train/loss=16.20] Epoch 0: | | 721/? [02:07<00:00, 5.67it/s, train/loss=16.20] Epoch 0: | | 721/? [02:07<00:00, 5.67it/s, train/loss=2.210] Epoch 0: | | 722/? [02:07<00:00, 5.67it/s, train/loss=2.210] Epoch 0: | | 722/? [02:07<00:00, 5.67it/s, train/loss=22.00] Epoch 0: | | 723/? [02:07<00:00, 5.67it/s, train/loss=22.00] Epoch 0: | | 723/? [02:07<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 724/? [02:07<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 724/? [02:07<00:00, 5.67it/s, train/loss=50.60] Epoch 0: | | 725/? [02:07<00:00, 5.68it/s, train/loss=50.60] Epoch 0: | | 725/? [02:07<00:00, 5.68it/s, train/loss=2.160] Epoch 0: | | 726/? [02:08<00:00, 5.67it/s, train/loss=2.160] Epoch 0: | | 726/? [02:08<00:00, 5.67it/s, train/loss=44.00] Epoch 0: | | 727/? [02:08<00:00, 5.68it/s, train/loss=44.00] Epoch 0: | | 727/? [02:08<00:00, 5.68it/s, train/loss=2.180] Epoch 0: | | 728/? [02:08<00:00, 5.67it/s, train/loss=2.180] Epoch 0: | | 728/? [02:08<00:00, 5.67it/s, train/loss=33.60] Epoch 0: | | 729/? [02:08<00:00, 5.68it/s, train/loss=33.60] Epoch 0: | | 729/? [02:08<00:00, 5.68it/s, train/loss=2.210] Epoch 0: | | 730/? [02:08<00:00, 5.67it/s, train/loss=2.210] Epoch 0: | | 730/? [02:08<00:00, 5.67it/s, train/loss=20.70] Epoch 0: | | 731/? [02:08<00:00, 5.68it/s, train/loss=20.70] Epoch 0: | | 731/? [02:08<00:00, 5.68it/s, train/loss=2.210] Epoch 0: | | 732/? [02:08<00:00, 5.68it/s, train/loss=2.210] Epoch 0: | | 732/? [02:08<00:00, 5.68it/s, train/loss=19.10] Epoch 0: | | 733/? [02:09<00:00, 5.68it/s, train/loss=19.10] Epoch 0: | | 733/? [02:09<00:00, 5.68it/s, train/loss=2.180] Epoch 0: | | 734/? [02:09<00:00, 5.68it/s, train/loss=2.180] Epoch 0: | | 734/? [02:09<00:00, 5.68it/s, train/loss=17.30] Epoch 0: | | 735/? [02:09<00:00, 5.68it/s, train/loss=17.30] Epoch 0: | | 735/? [02:09<00:00, 5.68it/s, train/loss=2.130] Epoch 0: | | 736/? [02:09<00:00, 5.68it/s, train/loss=2.130] Epoch 0: | | 736/? [02:09<00:00, 5.68it/s, train/loss=32.90] Epoch 0: | | 737/? [02:09<00:00, 5.68it/s, train/loss=32.90] Epoch 0: | | 737/? [02:09<00:00, 5.68it/s, train/loss=2.070] Epoch 0: | | 738/? [02:09<00:00, 5.68it/s, train/loss=2.070] Epoch 0: | | 738/? [02:09<00:00, 5.68it/s, train/loss=25.10] Epoch 0: | | 739/? [02:09<00:00, 5.69it/s, train/loss=25.10] Epoch 0: | | 739/? [02:09<00:00, 5.69it/s, train/loss=2.010] Epoch 0: | | 740/? [02:10<00:00, 5.68it/s, train/loss=2.010] Epoch 0: | | 740/? [02:10<00:00, 5.68it/s, train/loss=26.20] Epoch 0: | | 741/? [02:10<00:00, 5.69it/s, train/loss=26.20] Epoch 0: | | 741/? [02:10<00:00, 5.69it/s, train/loss=1.970] Epoch 0: | | 742/? [02:10<00:00, 5.68it/s, train/loss=1.970] Epoch 0: | | 742/? [02:10<00:00, 5.68it/s, train/loss=38.50] Epoch 0: | | 743/? [02:10<00:00, 5.69it/s, train/loss=38.50] Epoch 0: | | 743/? [02:10<00:00, 5.69it/s, train/loss=1.960] Epoch 0: | | 744/? [02:10<00:00, 5.68it/s, train/loss=1.960] Epoch 0: | | 744/? [02:10<00:00, 5.68it/s, train/loss=26.20] Epoch 0: | | 745/? [02:10<00:00, 5.69it/s, train/loss=26.20] Epoch 0: | | 745/? [02:10<00:00, 5.69it/s, train/loss=1.960] Epoch 0: | | 746/? [02:11<00:00, 5.68it/s, train/loss=1.960] Epoch 0: | | 746/? [02:11<00:00, 5.68it/s, train/loss=29.00] Epoch 0: | | 747/? [02:11<00:00, 5.69it/s, train/loss=29.00] Epoch 0: | | 747/? [02:11<00:00, 5.69it/s, train/loss=1.990] Epoch 0: | | 748/? [02:11<00:00, 5.69it/s, train/loss=1.990] Epoch 0: | | 748/? [02:11<00:00, 5.69it/s, train/loss=15.30] Epoch 0: | | 749/? [02:11<00:00, 5.69it/s, train/loss=15.30] Epoch 0: | | 749/? [02:11<00:00, 5.69it/s, train/loss=2.030] Epoch 0: | | 750/? [02:11<00:00, 5.69it/s, train/loss=2.030] Epoch 0: | | 750/? [02:11<00:00, 5.69it/s, train/loss=52.50] Epoch 0: | | 751/? [02:11<00:00, 5.69it/s, train/loss=52.50] Epoch 0: | | 751/? [02:11<00:00, 5.69it/s, train/loss=2.080] Epoch 0: | | 752/? [02:12<00:00, 5.69it/s, train/loss=2.080] Epoch 0: | | 752/? [02:12<00:00, 5.69it/s, train/loss=38.80] Epoch 0: | | 753/? [02:12<00:00, 5.69it/s, train/loss=38.80] Epoch 0: | | 753/? [02:12<00:00, 5.69it/s, train/loss=2.160] Epoch 0: | | 754/? [02:12<00:00, 5.69it/s, train/loss=2.160] Epoch 0: | | 754/? [02:12<00:00, 5.69it/s, train/loss=16.20] Epoch 0: | | 755/? [02:12<00:00, 5.70it/s, train/loss=16.20] Epoch 0: | | 755/? [02:12<00:00, 5.69it/s, train/loss=2.220] Epoch 0: | | 756/? [02:12<00:00, 5.69it/s, train/loss=2.220] Epoch 0: | | 756/? [02:12<00:00, 5.69it/s, train/loss=35.80] Epoch 0: | | 757/? [02:12<00:00, 5.70it/s, train/loss=35.80] Epoch 0: | | 757/? [02:12<00:00, 5.70it/s, train/loss=2.240] Epoch 0: | | 758/? [02:13<00:00, 5.69it/s, train/loss=2.240] Epoch 0: | | 758/? [02:13<00:00, 5.69it/s, train/loss=64.60] Epoch 0: | | 759/? [02:13<00:00, 5.70it/s, train/loss=64.60] Epoch 0: | | 759/? [02:13<00:00, 5.70it/s, train/loss=2.280] Epoch 0: | | 760/? [02:13<00:00, 5.69it/s, train/loss=2.280] Epoch 0: | | 760/? [02:13<00:00, 5.69it/s, train/loss=38.20] Epoch 0: | | 761/? [02:13<00:00, 5.70it/s, train/loss=38.20] Epoch 0: | | 761/? [02:13<00:00, 5.70it/s, train/loss=2.400] Epoch 0: | | 762/? [02:13<00:00, 5.69it/s, train/loss=2.400] Epoch 0: | | 762/? [02:13<00:00, 5.69it/s, train/loss=23.40] Epoch 0: | | 763/? [02:13<00:00, 5.70it/s, train/loss=23.40] Epoch 0: | | 763/? [02:13<00:00, 5.70it/s, train/loss=2.530] Epoch 0: | | 764/? [02:14<00:00, 5.70it/s, train/loss=2.530] Epoch 0: | | 764/? [02:14<00:00, 5.70it/s, train/loss=37.80] Epoch 0: | | 765/? [02:14<00:00, 5.70it/s, train/loss=37.80] Epoch 0: | | 765/? [02:14<00:00, 5.70it/s, train/loss=2.580] Epoch 0: | | 766/? [02:14<00:00, 5.70it/s, train/loss=2.580] Epoch 0: | | 766/? [02:14<00:00, 5.70it/s, train/loss=9.400] Epoch 0: | | 767/? [02:14<00:00, 5.70it/s, train/loss=9.400] Epoch 0: | | 767/? [02:14<00:00, 5.70it/s, train/loss=2.530] Epoch 0: | | 768/? [02:14<00:00, 5.70it/s, train/loss=2.530] Epoch 0: | | 768/? [02:14<00:00, 5.70it/s, train/loss=17.00] Epoch 0: | | 769/? [02:14<00:00, 5.70it/s, train/loss=17.00] Epoch 0: | | 769/? [02:14<00:00, 5.70it/s, train/loss=2.400] Epoch 0: | | 770/? [02:15<00:00, 5.70it/s, train/loss=2.400] Epoch 0: | | 770/? [02:15<00:00, 5.70it/s, train/loss=17.40] Epoch 0: | | 771/? [02:15<00:00, 5.70it/s, train/loss=17.40] Epoch 0: | | 771/? [02:15<00:00, 5.70it/s, train/loss=2.240] Epoch 0: | | 772/? [02:15<00:00, 5.70it/s, train/loss=2.240] Epoch 0: | | 772/? [02:15<00:00, 5.70it/s, train/loss=43.20] Epoch 0: | | 773/? [02:15<00:00, 5.71it/s, train/loss=43.20] Epoch 0: | | 773/? [02:15<00:00, 5.71it/s, train/loss=2.160] Epoch 0: | | 774/? [02:15<00:00, 5.70it/s, train/loss=2.160] Epoch 0: | | 774/? [02:15<00:00, 5.70it/s, train/loss=21.60] Epoch 0: | | 775/? [02:15<00:00, 5.71it/s, train/loss=21.60] Epoch 0: | | 775/? [02:15<00:00, 5.71it/s, train/loss=2.140] Epoch 0: | | 776/? [02:16<00:00, 5.70it/s, train/loss=2.140] Epoch 0: | | 776/? [02:16<00:00, 5.70it/s, train/loss=20.60] Epoch 0: | | 777/? [02:16<00:00, 5.71it/s, train/loss=20.60] Epoch 0: | | 777/? [02:16<00:00, 5.71it/s, train/loss=2.150] Epoch 0: | | 778/? [02:16<00:00, 5.70it/s, train/loss=2.150] Epoch 0: | | 778/? [02:16<00:00, 5.70it/s, train/loss=14.50] Epoch 0: | | 779/? [02:16<00:00, 5.71it/s, train/loss=14.50] Epoch 0: | | 779/? [02:16<00:00, 5.71it/s, train/loss=2.200] Epoch 0: | | 780/? [02:16<00:00, 5.70it/s, train/loss=2.200] Epoch 0: | | 780/? [02:16<00:00, 5.70it/s, train/loss=29.70] Epoch 0: | | 781/? [02:16<00:00, 5.71it/s, train/loss=29.70] Epoch 0: | | 781/? [02:16<00:00, 5.71it/s, train/loss=2.210] Epoch 0: | | 782/? [02:17<00:00, 5.71it/s, train/loss=2.210] Epoch 0: | | 782/? [02:17<00:00, 5.71it/s, train/loss=6.770] Epoch 0: | | 783/? [02:17<00:00, 5.71it/s, train/loss=6.770] Epoch 0: | | 783/? [02:17<00:00, 5.71it/s, train/loss=2.180] Epoch 0: | | 784/? [02:17<00:00, 5.71it/s, train/loss=2.180] Epoch 0: | | 784/? [02:17<00:00, 5.71it/s, train/loss=51.80] Epoch 0: | | 785/? [02:17<00:00, 5.71it/s, train/loss=51.80] Epoch 0: | | 785/? [02:17<00:00, 5.71it/s, train/loss=2.120] Epoch 0: | | 786/? [02:17<00:00, 5.71it/s, train/loss=2.120] Epoch 0: | | 786/? [02:17<00:00, 5.71it/s, train/loss=13.10] Epoch 0: | | 787/? [02:17<00:00, 5.71it/s, train/loss=13.10] Epoch 0: | | 787/? [02:17<00:00, 5.71it/s, train/loss=2.060] Epoch 0: | | 788/? [02:18<00:00, 5.71it/s, train/loss=2.060] Epoch 0: | | 788/? [02:18<00:00, 5.71it/s, train/loss=31.40] Epoch 0: | | 789/? [02:18<00:00, 5.71it/s, train/loss=31.40] Epoch 0: | | 789/? [02:18<00:00, 5.71it/s, train/loss=2.040] Epoch 0: | | 790/? [02:18<00:00, 5.71it/s, train/loss=2.040] Epoch 0: | | 790/? [02:18<00:00, 5.71it/s, train/loss=18.20] Epoch 0: | | 791/? [02:18<00:00, 5.71it/s, train/loss=18.20] Epoch 0: | | 791/? [02:18<00:00, 5.71it/s, train/loss=2.020] Epoch 0: | | 792/? [02:18<00:00, 5.71it/s, train/loss=2.020] Epoch 0: | | 792/? [02:18<00:00, 5.71it/s, train/loss=19.10] Epoch 0: | | 793/? [02:18<00:00, 5.72it/s, train/loss=19.10] Epoch 0: | | 793/? [02:18<00:00, 5.72it/s, train/loss=2.000] Epoch 0: | | 794/? [02:19<00:00, 5.71it/s, train/loss=2.000] Epoch 0: | | 794/? [02:19<00:00, 5.71it/s, train/loss=11.40] Epoch 0: | | 795/? [02:19<00:00, 5.72it/s, train/loss=11.40] Epoch 0: | | 795/? [02:19<00:00, 5.72it/s, train/loss=1.990] Epoch 0: | | 796/? [02:19<00:00, 5.71it/s, train/loss=1.990] Epoch 0: | | 796/? [02:19<00:00, 5.71it/s, train/loss=21.00] Epoch 0: | | 797/? [02:19<00:00, 5.72it/s, train/loss=21.00] Epoch 0: | | 797/? [02:19<00:00, 5.72it/s, train/loss=1.990] Epoch 0: | | 798/? [02:19<00:00, 5.71it/s, train/loss=1.990] Epoch 0: | | 798/? [02:19<00:00, 5.71it/s, train/loss=19.80] Epoch 0: | | 799/? [02:19<00:00, 5.72it/s, train/loss=19.80] Epoch 0: | | 799/? [02:19<00:00, 5.72it/s, train/loss=1.960] Epoch 0: | | 800/? [02:20<00:00, 5.71it/s, train/loss=1.960] Epoch 0: | | 800/? [02:20<00:00, 5.71it/s, train/loss=19.80] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:00, 65.46it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:01, 31.53it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:00, 38.31it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:00, 40.70it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:00, 37.31it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:00, 40.04it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:00, 42.57it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:00, 44.78it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:00, 46.68it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:00, 48.30it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:00, 49.68it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:00<00:00, 50.92it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:00<00:00, 51.66it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:00<00:00, 52.59it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:00<00:00, 53.46it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:00<00:00, 54.25it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:00<00:00, 54.95it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:00<00:00, 55.61it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:00<00:00, 56.23it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:00<00:00, 56.76it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:00<00:00, 57.23it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:00<00:00, 57.70it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:00<00:00, 58.15it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:00<00:00, 56.91it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:00<00:00, 57.10it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:00<00:00, 57.49it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:00<00:00, 57.87it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:00<00:00, 58.21it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:00<00:00, 58.55it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:00<00:00, 58.87it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:00<00:00, 59.02it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:00<00:00, 59.31it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:00<00:00, 59.58it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:00<00:00, 59.84it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:00<00:00, 60.09it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:00<00:00, 60.31it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:00<00:00, 60.51it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:00<00:00, 60.69it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:00<00:00, 60.86it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:00<00:00, 61.03it/s] Epoch 0: | | 800/? [02:21<00:00, 5.65it/s, train/loss=19.80] `Trainer.fit` stopped: `max_steps=800` reached. Epoch 0: | | 800/? [02:21<00:00, 5.65it/s, train/loss=19.80] Epoch 0: | | 800/? [02:21<00:00, 5.64it/s, train/loss=19.80] [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 64, 64, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 64, 64]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Testing: | | 0/? [00:00<?, ?it/s] Testing: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 1%| | 1/120 [00:00<00:01, 63.71it/s] Testing DataLoader 0: 2%|▏ | 2/120 [00:00<00:01, 65.37it/s] Testing DataLoader 0: 2%|▎ | 3/120 [00:00<00:01, 67.23it/s] Testing DataLoader 0: 3%|▎ | 4/120 [00:00<00:01, 68.26it/s] Testing DataLoader 0: 4%|▍ | 5/120 [00:00<00:01, 68.84it/s] Testing DataLoader 0: 5%|▌ | 6/120 [00:00<00:01, 68.90it/s] Testing DataLoader 0: 6%|▌ | 7/120 [00:00<00:01, 69.07it/s] Testing DataLoader 0: 7%|▋ | 8/120 [00:00<00:01, 69.10it/s] Testing DataLoader 0: 8%|▊ | 9/120 [00:00<00:01, 66.13it/s] Testing DataLoader 0: 8%|▊ | 10/120 [00:00<00:01, 60.76it/s] Testing DataLoader 0: 9%|▉ | 11/120 [00:00<00:01, 61.49it/s] Testing DataLoader 0: 10%|█ | 12/120 [00:00<00:01, 62.13it/s] Testing DataLoader 0: 11%|█ | 13/120 [00:00<00:01, 62.68it/s] Testing DataLoader 0: 12%|█▏ | 14/120 [00:00<00:01, 63.19it/s] Testing DataLoader 0: 12%|█▎ | 15/120 [00:00<00:01, 63.63it/s] Testing DataLoader 0: 13%|█▎ | 16/120 [00:00<00:01, 63.97it/s] Testing DataLoader 0: 14%|█▍ | 17/120 [00:00<00:01, 64.28it/s] Testing DataLoader 0: 15%|█▌ | 18/120 [00:00<00:01, 64.59it/s] Testing DataLoader 0: 16%|█▌ | 19/120 [00:00<00:01, 64.89it/s] Testing DataLoader 0: 17%|█▋ | 20/120 [00:00<00:01, 65.16it/s] Testing DataLoader 0: 18%|█▊ | 21/120 [00:00<00:01, 65.39it/s] Testing DataLoader 0: 18%|█▊ | 22/120 [00:00<00:01, 61.40it/s] Testing DataLoader 0: 19%|█▉ | 23/120 [00:00<00:01, 58.31it/s] Testing DataLoader 0: 20%|██ | 24/120 [00:00<00:01, 55.72it/s] Testing DataLoader 0: 21%|██ | 25/120 [00:00<00:01, 53.55it/s] Testing DataLoader 0: 22%|██▏ | 26/120 [00:00<00:01, 54.03it/s] Testing DataLoader 0: 22%|██▎ | 27/120 [00:00<00:01, 54.49it/s] Testing DataLoader 0: 23%|██▎ | 28/120 [00:00<00:01, 54.93it/s] Testing DataLoader 0: 24%|██▍ | 29/120 [00:00<00:01, 55.35it/s] Testing DataLoader 0: 25%|██▌ | 30/120 [00:00<00:01, 55.73it/s] Testing DataLoader 0: 26%|██▌ | 31/120 [00:00<00:01, 56.11it/s] Testing DataLoader 0: 27%|██▋ | 32/120 [00:00<00:01, 56.46it/s] Testing DataLoader 0: 28%|██▊ | 33/120 [00:00<00:01, 56.81it/s] Testing DataLoader 0: 28%|██▊ | 34/120 [00:00<00:01, 57.14it/s] Testing DataLoader 0: 29%|██▉ | 35/120 [00:00<00:01, 57.46it/s] Testing DataLoader 0: 30%|███ | 36/120 [00:00<00:01, 57.75it/s] Testing DataLoader 0: 31%|███ | 37/120 [00:00<00:01, 58.04it/s] Testing DataLoader 0: 32%|███▏ | 38/120 [00:00<00:01, 58.29it/s] Testing DataLoader 0: 32%|███▎ | 39/120 [00:00<00:01, 58.55it/s] Testing DataLoader 0: 33%|███▎ | 40/120 [00:00<00:01, 58.79it/s] Testing DataLoader 0: 34%|███▍ | 41/120 [00:00<00:01, 59.03it/s] Testing DataLoader 0: 35%|███▌ | 42/120 [00:00<00:01, 59.25it/s] Testing DataLoader 0: 36%|███▌ | 43/120 [00:00<00:01, 59.47it/s] Testing DataLoader 0: 37%|███▋ | 44/120 [00:00<00:01, 59.68it/s] Testing DataLoader 0: 38%|███▊ | 45/120 [00:00<00:01, 59.84it/s] Testing DataLoader 0: 38%|███▊ | 46/120 [00:00<00:01, 60.04it/s] Testing DataLoader 0: 39%|███▉ | 47/120 [00:00<00:01, 60.22it/s] Testing DataLoader 0: 40%|████ | 48/120 [00:00<00:01, 60.40it/s] Testing DataLoader 0: 41%|████ | 49/120 [00:00<00:01, 60.57it/s] Testing DataLoader 0: 42%|████▏ | 50/120 [00:00<00:01, 60.74it/s] Testing DataLoader 0: 42%|████▎ | 51/120 [00:00<00:01, 60.90it/s] Testing DataLoader 0: 43%|████▎ | 52/120 [00:00<00:01, 60.98it/s] Testing DataLoader 0: 44%|████▍ | 53/120 [00:00<00:01, 61.13it/s] Testing DataLoader 0: 45%|████▌ | 54/120 [00:00<00:01, 61.28it/s] Testing DataLoader 0: 46%|████▌ | 55/120 [00:00<00:01, 61.42it/s] Testing DataLoader 0: 47%|████▋ | 56/120 [00:00<00:01, 61.56it/s] Testing DataLoader 0: 48%|████▊ | 57/120 [00:00<00:01, 61.69it/s] Testing DataLoader 0: 48%|████▊ | 58/120 [00:00<00:01, 61.83it/s] Testing DataLoader 0: 49%|████▉ | 59/120 [00:00<00:00, 61.95it/s] Testing DataLoader 0: 50%|█████ | 60/120 [00:00<00:00, 62.08it/s] Testing DataLoader 0: 51%|█████ | 61/120 [00:00<00:00, 62.20it/s] Testing DataLoader 0: 52%|█████▏ | 62/120 [00:00<00:00, 62.32it/s] Testing DataLoader 0: 52%|█████▎ | 63/120 [00:01<00:00, 62.44it/s] Testing DataLoader 0: 53%|█████▎ | 64/120 [00:01<00:00, 62.55it/s] Testing DataLoader 0: 54%|█████▍ | 65/120 [00:01<00:00, 62.65it/s] Testing DataLoader 0: 55%|█████▌ | 66/120 [00:01<00:00, 62.76it/s] Testing DataLoader 0: 56%|█████▌ | 67/120 [00:01<00:00, 62.85it/s] Testing DataLoader 0: 57%|█████▋ | 68/120 [00:01<00:00, 62.95it/s] Testing DataLoader 0: 57%|█████▊ | 69/120 [00:01<00:00, 63.04it/s] Testing DataLoader 0: 58%|█████▊ | 70/120 [00:01<00:00, 63.14it/s] Testing DataLoader 0: 59%|█████▉ | 71/120 [00:01<00:00, 63.23it/s] Testing DataLoader 0: 60%|██████ | 72/120 [00:01<00:00, 63.01it/s] Testing DataLoader 0: 61%|██████ | 73/120 [00:01<00:00, 62.79it/s] Testing DataLoader 0: 62%|██████▏ | 74/120 [00:01<00:00, 61.71it/s] Testing DataLoader 0: 62%|██████▎ | 75/120 [00:01<00:00, 60.96it/s] Testing DataLoader 0: 63%|██████▎ | 76/120 [00:01<00:00, 60.23it/s] Testing DataLoader 0: 64%|██████▍ | 77/120 [00:01<00:00, 60.32it/s] Testing DataLoader 0: 65%|██████▌ | 78/120 [00:01<00:00, 60.42it/s] Testing DataLoader 0: 66%|██████▌ | 79/120 [00:01<00:00, 60.53it/s] Testing DataLoader 0: 67%|██████▋ | 80/120 [00:01<00:00, 60.47it/s] Testing DataLoader 0: 68%|██████▊ | 81/120 [00:01<00:00, 60.57it/s] Testing DataLoader 0: 68%|██████▊ | 82/120 [00:01<00:00, 60.67it/s] Testing DataLoader 0: 69%|██████▉ | 83/120 [00:01<00:00, 60.75it/s] Testing DataLoader 0: 70%|███████ | 84/120 [00:01<00:00, 60.84it/s] Testing DataLoader 0: 71%|███████ | 85/120 [00:01<00:00, 60.93it/s] Testing DataLoader 0: 72%|███████▏ | 86/120 [00:01<00:00, 61.02it/s] Testing DataLoader 0: 72%|███████▎ | 87/120 [00:01<00:00, 61.11it/s] Testing DataLoader 0: 73%|███████▎ | 88/120 [00:01<00:00, 61.21it/s] Testing DataLoader 0: 74%|███████▍ | 89/120 [00:01<00:00, 61.30it/s] Testing DataLoader 0: 75%|███████▌ | 90/120 [00:01<00:00, 61.39it/s] Testing DataLoader 0: 76%|███████▌ | 91/120 [00:01<00:00, 61.48it/s] Testing DataLoader 0: 77%|███████▋ | 92/120 [00:01<00:00, 61.55it/s] Testing DataLoader 0: 78%|███████▊ | 93/120 [00:01<00:00, 61.61it/s] Testing DataLoader 0: 78%|███████▊ | 94/120 [00:01<00:00, 61.68it/s] Testing DataLoader 0: 79%|███████▉ | 95/120 [00:01<00:00, 61.76it/s] Testing DataLoader 0: 80%|████████ | 96/120 [00:01<00:00, 61.84it/s] Testing DataLoader 0: 81%|████████ | 97/120 [00:01<00:00, 61.91it/s] Testing DataLoader 0: 82%|████████▏ | 98/120 [00:01<00:00, 61.99it/s] Testing DataLoader 0: 82%|████████▎ | 99/120 [00:01<00:00, 62.06it/s] Testing DataLoader 0: 83%|████████▎ | 100/120 [00:01<00:00, 62.13it/s] Testing DataLoader 0: 84%|████████▍ | 101/120 [00:01<00:00, 62.21it/s] Testing DataLoader 0: 85%|████████▌ | 102/120 [00:01<00:00, 62.28it/s] Testing DataLoader 0: 86%|████████▌ | 103/120 [00:01<00:00, 62.35it/s] Testing DataLoader 0: 87%|████████▋ | 104/120 [00:01<00:00, 62.41it/s] Testing DataLoader 0: 88%|████████▊ | 105/120 [00:01<00:00, 62.46it/s] Testing DataLoader 0: 88%|████████▊ | 106/120 [00:01<00:00, 62.52it/s] Testing DataLoader 0: 89%|████████▉ | 107/120 [00:01<00:00, 62.58it/s] Testing DataLoader 0: 90%|█████████ | 108/120 [00:01<00:00, 62.64it/s] Testing DataLoader 0: 91%|█████████ | 109/120 [00:01<00:00, 62.70it/s] Testing DataLoader 0: 92%|█████████▏| 110/120 [00:01<00:00, 62.76it/s] Testing DataLoader 0: 92%|█████████▎| 111/120 [00:01<00:00, 62.82it/s] Testing DataLoader 0: 93%|█████████▎| 112/120 [00:01<00:00, 62.88it/s] Testing DataLoader 0: 94%|█████████▍| 113/120 [00:01<00:00, 62.92it/s] Testing DataLoader 0: 95%|█████████▌| 114/120 [00:01<00:00, 62.98it/s] Testing DataLoader 0: 96%|█████████▌| 115/120 [00:01<00:00, 63.04it/s] Testing DataLoader 0: 97%|█████████▋| 116/120 [00:01<00:00, 63.09it/s] Testing DataLoader 0: 98%|█████████▊| 117/120 [00:01<00:00, 63.14it/s] Testing DataLoader 0: 98%|█████████▊| 118/120 [00:01<00:00, 63.19it/s] Testing DataLoader 0: 99%|█████████▉| 119/120 [00:01<00:00, 63.24it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:01<00:00, 63.31it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:02<00:00, 48.06it/s] Test results saved to outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/save Running step 2: NeuS {'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}, 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 128, 'width': 128, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': True, 'requires_normal': False, 'random_camera': {'height': 128, 'width': 128, 'batch_size': 1, 'eval_height': 256, 'eval_width': 256, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'data_type': 'dreamcraft3d-single-image-datamodule', 'description': '', 'exp_dir': 'outputs/dreamcraft3d-coarse-neus', 'exp_root_dir': 'outputs', 'n_gpus': 1, 'name': 'dreamcraft3d-coarse-neus', 'resume': None, 'seed': 0, 'system': {'stage': 'coarse', 'geometry_type': 'implicit-sdf', 'geometry': {'radius': 2.0, 'normal_type': 'finite_difference', 'sdf_bias': 'sphere', 'sdf_bias_params': 0.5, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378, 'start_level': 8, 'start_step': 2000, 'update_steps': 500}}, 'material_type': 'no-material', 'material': {'requires_normal': True}, 'background_type': 'solid-color-background', 'renderer_type': 'neus-volume-renderer', 'renderer': {'radius': 2.0, 'num_samples_per_ray': 512, 'cos_anneal_end_steps': 800, 'eval_chunk_size': 8192}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': 0, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.05, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_orient': 10.0, 'lambda_sparsity': 0.1, 'lambda_opaque': 0.1, 'lambda_clip': 0.0, 'lambda_eikonal': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'betas': [0.9, 0.99], 'eps': 1e-15}, 'params': {'geometry.encoding': {'lr': 0.01}, 'geometry.sdf_network': {'lr': 0.001}, 'geometry.feature_network': {'lr': 0.001}, 'renderer': {'lr': 0.001}}}, 'weights': 'outputs/dreamcraft3d-coarse-nerf/replicate_user@20240222-134035/ckpts/last.ckpt'}, 'system_type': 'dreamcraft3d-system', 'tag': 'replicate_user', 'timestamp': '@20240222-134422', 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': '16-mixed'}, 'trial_dir': 'outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422', 'trial_name': 'replicate_user@20240222-134422', 'use_timestamp': True} Loading Deep Floyd ... Couldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d74fb6-298d8d076e9d29f944cbc198;0e1233af-4a94-4850-a984-d00aa82f1e06) Cannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0. Repo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it.. Will try to load from local cache. Loading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s] Loading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 4.81it/s] Loading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 12.46it/s] Loaded Deep Floyd! Loading Stable Zero123 ... get obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion LatentDiffusion: Running in eps-prediction mode DiffusionWrapper has 859.53 M params. Keeping EMAs of 688. making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels Loaded Stable Zero123! Using prompt [A green leafy plant in a striped terracotta pot] and negative prompt [] Using view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view] loaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth Using 16bit Automatic Mixed Precision (AMP) GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128]) [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params ---------------------------------------------------- 0 | geometry | ImplicitSDF | 12.6 M 1 | material | NoMaterial | 0 2 | background | SolidColorBackground | 0 3 | renderer | NeuSVolumeRenderer | 1 ---------------------------------------------------- 12.6 M Trainable params 0 Non-trainable params 12.6 M Total params 50.417 Total estimated model params size (MB) Validation results will be saved to outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/save Training: | | 0/? [00:00<?, ?it/s] Training: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 1/? [00:00<00:00, 8.63it/s] Epoch 0: | | 1/? [00:00<00:00, 8.58it/s, train/loss=82.50] Epoch 0: | | 2/? [00:00<00:00, 4.07it/s, train/loss=82.50] Epoch 0: | | 2/? [00:00<00:00, 4.07it/s, train/loss=13.30] Epoch 0: | | 3/? [00:00<00:00, 5.11it/s, train/loss=13.30] Epoch 0: | | 3/? [00:00<00:00, 5.10it/s, train/loss=70.40] Epoch 0: | | 4/? [00:00<00:00, 4.22it/s, train/loss=70.40] Epoch 0: | | 4/? [00:00<00:00, 4.21it/s, train/loss=15.60] Epoch 0: | | 5/? [00:01<00:00, 4.76it/s, train/loss=15.60] Epoch 0: | | 5/? [00:01<00:00, 4.75it/s, train/loss=61.30] Epoch 0: | | 6/? [00:01<00:00, 4.18it/s, train/loss=61.30] Epoch 0: | | 6/? [00:01<00:00, 4.17it/s, train/loss=14.90] Epoch 0: | | 7/? [00:01<00:00, 4.39it/s, train/loss=14.90] Epoch 0: | | 7/? [00:01<00:00, 4.38it/s, train/loss=53.20] Epoch 0: | | 8/? [00:02<00:00, 3.95it/s, train/loss=53.20] Epoch 0: | | 8/? [00:02<00:00, 3.95it/s, train/loss=29.60] Epoch 0: | | 9/? [00:02<00:00, 4.12it/s, train/loss=29.60] Epoch 0: | | 9/? [00:02<00:00, 4.12it/s, train/loss=45.60] Epoch 0: | | 10/? [00:02<00:00, 3.83it/s, train/loss=45.60] Epoch 0: | | 10/? [00:02<00:00, 3.83it/s, train/loss=42.30] Epoch 0: | | 11/? [00:02<00:00, 3.97it/s, train/loss=42.30] Epoch 0: | | 11/? [00:02<00:00, 3.97it/s, train/loss=39.00] Epoch 0: | | 12/? [00:03<00:00, 3.77it/s, train/loss=39.00] Epoch 0: | | 12/? [00:03<00:00, 3.77it/s, train/loss=23.80] Epoch 0: | | 13/? [00:03<00:00, 3.88it/s, train/loss=23.80] Epoch 0: | | 13/? [00:03<00:00, 3.88it/s, train/loss=33.10] Epoch 0: | | 14/? [00:03<00:00, 3.70it/s, train/loss=33.10] Epoch 0: | | 14/? [00:03<00:00, 3.70it/s, train/loss=28.80] Epoch 0: | | 15/? [00:03<00:00, 3.88it/s, train/loss=28.80] Epoch 0: | | 15/? [00:03<00:00, 3.88it/s, train/loss=28.20] Epoch 0: | | 16/? [00:04<00:00, 3.81it/s, train/loss=28.20] Epoch 0: | | 16/? [00:04<00:00, 3.81it/s, train/loss=52.40] Epoch 0: | | 17/? [00:04<00:00, 3.97it/s, train/loss=52.40] Epoch 0: | | 17/? [00:04<00:00, 3.97it/s, train/loss=24.40] Epoch 0: | | 18/? [00:04<00:00, 3.90it/s, train/loss=24.40] Epoch 0: | | 18/? [00:04<00:00, 3.90it/s, train/loss=14.60] Epoch 0: | | 19/? [00:04<00:00, 4.05it/s, train/loss=14.60] Epoch 0: | | 19/? [00:04<00:00, 4.04it/s, train/loss=21.40] Epoch 0: | | 20/? [00:05<00:00, 3.98it/s, train/loss=21.40] Epoch 0: | | 20/? [00:05<00:00, 3.98it/s, train/loss=11.20] Epoch 0: | | 21/? [00:05<00:00, 4.11it/s, train/loss=11.20] Epoch 0: | | 21/? [00:05<00:00, 4.11it/s, train/loss=19.20] Epoch 0: | | 22/? [00:05<00:00, 4.05it/s, train/loss=19.20] Epoch 0: | | 22/? [00:05<00:00, 4.05it/s, train/loss=45.90] Epoch 0: | | 23/? [00:05<00:00, 4.18it/s, train/loss=45.90] Epoch 0: | | 23/? [00:05<00:00, 4.18it/s, train/loss=17.60] Epoch 0: | | 24/? [00:05<00:00, 4.12it/s, train/loss=17.60] Epoch 0: | | 24/? [00:05<00:00, 4.12it/s, train/loss=15.40] Epoch 0: | | 25/? [00:05<00:00, 4.24it/s, train/loss=15.40] Epoch 0: | | 25/? [00:05<00:00, 4.24it/s, train/loss=16.30] Epoch 0: | | 26/? [00:06<00:00, 4.18it/s, train/loss=16.30] Epoch 0: | | 26/? [00:06<00:00, 4.18it/s, train/loss=29.90] Epoch 0: | | 27/? [00:06<00:00, 4.30it/s, train/loss=29.90] Epoch 0: | | 27/? [00:06<00:00, 4.30it/s, train/loss=15.40] Epoch 0: | | 28/? [00:06<00:00, 4.24it/s, train/loss=15.40] Epoch 0: | | 28/? [00:06<00:00, 4.24it/s, train/loss=13.20] Epoch 0: | | 29/? [00:06<00:00, 4.36it/s, train/loss=13.20] Epoch 0: | | 29/? [00:06<00:00, 4.36it/s, train/loss=14.50] Epoch 0: | | 30/? [00:06<00:00, 4.30it/s, train/loss=14.50] Epoch 0: | | 30/? [00:06<00:00, 4.30it/s, train/loss=6.360] Epoch 0: | | 31/? [00:07<00:00, 4.41it/s, train/loss=6.360] Epoch 0: | | 31/? [00:07<00:00, 4.41it/s, train/loss=13.70] Epoch 0: | | 32/? [00:07<00:00, 4.36it/s, train/loss=13.70] Epoch 0: | | 32/? [00:07<00:00, 4.36it/s, train/loss=14.30] Epoch 0: | | 33/? [00:07<00:00, 4.41it/s, train/loss=14.30] Epoch 0: | | 33/? [00:07<00:00, 4.41it/s, train/loss=13.00] Epoch 0: | | 34/? [00:07<00:00, 4.36it/s, train/loss=13.00] Epoch 0: | | 34/? [00:07<00:00, 4.36it/s, train/loss=12.60] Epoch 0: | | 35/? [00:07<00:00, 4.46it/s, train/loss=12.60] Epoch 0: | | 35/? [00:07<00:00, 4.45it/s, train/loss=12.40] Epoch 0: | | 36/? [00:08<00:00, 4.41it/s, train/loss=12.40] Epoch 0: | | 36/? [00:08<00:00, 4.41it/s, train/loss=16.80] Epoch 0: | | 37/? [00:08<00:00, 4.50it/s, train/loss=16.80] Epoch 0: | | 37/? [00:08<00:00, 4.50it/s, train/loss=11.90] Epoch 0: | | 38/? [00:08<00:00, 4.45it/s, train/loss=11.90] Epoch 0: | | 38/? [00:08<00:00, 4.45it/s, train/loss=52.20] Epoch 0: | | 39/? [00:08<00:00, 4.54it/s, train/loss=52.20] Epoch 0: | | 39/? [00:08<00:00, 4.54it/s, train/loss=11.30] Epoch 0: | | 40/? [00:08<00:00, 4.50it/s, train/loss=11.30] Epoch 0: | | 40/? [00:08<00:00, 4.49it/s, train/loss=16.60] Epoch 0: | | 41/? [00:08<00:00, 4.58it/s, train/loss=16.60] Epoch 0: | | 41/? [00:08<00:00, 4.58it/s, train/loss=10.90] Epoch 0: | | 42/? [00:09<00:00, 4.54it/s, train/loss=10.90] Epoch 0: | | 42/? [00:09<00:00, 4.54it/s, train/loss=24.50] Epoch 0: | | 43/? [00:09<00:00, 4.61it/s, train/loss=24.50] Epoch 0: | | 43/? [00:09<00:00, 4.61it/s, train/loss=10.50] Epoch 0: | | 44/? [00:09<00:00, 4.57it/s, train/loss=10.50] Epoch 0: | | 44/? [00:09<00:00, 4.57it/s, train/loss=35.50] Epoch 0: | | 45/? [00:09<00:00, 4.65it/s, train/loss=35.50] Epoch 0: | | 45/? [00:09<00:00, 4.65it/s, train/loss=10.10] Epoch 0: | | 46/? [00:09<00:00, 4.61it/s, train/loss=10.10] Epoch 0: | | 46/? [00:09<00:00, 4.61it/s, train/loss=26.20] Epoch 0: | | 47/? [00:10<00:00, 4.68it/s, train/loss=26.20] Epoch 0: | | 47/? [00:10<00:00, 4.68it/s, train/loss=9.790] Epoch 0: | | 48/? [00:10<00:00, 4.64it/s, train/loss=9.790] Epoch 0: | | 48/? [00:10<00:00, 4.64it/s, train/loss=14.20] Epoch 0: | | 49/? [00:10<00:00, 4.72it/s, train/loss=14.20] Epoch 0: | | 49/? [00:10<00:00, 4.72it/s, train/loss=9.460] Epoch 0: | | 50/? [00:10<00:00, 4.68it/s, train/loss=9.460] Epoch 0: | | 50/? [00:10<00:00, 4.68it/s, train/loss=31.70] Epoch 0: | | 51/? [00:10<00:00, 4.75it/s, train/loss=31.70] Epoch 0: | | 51/? [00:10<00:00, 4.75it/s, train/loss=9.160] Epoch 0: | | 52/? [00:11<00:00, 4.71it/s, train/loss=9.160] Epoch 0: | | 52/? [00:11<00:00, 4.71it/s, train/loss=24.50] Epoch 0: | | 53/? [00:11<00:00, 4.78it/s, train/loss=24.50] Epoch 0: | | 53/? [00:11<00:00, 4.78it/s, train/loss=8.860] Epoch 0: | | 54/? [00:11<00:00, 4.74it/s, train/loss=8.860] Epoch 0: | | 54/? [00:11<00:00, 4.74it/s, train/loss=22.90] Epoch 0: | | 55/? [00:11<00:00, 4.81it/s, train/loss=22.90] Epoch 0: | | 55/? [00:11<00:00, 4.81it/s, train/loss=8.610] Epoch 0: | | 56/? [00:11<00:00, 4.77it/s, train/loss=8.610] Epoch 0: | | 56/? [00:11<00:00, 4.77it/s, train/loss=50.00] Epoch 0: | | 57/? [00:11<00:00, 4.83it/s, train/loss=50.00] Epoch 0: | | 57/? [00:11<00:00, 4.83it/s, train/loss=8.320] Epoch 0: | | 58/? [00:12<00:00, 4.79it/s, train/loss=8.320] Epoch 0: | | 58/? [00:12<00:00, 4.79it/s, train/loss=10.20] Epoch 0: | | 59/? [00:12<00:00, 4.86it/s, train/loss=10.20] Epoch 0: | | 59/? [00:12<00:00, 4.86it/s, train/loss=8.120] Epoch 0: | | 60/? [00:12<00:00, 4.82it/s, train/loss=8.120] Epoch 0: | | 60/? [00:12<00:00, 4.82it/s, train/loss=25.00] Epoch 0: | | 61/? [00:12<00:00, 4.88it/s, train/loss=25.00] Epoch 0: | | 61/? [00:12<00:00, 4.88it/s, train/loss=7.890] Epoch 0: | | 62/? [00:12<00:00, 4.85it/s, train/loss=7.890] Epoch 0: | | 62/? [00:12<00:00, 4.85it/s, train/loss=39.10] Epoch 0: | | 63/? [00:12<00:00, 4.91it/s, train/loss=39.10] Epoch 0: | | 63/? [00:12<00:00, 4.91it/s, train/loss=7.680] Epoch 0: | | 64/? [00:13<00:00, 4.87it/s, train/loss=7.680] Epoch 0: | | 64/? [00:13<00:00, 4.87it/s, train/loss=19.80] Epoch 0: | | 65/? [00:13<00:00, 4.93it/s, train/loss=19.80] Epoch 0: | | 65/? [00:13<00:00, 4.93it/s, train/loss=7.520] Epoch 0: | | 66/? [00:13<00:00, 4.89it/s, train/loss=7.520] Epoch 0: | | 66/? [00:13<00:00, 4.89it/s, train/loss=25.30] Epoch 0: | | 67/? [00:13<00:00, 4.95it/s, train/loss=25.30] Epoch 0: | | 67/? [00:13<00:00, 4.95it/s, train/loss=7.340] Epoch 0: | | 68/? [00:13<00:00, 4.92it/s, train/loss=7.340] Epoch 0: | | 68/? [00:13<00:00, 4.92it/s, train/loss=26.40] Epoch 0: | | 69/? [00:13<00:00, 4.97it/s, train/loss=26.40] Epoch 0: | | 69/? [00:13<00:00, 4.97it/s, train/loss=7.160] Epoch 0: | | 70/? [00:14<00:00, 4.94it/s, train/loss=7.160] Epoch 0: | | 70/? [00:14<00:00, 4.94it/s, train/loss=28.30] Epoch 0: | | 71/? [00:14<00:00, 4.99it/s, train/loss=28.30] Epoch 0: | | 71/? [00:14<00:00, 4.99it/s, train/loss=6.960] Epoch 0: | | 72/? [00:14<00:00, 4.96it/s, train/loss=6.960] Epoch 0: | | 72/? [00:14<00:00, 4.96it/s, train/loss=19.70] Epoch 0: | | 73/? [00:14<00:00, 5.01it/s, train/loss=19.70] Epoch 0: | | 73/? [00:14<00:00, 5.01it/s, train/loss=6.810] Epoch 0: | | 74/? [00:14<00:00, 4.98it/s, train/loss=6.810] Epoch 0: | | 74/? [00:14<00:00, 4.98it/s, train/loss=25.40] Epoch 0: | | 75/? [00:14<00:00, 5.03it/s, train/loss=25.40] Epoch 0: | | 75/? [00:14<00:00, 5.03it/s, train/loss=6.630] Epoch 0: | | 76/? [00:15<00:00, 5.00it/s, train/loss=6.630] Epoch 0: | | 76/? [00:15<00:00, 5.00it/s, train/loss=38.60] Epoch 0: | | 77/? [00:15<00:00, 5.05it/s, train/loss=38.60] Epoch 0: | | 77/? [00:15<00:00, 5.05it/s, train/loss=6.480] Epoch 0: | | 78/? [00:15<00:00, 5.02it/s, train/loss=6.480] Epoch 0: | | 78/? [00:15<00:00, 5.02it/s, train/loss=13.70] Epoch 0: | | 79/? [00:15<00:00, 5.07it/s, train/loss=13.70] Epoch 0: | | 79/? [00:15<00:00, 5.07it/s, train/loss=6.330] Epoch 0: | | 80/? [00:15<00:00, 5.04it/s, train/loss=6.330] Epoch 0: | | 80/? [00:15<00:00, 5.03it/s, train/loss=32.80] Epoch 0: | | 81/? [00:15<00:00, 5.08it/s, train/loss=32.80] Epoch 0: | | 81/? [00:15<00:00, 5.08it/s, train/loss=6.160] Epoch 0: | | 82/? [00:16<00:00, 5.05it/s, train/loss=6.160] Epoch 0: | | 82/? [00:16<00:00, 5.05it/s, train/loss=79.20] Epoch 0: | | 83/? [00:16<00:00, 5.10it/s, train/loss=79.20] Epoch 0: | | 83/? [00:16<00:00, 5.10it/s, train/loss=6.010] Epoch 0: | | 84/? [00:16<00:00, 5.07it/s, train/loss=6.010] Epoch 0: | | 84/? [00:16<00:00, 5.07it/s, train/loss=9.970] Epoch 0: | | 85/? [00:16<00:00, 5.11it/s, train/loss=9.970] Epoch 0: | | 85/? [00:16<00:00, 5.11it/s, train/loss=6.020] Epoch 0: | | 86/? [00:16<00:00, 5.08it/s, train/loss=6.020] Epoch 0: | | 86/? [00:16<00:00, 5.08it/s, train/loss=9.380] Epoch 0: | | 87/? [00:16<00:00, 5.13it/s, train/loss=9.380] Epoch 0: | | 87/? [00:16<00:00, 5.13it/s, train/loss=5.970] Epoch 0: | | 88/? [00:17<00:00, 5.10it/s, train/loss=5.970] Epoch 0: | | 88/? [00:17<00:00, 5.10it/s, train/loss=43.40] Epoch 0: | | 89/? [00:17<00:00, 5.14it/s, train/loss=43.40] Epoch 0: | | 89/? [00:17<00:00, 5.14it/s, train/loss=5.850] Epoch 0: | | 90/? [00:17<00:00, 5.11it/s, train/loss=5.850] Epoch 0: | | 90/? [00:17<00:00, 5.11it/s, train/loss=31.80] Epoch 0: | | 91/? [00:17<00:00, 5.16it/s, train/loss=31.80] Epoch 0: | | 91/? [00:17<00:00, 5.16it/s, train/loss=5.750] Epoch 0: | | 92/? [00:17<00:00, 5.13it/s, train/loss=5.750] Epoch 0: | | 92/? [00:17<00:00, 5.13it/s, train/loss=30.60] Epoch 0: | | 93/? [00:17<00:00, 5.17it/s, train/loss=30.60] Epoch 0: | | 93/? [00:17<00:00, 5.17it/s, train/loss=5.680] Epoch 0: | | 94/? [00:18<00:00, 5.14it/s, train/loss=5.680] Epoch 0: | | 94/? [00:18<00:00, 5.14it/s, train/loss=7.830] Epoch 0: | | 95/? [00:18<00:00, 5.18it/s, train/loss=7.830] Epoch 0: | | 95/? [00:18<00:00, 5.18it/s, train/loss=5.570] Epoch 0: | | 96/? [00:18<00:00, 5.16it/s, train/loss=5.570] Epoch 0: | | 96/? [00:18<00:00, 5.16it/s, train/loss=74.70] Epoch 0: | | 97/? [00:18<00:00, 5.20it/s, train/loss=74.70] Epoch 0: | | 97/? [00:18<00:00, 5.20it/s, train/loss=5.550] Epoch 0: | | 98/? [00:18<00:00, 5.17it/s, train/loss=5.550] Epoch 0: | | 98/? [00:18<00:00, 5.17it/s, train/loss=28.10] Epoch 0: | | 99/? [00:18<00:00, 5.21it/s, train/loss=28.10] Epoch 0: | | 99/? [00:18<00:00, 5.21it/s, train/loss=5.500] Epoch 0: | | 100/? [00:19<00:00, 5.18it/s, train/loss=5.500] Epoch 0: | | 100/? [00:19<00:00, 5.18it/s, train/loss=26.30] Epoch 0: | | 101/? [00:19<00:00, 5.22it/s, train/loss=26.30] Epoch 0: | | 101/? [00:19<00:00, 5.22it/s, train/loss=5.460] Epoch 0: | | 102/? [00:19<00:00, 5.20it/s, train/loss=5.460] Epoch 0: | | 102/? [00:19<00:00, 5.20it/s, train/loss=18.60] Epoch 0: | | 103/? [00:19<00:00, 5.24it/s, train/loss=18.60] Epoch 0: | | 103/? [00:19<00:00, 5.24it/s, train/loss=5.390] Epoch 0: | | 104/? [00:19<00:00, 5.21it/s, train/loss=5.390] Epoch 0: | | 104/? [00:19<00:00, 5.21it/s, train/loss=35.60] Epoch 0: | | 105/? [00:20<00:00, 5.25it/s, train/loss=35.60] Epoch 0: | | 105/? [00:20<00:00, 5.25it/s, train/loss=5.390] Epoch 0: | | 106/? [00:20<00:00, 5.22it/s, train/loss=5.390] Epoch 0: | | 106/? [00:20<00:00, 5.22it/s, train/loss=27.10] Epoch 0: | | 107/? [00:20<00:00, 5.26it/s, train/loss=27.10] Epoch 0: | | 107/? [00:20<00:00, 5.26it/s, train/loss=5.360] Epoch 0: | | 108/? [00:20<00:00, 5.23it/s, train/loss=5.360] Epoch 0: | | 108/? [00:20<00:00, 5.23it/s, train/loss=19.40] Epoch 0: | | 109/? [00:20<00:00, 5.27it/s, train/loss=19.40] Epoch 0: | | 109/? [00:20<00:00, 5.27it/s, train/loss=5.320] Epoch 0: | | 110/? [00:20<00:00, 5.24it/s, train/loss=5.320] Epoch 0: | | 110/? [00:20<00:00, 5.24it/s, train/loss=11.00] Epoch 0: | | 111/? [00:21<00:00, 5.28it/s, train/loss=11.00] Epoch 0: | | 111/? [00:21<00:00, 5.28it/s, train/loss=5.210] Epoch 0: | | 112/? [00:21<00:00, 5.25it/s, train/loss=5.210] Epoch 0: | | 112/? [00:21<00:00, 5.25it/s, train/loss=31.30] Epoch 0: | | 113/? [00:21<00:00, 5.29it/s, train/loss=31.30] Epoch 0: | | 113/? [00:21<00:00, 5.29it/s, train/loss=5.080] Epoch 0: | | 114/? [00:21<00:00, 5.27it/s, train/loss=5.080] Epoch 0: | | 114/? [00:21<00:00, 5.26it/s, train/loss=13.40] Epoch 0: | | 115/? [00:21<00:00, 5.30it/s, train/loss=13.40] Epoch 0: | | 115/? [00:21<00:00, 5.30it/s, train/loss=5.000] Epoch 0: | | 116/? [00:21<00:00, 5.28it/s, train/loss=5.000] Epoch 0: | | 116/? [00:21<00:00, 5.28it/s, train/loss=21.70] Epoch 0: | | 117/? [00:22<00:00, 5.31it/s, train/loss=21.70] Epoch 0: | | 117/? [00:22<00:00, 5.31it/s, train/loss=4.900] Epoch 0: | | 118/? [00:22<00:00, 5.29it/s, train/loss=4.900] Epoch 0: | | 118/? [00:22<00:00, 5.29it/s, train/loss=29.80] Epoch 0: | | 119/? [00:22<00:00, 5.32it/s, train/loss=29.80] Epoch 0: | | 119/? [00:22<00:00, 5.32it/s, train/loss=4.820] Epoch 0: | | 120/? [00:22<00:00, 5.30it/s, train/loss=4.820] Epoch 0: | | 120/? [00:22<00:00, 5.30it/s, train/loss=16.00] Epoch 0: | | 121/? [00:22<00:00, 5.33it/s, train/loss=16.00] Epoch 0: | | 121/? [00:22<00:00, 5.33it/s, train/loss=4.760] Epoch 0: | | 122/? [00:22<00:00, 5.31it/s, train/loss=4.760] Epoch 0: | | 122/? [00:22<00:00, 5.31it/s, train/loss=9.140] Epoch 0: | | 123/? [00:23<00:00, 5.34it/s, train/loss=9.140] Epoch 0: | | 123/? [00:23<00:00, 5.34it/s, train/loss=4.590] Epoch 0: | | 124/? [00:23<00:00, 5.31it/s, train/loss=4.590] Epoch 0: | | 124/? [00:23<00:00, 5.31it/s, train/loss=15.00] Epoch 0: | | 125/? [00:23<00:00, 5.35it/s, train/loss=15.00] Epoch 0: | | 125/? [00:23<00:00, 5.35it/s, train/loss=4.540] Epoch 0: | | 126/? [00:23<00:00, 5.33it/s, train/loss=4.540] Epoch 0: | | 126/? [00:23<00:00, 5.32it/s, train/loss=29.10] Epoch 0: | | 127/? [00:23<00:00, 5.36it/s, train/loss=29.10] Epoch 0: | | 127/? [00:23<00:00, 5.36it/s, train/loss=4.470] Epoch 0: | | 128/? [00:23<00:00, 5.33it/s, train/loss=4.470] Epoch 0: | | 128/? [00:23<00:00, 5.33it/s, train/loss=14.60] Epoch 0: | | 129/? [00:24<00:00, 5.37it/s, train/loss=14.60] Epoch 0: | | 129/? [00:24<00:00, 5.37it/s, train/loss=4.440] Epoch 0: | | 130/? [00:24<00:00, 5.34it/s, train/loss=4.440] Epoch 0: | | 130/? [00:24<00:00, 5.34it/s, train/loss=53.50] Epoch 0: | | 131/? [00:24<00:00, 5.38it/s, train/loss=53.50] Epoch 0: | | 131/? [00:24<00:00, 5.38it/s, train/loss=4.370] Epoch 0: | | 132/? [00:24<00:00, 5.35it/s, train/loss=4.370] Epoch 0: | | 132/? [00:24<00:00, 5.35it/s, train/loss=21.30] Epoch 0: | | 133/? [00:24<00:00, 5.39it/s, train/loss=21.30] Epoch 0: | | 133/? [00:24<00:00, 5.38it/s, train/loss=4.300] Epoch 0: | | 134/? [00:24<00:00, 5.36it/s, train/loss=4.300] Epoch 0: | | 134/? [00:24<00:00, 5.36it/s, train/loss=41.60] Epoch 0: | | 135/? [00:25<00:00, 5.39it/s, train/loss=41.60] Epoch 0: | | 135/? [00:25<00:00, 5.39it/s, train/loss=4.300] Epoch 0: | | 136/? [00:25<00:00, 5.37it/s, train/loss=4.300] Epoch 0: | | 136/? [00:25<00:00, 5.37it/s, train/loss=56.40] Epoch 0: | | 137/? [00:25<00:00, 5.40it/s, train/loss=56.40] Epoch 0: | | 137/? [00:25<00:00, 5.40it/s, train/loss=4.250] Epoch 0: | | 138/? [00:25<00:00, 5.38it/s, train/loss=4.250] Epoch 0: | | 138/? [00:25<00:00, 5.38it/s, train/loss=27.90] Epoch 0: | | 139/? [00:25<00:00, 5.41it/s, train/loss=27.90] Epoch 0: | | 139/? [00:25<00:00, 5.41it/s, train/loss=4.200] Epoch 0: | | 140/? [00:25<00:00, 5.39it/s, train/loss=4.200] Epoch 0: | | 140/? [00:25<00:00, 5.39it/s, train/loss=23.60] Epoch 0: | | 141/? [00:26<00:00, 5.42it/s, train/loss=23.60] Epoch 0: | | 141/? [00:26<00:00, 5.42it/s, train/loss=4.210] Epoch 0: | | 142/? [00:26<00:00, 5.39it/s, train/loss=4.210] Epoch 0: | | 142/? [00:26<00:00, 5.39it/s, train/loss=34.30] Epoch 0: | | 143/? [00:26<00:00, 5.42it/s, train/loss=34.30] Epoch 0: | | 143/? [00:26<00:00, 5.42it/s, train/loss=4.270] Epoch 0: | | 144/? [00:26<00:00, 5.40it/s, train/loss=4.270] Epoch 0: | | 144/? [00:26<00:00, 5.40it/s, train/loss=11.00] Epoch 0: | | 145/? [00:26<00:00, 5.43it/s, train/loss=11.00] Epoch 0: | | 145/? [00:26<00:00, 5.43it/s, train/loss=4.260] Epoch 0: | | 146/? [00:26<00:00, 5.41it/s, train/loss=4.260] Epoch 0: | | 146/? [00:26<00:00, 5.41it/s, train/loss=16.60] Epoch 0: | | 147/? [00:27<00:00, 5.44it/s, train/loss=16.60] Epoch 0: | | 147/? [00:27<00:00, 5.44it/s, train/loss=4.250] Epoch 0: | | 148/? [00:27<00:00, 5.42it/s, train/loss=4.250] Epoch 0: | | 148/? [00:27<00:00, 5.42it/s, train/loss=56.10] Epoch 0: | | 149/? [00:27<00:00, 5.45it/s, train/loss=56.10] Epoch 0: | | 149/? [00:27<00:00, 5.45it/s, train/loss=4.270] Epoch 0: | | 150/? [00:27<00:00, 5.43it/s, train/loss=4.270] Epoch 0: | | 150/? [00:27<00:00, 5.43it/s, train/loss=17.70] Epoch 0: | | 151/? [00:27<00:00, 5.46it/s, train/loss=17.70] Epoch 0: | | 151/? [00:27<00:00, 5.46it/s, train/loss=4.270] Epoch 0: | | 152/? [00:27<00:00, 5.44it/s, train/loss=4.270] Epoch 0: | | 152/? [00:27<00:00, 5.44it/s, train/loss=29.20] Epoch 0: | | 153/? [00:28<00:00, 5.46it/s, train/loss=29.20] Epoch 0: | | 153/? [00:28<00:00, 5.46it/s, train/loss=4.220] Epoch 0: | | 154/? [00:28<00:00, 5.44it/s, train/loss=4.220] Epoch 0: | | 154/? [00:28<00:00, 5.44it/s, train/loss=24.70] Epoch 0: | | 155/? [00:28<00:00, 5.47it/s, train/loss=24.70] Epoch 0: | | 155/? [00:28<00:00, 5.47it/s, train/loss=4.170] Epoch 0: | | 156/? [00:28<00:00, 5.45it/s, train/loss=4.170] Epoch 0: | | 156/? [00:28<00:00, 5.45it/s, train/loss=32.10] Epoch 0: | | 157/? [00:28<00:00, 5.48it/s, train/loss=32.10] Epoch 0: | | 157/? [00:28<00:00, 5.48it/s, train/loss=4.130] Epoch 0: | | 158/? [00:28<00:00, 5.46it/s, train/loss=4.130] Epoch 0: | | 158/? [00:28<00:00, 5.46it/s, train/loss=50.40] Epoch 0: | | 159/? [00:29<00:00, 5.47it/s, train/loss=50.40] Epoch 0: | | 159/? [00:29<00:00, 5.47it/s, train/loss=4.160] Epoch 0: | | 160/? [00:29<00:00, 5.45it/s, train/loss=4.160] Epoch 0: | | 160/? [00:29<00:00, 5.45it/s, train/loss=39.00] Epoch 0: | | 161/? [00:29<00:00, 5.47it/s, train/loss=39.00] Epoch 0: | | 161/? [00:29<00:00, 5.47it/s, train/loss=4.080] Epoch 0: | | 162/? [00:29<00:00, 5.45it/s, train/loss=4.080] Epoch 0: | | 162/? [00:29<00:00, 5.45it/s, train/loss=23.90] Epoch 0: | | 163/? [00:29<00:00, 5.48it/s, train/loss=23.90] Epoch 0: | | 163/? [00:29<00:00, 5.48it/s, train/loss=4.140] Epoch 0: | | 164/? [00:30<00:00, 5.46it/s, train/loss=4.140] Epoch 0: | | 164/? [00:30<00:00, 5.46it/s, train/loss=20.70] Epoch 0: | | 165/? [00:30<00:00, 5.48it/s, train/loss=20.70] Epoch 0: | | 165/? [00:30<00:00, 5.48it/s, train/loss=3.990] Epoch 0: | | 166/? [00:30<00:00, 5.46it/s, train/loss=3.990] Epoch 0: | | 166/? [00:30<00:00, 5.46it/s, train/loss=46.60] Epoch 0: | | 167/? [00:30<00:00, 5.49it/s, train/loss=46.60] Epoch 0: | | 167/? [00:30<00:00, 5.49it/s, train/loss=4.030] Epoch 0: | | 168/? [00:30<00:00, 5.47it/s, train/loss=4.030] Epoch 0: | | 168/? [00:30<00:00, 5.47it/s, train/loss=31.20] Epoch 0: | | 169/? [00:30<00:00, 5.50it/s, train/loss=31.20] Epoch 0: | | 169/? [00:30<00:00, 5.50it/s, train/loss=3.920] Epoch 0: | | 170/? [00:31<00:00, 5.48it/s, train/loss=3.920] Epoch 0: | | 170/? [00:31<00:00, 5.48it/s, train/loss=24.30] Epoch 0: | | 171/? [00:31<00:00, 5.49it/s, train/loss=24.30] Epoch 0: | | 171/? [00:31<00:00, 5.49it/s, train/loss=3.860] Epoch 0: | | 172/? [00:31<00:00, 5.47it/s, train/loss=3.860] Epoch 0: | | 172/? [00:31<00:00, 5.47it/s, train/loss=48.80] Epoch 0: | | 173/? [00:31<00:00, 5.49it/s, train/loss=48.80] Epoch 0: | | 173/? [00:31<00:00, 5.49it/s, train/loss=3.870] Epoch 0: | | 174/? [00:31<00:00, 5.45it/s, train/loss=3.870] Epoch 0: | | 174/? [00:31<00:00, 5.45it/s, train/loss=29.00] Epoch 0: | | 175/? [00:31<00:00, 5.47it/s, train/loss=29.00] Epoch 0: | | 175/? [00:31<00:00, 5.47it/s, train/loss=3.860] Epoch 0: | | 176/? [00:32<00:00, 5.45it/s, train/loss=3.860] Epoch 0: | | 176/? [00:32<00:00, 5.45it/s, train/loss=28.10] Epoch 0: | | 177/? [00:32<00:00, 5.47it/s, train/loss=28.10] Epoch 0: | | 177/? [00:32<00:00, 5.47it/s, train/loss=3.830] Epoch 0: | | 178/? [00:32<00:00, 5.45it/s, train/loss=3.830] Epoch 0: | | 178/? [00:32<00:00, 5.45it/s, train/loss=29.80] Epoch 0: | | 179/? [00:32<00:00, 5.48it/s, train/loss=29.80] Epoch 0: | | 179/? [00:32<00:00, 5.48it/s, train/loss=3.810] Epoch 0: | | 180/? [00:32<00:00, 5.46it/s, train/loss=3.810] Epoch 0: | | 180/? [00:32<00:00, 5.46it/s, train/loss=22.60] Epoch 0: | | 181/? [00:32<00:00, 5.49it/s, train/loss=22.60] Epoch 0: | | 181/? [00:32<00:00, 5.49it/s, train/loss=3.810] Epoch 0: | | 182/? [00:33<00:00, 5.47it/s, train/loss=3.810] Epoch 0: | | 182/? [00:33<00:00, 5.47it/s, train/loss=17.40] Epoch 0: | | 183/? [00:33<00:00, 5.49it/s, train/loss=17.40] Epoch 0: | | 183/? [00:33<00:00, 5.49it/s, train/loss=3.830] Epoch 0: | | 184/? [00:33<00:00, 5.47it/s, train/loss=3.830] Epoch 0: | | 184/? [00:33<00:00, 5.47it/s, train/loss=26.80] Epoch 0: | | 185/? [00:33<00:00, 5.50it/s, train/loss=26.80] Epoch 0: | | 185/? [00:33<00:00, 5.50it/s, train/loss=3.770] Epoch 0: | | 186/? [00:33<00:00, 5.48it/s, train/loss=3.770] Epoch 0: | | 186/? [00:33<00:00, 5.48it/s, train/loss=24.20] Epoch 0: | | 187/? [00:33<00:00, 5.51it/s, train/loss=24.20] Epoch 0: | | 187/? [00:33<00:00, 5.51it/s, train/loss=3.750] Epoch 0: | | 188/? [00:34<00:00, 5.49it/s, train/loss=3.750] Epoch 0: | | 188/? [00:34<00:00, 5.49it/s, train/loss=24.00] Epoch 0: | | 189/? [00:34<00:00, 5.51it/s, train/loss=24.00] Epoch 0: | | 189/? [00:34<00:00, 5.51it/s, train/loss=3.690] Epoch 0: | | 190/? [00:34<00:00, 5.50it/s, train/loss=3.690] Epoch 0: | | 190/? [00:34<00:00, 5.50it/s, train/loss=21.50] Epoch 0: | | 191/? [00:34<00:00, 5.52it/s, train/loss=21.50] Epoch 0: | | 191/? [00:34<00:00, 5.52it/s, train/loss=3.680] Epoch 0: | | 192/? [00:34<00:00, 5.50it/s, train/loss=3.680] Epoch 0: | | 192/? [00:34<00:00, 5.50it/s, train/loss=36.10] Epoch 0: | | 193/? [00:34<00:00, 5.53it/s, train/loss=36.10] Epoch 0: | | 193/? [00:34<00:00, 5.52it/s, train/loss=3.640] Epoch 0: | | 194/? [00:35<00:00, 5.51it/s, train/loss=3.640] Epoch 0: | | 194/? [00:35<00:00, 5.51it/s, train/loss=13.30] Epoch 0: | | 195/? [00:35<00:00, 5.53it/s, train/loss=13.30] Epoch 0: | | 195/? [00:35<00:00, 5.53it/s, train/loss=3.600] Epoch 0: | | 196/? [00:35<00:00, 5.51it/s, train/loss=3.600] Epoch 0: | | 196/? [00:35<00:00, 5.51it/s, train/loss=33.60] Epoch 0: | | 197/? [00:35<00:00, 5.53it/s, train/loss=33.60] Epoch 0: | | 197/? [00:35<00:00, 5.52it/s, train/loss=3.520] Epoch 0: | | 198/? [00:36<00:00, 5.50it/s, train/loss=3.520] Epoch 0: | | 198/? [00:36<00:00, 5.50it/s, train/loss=35.50] Epoch 0: | | 199/? [00:36<00:00, 5.51it/s, train/loss=35.50] Epoch 0: | | 199/? [00:36<00:00, 5.51it/s, train/loss=3.470] Epoch 0: | | 200/? [00:36<00:00, 5.48it/s, train/loss=3.470] Epoch 0: | | 200/? [00:36<00:00, 5.48it/s, train/loss=14.60] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:10, 3.63it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:10, 3.65it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:10, 3.66it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:01<00:09, 3.65it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:01<00:09, 3.66it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:09, 3.66it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:08, 3.68it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:02<00:08, 3.67it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:02<00:08, 3.68it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:02<00:08, 3.68it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:02<00:07, 3.69it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:03<00:07, 3.69it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:03<00:07, 3.70it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:03<00:07, 3.70it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:04<00:06, 3.71it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:04<00:06, 3.71it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:04<00:06, 3.72it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:04<00:05, 3.72it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:05<00:05, 3.72it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:05<00:05, 3.73it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:05<00:05, 3.73it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:05<00:04, 3.73it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:06<00:04, 3.73it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:06<00:04, 3.73it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:06<00:04, 3.74it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:06<00:03, 3.74it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:07<00:03, 3.74it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:07<00:03, 3.75it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:07<00:02, 3.75it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:07<00:02, 3.75it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:08<00:02, 3.76it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:08<00:02, 3.76it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:08<00:01, 3.76it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:09<00:01, 3.77it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:09<00:01, 3.77it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:09<00:01, 3.78it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:09<00:00, 3.78it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:10<00:00, 3.79it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:10<00:00, 3.78it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:10<00:00, 3.78it/s] Epoch 0: | | 200/? [00:47<00:00, 4.18it/s, train/loss=14.60] Epoch 0: | | 201/? [00:48<00:00, 4.17it/s, train/loss=14.60] Epoch 0: | | 201/? [00:48<00:00, 4.17it/s, train/loss=3.450] Epoch 0: | | 202/? [00:48<00:00, 4.16it/s, train/loss=3.450] Epoch 0: | | 202/? [00:48<00:00, 4.16it/s, train/loss=29.70] Epoch 0: | | 203/? [00:48<00:00, 4.17it/s, train/loss=29.70] Epoch 0: | | 203/? [00:48<00:00, 4.17it/s, train/loss=3.370] Epoch 0: | | 204/? [00:49<00:00, 4.16it/s, train/loss=3.370] Epoch 0: | | 204/? [00:49<00:00, 4.16it/s, train/loss=36.30] Epoch 0: | | 205/? [00:49<00:00, 4.17it/s, train/loss=36.30] Epoch 0: | | 205/? [00:49<00:00, 4.17it/s, train/loss=3.240] Epoch 0: | | 206/? [00:49<00:00, 4.17it/s, train/loss=3.240] Epoch 0: | | 206/? [00:49<00:00, 4.17it/s, train/loss=20.20] Epoch 0: | | 207/? [00:49<00:00, 4.19it/s, train/loss=20.20] Epoch 0: | | 207/? [00:49<00:00, 4.19it/s, train/loss=3.100] Epoch 0: | | 208/? [00:49<00:00, 4.18it/s, train/loss=3.100] Epoch 0: | | 208/? [00:49<00:00, 4.18it/s, train/loss=30.20] Epoch 0: | | 209/? [00:49<00:00, 4.20it/s, train/loss=30.20] Epoch 0: | | 209/? [00:49<00:00, 4.20it/s, train/loss=2.980] Epoch 0: | | 210/? [00:50<00:00, 4.20it/s, train/loss=2.980] Epoch 0: | | 210/? [00:50<00:00, 4.20it/s, train/loss=22.10] Epoch 0: | | 211/? [00:50<00:00, 4.21it/s, train/loss=22.10] Epoch 0: | | 211/? [00:50<00:00, 4.21it/s, train/loss=2.870] Epoch 0: | | 212/? [00:50<00:00, 4.21it/s, train/loss=2.870] Epoch 0: | | 212/? [00:50<00:00, 4.21it/s, train/loss=31.50] Epoch 0: | | 213/? [00:50<00:00, 4.22it/s, train/loss=31.50] Epoch 0: | | 213/? [00:50<00:00, 4.22it/s, train/loss=2.790] Epoch 0: | | 214/? [00:50<00:00, 4.22it/s, train/loss=2.790] Epoch 0: | | 214/? [00:50<00:00, 4.22it/s, train/loss=20.80] Epoch 0: | | 215/? [00:50<00:00, 4.24it/s, train/loss=20.80] Epoch 0: | | 215/? [00:50<00:00, 4.24it/s, train/loss=2.730] Epoch 0: | | 216/? [00:51<00:00, 4.23it/s, train/loss=2.730] Epoch 0: | | 216/? [00:51<00:00, 4.23it/s, train/loss=65.60] Epoch 0: | | 217/? [00:51<00:00, 4.25it/s, train/loss=65.60] Epoch 0: | | 217/? [00:51<00:00, 4.25it/s, train/loss=2.680] Epoch 0: | | 218/? [00:51<00:00, 4.25it/s, train/loss=2.680] Epoch 0: | | 218/? [00:51<00:00, 4.25it/s, train/loss=23.40] Epoch 0: | | 219/? [00:51<00:00, 4.26it/s, train/loss=23.40] Epoch 0: | | 219/? [00:51<00:00, 4.26it/s, train/loss=2.660] Epoch 0: | | 220/? [00:51<00:00, 4.26it/s, train/loss=2.660] Epoch 0: | | 220/? [00:51<00:00, 4.26it/s, train/loss=27.50] Epoch 0: | | 221/? [00:51<00:00, 4.28it/s, train/loss=27.50] Epoch 0: | | 221/? [00:51<00:00, 4.28it/s, train/loss=2.650] Epoch 0: | | 222/? [00:51<00:00, 4.27it/s, train/loss=2.650] Epoch 0: | | 222/? [00:51<00:00, 4.27it/s, train/loss=89.30] Epoch 0: | | 223/? [00:52<00:00, 4.29it/s, train/loss=89.30] Epoch 0: | | 223/? [00:52<00:00, 4.29it/s, train/loss=2.650] Epoch 0: | | 224/? [00:52<00:00, 4.28it/s, train/loss=2.650] Epoch 0: | | 224/? [00:52<00:00, 4.28it/s, train/loss=46.50] Epoch 0: | | 225/? [00:52<00:00, 4.30it/s, train/loss=46.50] Epoch 0: | | 225/? [00:52<00:00, 4.30it/s, train/loss=2.650] Epoch 0: | | 226/? [00:52<00:00, 4.29it/s, train/loss=2.650] Epoch 0: | | 226/? [00:52<00:00, 4.29it/s, train/loss=24.20] Epoch 0: | | 227/? [00:52<00:00, 4.31it/s, train/loss=24.20] Epoch 0: | | 227/? [00:52<00:00, 4.31it/s, train/loss=2.630] Epoch 0: | | 228/? [00:52<00:00, 4.30it/s, train/loss=2.630] Epoch 0: | | 228/? [00:52<00:00, 4.30it/s, train/loss=21.20] Epoch 0: | | 229/? [00:52<00:00, 4.32it/s, train/loss=21.20] Epoch 0: | | 229/? [00:52<00:00, 4.32it/s, train/loss=2.570] Epoch 0: | | 230/? [00:53<00:00, 4.32it/s, train/loss=2.570] Epoch 0: | | 230/? [00:53<00:00, 4.32it/s, train/loss=28.80] Epoch 0: | | 231/? [00:53<00:00, 4.33it/s, train/loss=28.80] Epoch 0: | | 231/? [00:53<00:00, 4.33it/s, train/loss=2.490] Epoch 0: | | 232/? [00:53<00:00, 4.33it/s, train/loss=2.490] Epoch 0: | | 232/? [00:53<00:00, 4.33it/s, train/loss=18.90] Epoch 0: | | 233/? [00:53<00:00, 4.34it/s, train/loss=18.90] Epoch 0: | | 233/? [00:53<00:00, 4.34it/s, train/loss=2.410] Epoch 0: | | 234/? [00:53<00:00, 4.34it/s, train/loss=2.410] Epoch 0: | | 234/? [00:53<00:00, 4.34it/s, train/loss=27.70] Epoch 0: | | 235/? [00:53<00:00, 4.35it/s, train/loss=27.70] Epoch 0: | | 235/? [00:53<00:00, 4.35it/s, train/loss=2.350] Epoch 0: | | 236/? [00:54<00:00, 4.35it/s, train/loss=2.350] Epoch 0: | | 236/? [00:54<00:00, 4.35it/s, train/loss=26.80] Epoch 0: | | 237/? [00:54<00:00, 4.36it/s, train/loss=26.80] Epoch 0: | | 237/? [00:54<00:00, 4.36it/s, train/loss=2.300] Epoch 0: | | 238/? [00:54<00:00, 4.36it/s, train/loss=2.300] Epoch 0: | | 238/? [00:54<00:00, 4.36it/s, train/loss=21.90] Epoch 0: | | 239/? [00:54<00:00, 4.38it/s, train/loss=21.90] Epoch 0: | | 239/? [00:54<00:00, 4.37it/s, train/loss=2.240] Epoch 0: | | 240/? [00:54<00:00, 4.37it/s, train/loss=2.240] Epoch 0: | | 240/? [00:54<00:00, 4.37it/s, train/loss=6.910] Epoch 0: | | 241/? [00:54<00:00, 4.39it/s, train/loss=6.910] Epoch 0: | | 241/? [00:54<00:00, 4.39it/s, train/loss=2.190] Epoch 0: | | 242/? [00:55<00:00, 4.38it/s, train/loss=2.190] Epoch 0: | | 242/? [00:55<00:00, 4.38it/s, train/loss=20.40] Epoch 0: | | 243/? [00:55<00:00, 4.40it/s, train/loss=20.40] Epoch 0: | | 243/? [00:55<00:00, 4.40it/s, train/loss=2.140] Epoch 0: | | 244/? [00:55<00:00, 4.39it/s, train/loss=2.140] Epoch 0: | | 244/? [00:55<00:00, 4.39it/s, train/loss=27.40] Epoch 0: | | 245/? [00:55<00:00, 4.41it/s, train/loss=27.40] Epoch 0: | | 245/? [00:55<00:00, 4.41it/s, train/loss=2.100] Epoch 0: | | 246/? [00:55<00:00, 4.40it/s, train/loss=2.100] Epoch 0: | | 246/? [00:55<00:00, 4.40it/s, train/loss=21.10] Epoch 0: | | 247/? [00:55<00:00, 4.42it/s, train/loss=21.10] Epoch 0: | | 247/? [00:55<00:00, 4.42it/s, train/loss=2.060] Epoch 0: | | 248/? [00:56<00:00, 4.41it/s, train/loss=2.060] Epoch 0: | | 248/? [00:56<00:00, 4.41it/s, train/loss=12.50] Epoch 0: | | 249/? [00:56<00:00, 4.43it/s, train/loss=12.50] Epoch 0: | | 249/? [00:56<00:00, 4.43it/s, train/loss=2.020] Epoch 0: | | 250/? [00:56<00:00, 4.42it/s, train/loss=2.020] Epoch 0: | | 250/? [00:56<00:00, 4.42it/s, train/loss=24.50] Epoch 0: | | 251/? [00:56<00:00, 4.43it/s, train/loss=24.50] Epoch 0: | | 251/? [00:56<00:00, 4.43it/s, train/loss=1.990] Epoch 0: | | 252/? [00:56<00:00, 4.43it/s, train/loss=1.990] Epoch 0: | | 252/? [00:56<00:00, 4.43it/s, train/loss=10.80] Epoch 0: | | 253/? [00:56<00:00, 4.44it/s, train/loss=10.80] Epoch 0: | | 253/? [00:56<00:00, 4.44it/s, train/loss=1.960] Epoch 0: | | 254/? [00:57<00:00, 4.44it/s, train/loss=1.960] Epoch 0: | | 254/? [00:57<00:00, 4.44it/s, train/loss=44.30] Epoch 0: | | 255/? [00:57<00:00, 4.45it/s, train/loss=44.30] Epoch 0: | | 255/? [00:57<00:00, 4.45it/s, train/loss=1.930] Epoch 0: | | 256/? [00:57<00:00, 4.45it/s, train/loss=1.930] Epoch 0: | | 256/? [00:57<00:00, 4.45it/s, train/loss=34.80] Epoch 0: | | 257/? [00:57<00:00, 4.46it/s, train/loss=34.80] Epoch 0: | | 257/? [00:57<00:00, 4.46it/s, train/loss=1.910] Epoch 0: | | 258/? [00:57<00:00, 4.46it/s, train/loss=1.910] Epoch 0: | | 258/? [00:57<00:00, 4.46it/s, train/loss=30.50] Epoch 0: | | 259/? [00:57<00:00, 4.47it/s, train/loss=30.50] Epoch 0: | | 259/? [00:57<00:00, 4.47it/s, train/loss=1.900] Epoch 0: | | 260/? [00:58<00:00, 4.47it/s, train/loss=1.900] Epoch 0: | | 260/? [00:58<00:00, 4.47it/s, train/loss=37.80] Epoch 0: | | 261/? [00:58<00:00, 4.48it/s, train/loss=37.80] Epoch 0: | | 261/? [00:58<00:00, 4.48it/s, train/loss=1.890] Epoch 0: | | 262/? [00:58<00:00, 4.48it/s, train/loss=1.890] Epoch 0: | | 262/? [00:58<00:00, 4.48it/s, train/loss=24.40] Epoch 0: | | 263/? [00:58<00:00, 4.49it/s, train/loss=24.40] Epoch 0: | | 263/? [00:58<00:00, 4.49it/s, train/loss=1.900] Epoch 0: | | 264/? [00:58<00:00, 4.49it/s, train/loss=1.900] Epoch 0: | | 264/? [00:58<00:00, 4.49it/s, train/loss=36.50] Epoch 0: | | 265/? [00:58<00:00, 4.50it/s, train/loss=36.50] Epoch 0: | | 265/? [00:58<00:00, 4.50it/s, train/loss=1.930] Epoch 0: | | 266/? [00:59<00:00, 4.50it/s, train/loss=1.930] Epoch 0: | | 266/? [00:59<00:00, 4.50it/s, train/loss=40.20] Epoch 0: | | 267/? [00:59<00:00, 4.51it/s, train/loss=40.20] Epoch 0: | | 267/? [00:59<00:00, 4.51it/s, train/loss=1.960] Epoch 0: | | 268/? [00:59<00:00, 4.51it/s, train/loss=1.960] Epoch 0: | | 268/? [00:59<00:00, 4.51it/s, train/loss=15.30] Epoch 0: | | 269/? [00:59<00:00, 4.52it/s, train/loss=15.30] Epoch 0: | | 269/? [00:59<00:00, 4.52it/s, train/loss=1.980] Epoch 0: | | 270/? [00:59<00:00, 4.52it/s, train/loss=1.980] Epoch 0: | | 270/? [00:59<00:00, 4.52it/s, train/loss=11.80] Epoch 0: | | 271/? [00:59<00:00, 4.53it/s, train/loss=11.80] Epoch 0: | | 271/? [00:59<00:00, 4.53it/s, train/loss=1.980] Epoch 0: | | 272/? [01:00<00:00, 4.53it/s, train/loss=1.980] Epoch 0: | | 272/? [01:00<00:00, 4.53it/s, train/loss=37.30] Epoch 0: | | 273/? [01:00<00:00, 4.54it/s, train/loss=37.30] Epoch 0: | | 273/? [01:00<00:00, 4.54it/s, train/loss=1.930] Epoch 0: | | 274/? [01:00<00:00, 4.53it/s, train/loss=1.930] Epoch 0: | | 274/? [01:00<00:00, 4.53it/s, train/loss=20.50] Epoch 0: | | 275/? [01:00<00:00, 4.55it/s, train/loss=20.50] Epoch 0: | | 275/? [01:00<00:00, 4.55it/s, train/loss=1.890] Epoch 0: | | 276/? [01:00<00:00, 4.54it/s, train/loss=1.890] Epoch 0: | | 276/? [01:00<00:00, 4.54it/s, train/loss=15.60] Epoch 0: | | 277/? [01:00<00:00, 4.55it/s, train/loss=15.60] Epoch 0: | | 277/? [01:00<00:00, 4.55it/s, train/loss=1.880] Epoch 0: | | 278/? [01:01<00:00, 4.54it/s, train/loss=1.880] Epoch 0: | | 278/? [01:01<00:00, 4.54it/s, train/loss=51.20] Epoch 0: | | 279/? [01:01<00:00, 4.56it/s, train/loss=51.20] Epoch 0: | | 279/? [01:01<00:00, 4.56it/s, train/loss=1.880] Epoch 0: | | 280/? [01:01<00:00, 4.55it/s, train/loss=1.880] Epoch 0: | | 280/? [01:01<00:00, 4.55it/s, train/loss=22.40] Epoch 0: | | 281/? [01:01<00:00, 4.56it/s, train/loss=22.40] Epoch 0: | | 281/? [01:01<00:00, 4.56it/s, train/loss=1.880] Epoch 0: | | 282/? [01:01<00:00, 4.56it/s, train/loss=1.880] Epoch 0: | | 282/? [01:01<00:00, 4.56it/s, train/loss=12.20] Epoch 0: | | 283/? [01:01<00:00, 4.57it/s, train/loss=12.20] Epoch 0: | | 283/? [01:01<00:00, 4.57it/s, train/loss=1.850] Epoch 0: | | 284/? [01:02<00:00, 4.57it/s, train/loss=1.850] Epoch 0: | | 284/? [01:02<00:00, 4.57it/s, train/loss=26.80] Epoch 0: | | 285/? [01:02<00:00, 4.58it/s, train/loss=26.80] Epoch 0: | | 285/? [01:02<00:00, 4.58it/s, train/loss=1.800] Epoch 0: | | 286/? [01:02<00:00, 4.58it/s, train/loss=1.800] Epoch 0: | | 286/? [01:02<00:00, 4.58it/s, train/loss=19.70] Epoch 0: | | 287/? [01:02<00:00, 4.59it/s, train/loss=19.70] Epoch 0: | | 287/? [01:02<00:00, 4.59it/s, train/loss=1.770] Epoch 0: | | 288/? [01:02<00:00, 4.58it/s, train/loss=1.770] Epoch 0: | | 288/? [01:02<00:00, 4.58it/s, train/loss=27.50] Epoch 0: | | 289/? [01:02<00:00, 4.60it/s, train/loss=27.50] Epoch 0: | | 289/? [01:02<00:00, 4.60it/s, train/loss=1.740] Epoch 0: | | 290/? [01:03<00:00, 4.59it/s, train/loss=1.740] Epoch 0: | | 290/? [01:03<00:00, 4.59it/s, train/loss=35.80] Epoch 0: | | 291/? [01:03<00:00, 4.61it/s, train/loss=35.80] Epoch 0: | | 291/? [01:03<00:00, 4.61it/s, train/loss=1.740] Epoch 0: | | 292/? [01:03<00:00, 4.60it/s, train/loss=1.740] Epoch 0: | | 292/? [01:03<00:00, 4.60it/s, train/loss=28.60] Epoch 0: | | 293/? [01:03<00:00, 4.61it/s, train/loss=28.60] Epoch 0: | | 293/? [01:03<00:00, 4.61it/s, train/loss=1.750] Epoch 0: | | 294/? [01:03<00:00, 4.61it/s, train/loss=1.750] Epoch 0: | | 294/? [01:03<00:00, 4.61it/s, train/loss=33.70] Epoch 0: | | 295/? [01:03<00:00, 4.62it/s, train/loss=33.70] Epoch 0: | | 295/? [01:03<00:00, 4.62it/s, train/loss=1.760] Epoch 0: | | 296/? [01:04<00:00, 4.62it/s, train/loss=1.760] Epoch 0: | | 296/? [01:04<00:00, 4.62it/s, train/loss=36.40] Epoch 0: | | 297/? [01:04<00:00, 4.63it/s, train/loss=36.40] Epoch 0: | | 297/? [01:04<00:00, 4.63it/s, train/loss=1.760] Epoch 0: | | 298/? [01:04<00:00, 4.62it/s, train/loss=1.760] Epoch 0: | | 298/? [01:04<00:00, 4.62it/s, train/loss=9.910] Epoch 0: | | 299/? [01:04<00:00, 4.64it/s, train/loss=9.910] Epoch 0: | | 299/? [01:04<00:00, 4.64it/s, train/loss=1.740] Epoch 0: | | 300/? [01:04<00:00, 4.63it/s, train/loss=1.740] Epoch 0: | | 300/? [01:04<00:00, 4.63it/s, train/loss=11.90] Epoch 0: | | 301/? [01:04<00:00, 4.65it/s, train/loss=11.90] Epoch 0: | | 301/? [01:04<00:00, 4.65it/s, train/loss=1.710] Epoch 0: | | 302/? [01:05<00:00, 4.64it/s, train/loss=1.710] Epoch 0: | | 302/? [01:05<00:00, 4.64it/s, train/loss=31.00] Epoch 0: | | 303/? [01:05<00:00, 4.65it/s, train/loss=31.00] Epoch 0: | | 303/? [01:05<00:00, 4.65it/s, train/loss=1.710] Epoch 0: | | 304/? [01:05<00:00, 4.65it/s, train/loss=1.710] Epoch 0: | | 304/? [01:05<00:00, 4.65it/s, train/loss=23.80] Epoch 0: | | 305/? [01:05<00:00, 4.66it/s, train/loss=23.80] Epoch 0: | | 305/? [01:05<00:00, 4.66it/s, train/loss=1.760] Epoch 0: | | 306/? [01:05<00:00, 4.66it/s, train/loss=1.760] Epoch 0: | | 306/? [01:05<00:00, 4.66it/s, train/loss=13.10] Epoch 0: | | 307/? [01:05<00:00, 4.67it/s, train/loss=13.10] Epoch 0: | | 307/? [01:05<00:00, 4.67it/s, train/loss=1.800] Epoch 0: | | 308/? [01:06<00:00, 4.67it/s, train/loss=1.800] Epoch 0: | | 308/? [01:06<00:00, 4.67it/s, train/loss=20.90] Epoch 0: | | 309/? [01:06<00:00, 4.68it/s, train/loss=20.90] Epoch 0: | | 309/? [01:06<00:00, 4.68it/s, train/loss=1.770] Epoch 0: | | 310/? [01:06<00:00, 4.67it/s, train/loss=1.770] Epoch 0: | | 310/? [01:06<00:00, 4.67it/s, train/loss=36.20] Epoch 0: | | 311/? [01:06<00:00, 4.69it/s, train/loss=36.20] Epoch 0: | | 311/? [01:06<00:00, 4.68it/s, train/loss=1.700] Epoch 0: | | 312/? [01:06<00:00, 4.68it/s, train/loss=1.700] Epoch 0: | | 312/? [01:06<00:00, 4.68it/s, train/loss=29.00] Epoch 0: | | 313/? [01:06<00:00, 4.69it/s, train/loss=29.00] Epoch 0: | | 313/? [01:06<00:00, 4.69it/s, train/loss=1.640] Epoch 0: | | 314/? [01:06<00:00, 4.69it/s, train/loss=1.640] Epoch 0: | | 314/? [01:06<00:00, 4.69it/s, train/loss=12.90] Epoch 0: | | 315/? [01:07<00:00, 4.70it/s, train/loss=12.90] Epoch 0: | | 315/? [01:07<00:00, 4.70it/s, train/loss=1.620] Epoch 0: | | 316/? [01:07<00:00, 4.70it/s, train/loss=1.620] Epoch 0: | | 316/? [01:07<00:00, 4.70it/s, train/loss=19.40] Epoch 0: | | 317/? [01:07<00:00, 4.71it/s, train/loss=19.40] Epoch 0: | | 317/? [01:07<00:00, 4.71it/s, train/loss=1.590] Epoch 0: | | 318/? [01:07<00:00, 4.70it/s, train/loss=1.590] Epoch 0: | | 318/? [01:07<00:00, 4.70it/s, train/loss=17.20] Epoch 0: | | 319/? [01:07<00:00, 4.72it/s, train/loss=17.20] Epoch 0: | | 319/? [01:07<00:00, 4.71it/s, train/loss=1.570] Epoch 0: | | 320/? [01:07<00:00, 4.71it/s, train/loss=1.570] Epoch 0: | | 320/? [01:07<00:00, 4.71it/s, train/loss=8.480] Epoch 0: | | 321/? [01:07<00:00, 4.72it/s, train/loss=8.480] Epoch 0: | | 321/? [01:07<00:00, 4.72it/s, train/loss=1.620] Epoch 0: | | 322/? [01:08<00:00, 4.72it/s, train/loss=1.620] Epoch 0: | | 322/? [01:08<00:00, 4.72it/s, train/loss=20.80] Epoch 0: | | 323/? [01:08<00:00, 4.73it/s, train/loss=20.80] Epoch 0: | | 323/? [01:08<00:00, 4.73it/s, train/loss=1.580] Epoch 0: | | 324/? [01:08<00:00, 4.72it/s, train/loss=1.580] Epoch 0: | | 324/? [01:08<00:00, 4.72it/s, train/loss=12.70] Epoch 0: | | 325/? [01:08<00:00, 4.74it/s, train/loss=12.70] Epoch 0: | | 325/? [01:08<00:00, 4.74it/s, train/loss=1.560] Epoch 0: | | 326/? [01:08<00:00, 4.73it/s, train/loss=1.560] Epoch 0: | | 326/? [01:08<00:00, 4.73it/s, train/loss=28.90] Epoch 0: | | 327/? [01:08<00:00, 4.74it/s, train/loss=28.90] Epoch 0: | | 327/? [01:08<00:00, 4.74it/s, train/loss=1.540] Epoch 0: | | 328/? [01:09<00:00, 4.74it/s, train/loss=1.540] Epoch 0: | | 328/? [01:09<00:00, 4.74it/s, train/loss=24.00] Epoch 0: | | 329/? [01:09<00:00, 4.75it/s, train/loss=24.00] Epoch 0: | | 329/? [01:09<00:00, 4.75it/s, train/loss=1.520] Epoch 0: | | 330/? [01:09<00:00, 4.75it/s, train/loss=1.520] Epoch 0: | | 330/? [01:09<00:00, 4.75it/s, train/loss=21.20] Epoch 0: | | 331/? [01:09<00:00, 4.76it/s, train/loss=21.20] Epoch 0: | | 331/? [01:09<00:00, 4.76it/s, train/loss=1.510] Epoch 0: | | 332/? [01:09<00:00, 4.75it/s, train/loss=1.510] Epoch 0: | | 332/? [01:09<00:00, 4.75it/s, train/loss=71.20] Epoch 0: | | 333/? [01:09<00:00, 4.76it/s, train/loss=71.20] Epoch 0: | | 333/? [01:09<00:00, 4.76it/s, train/loss=1.500] Epoch 0: | | 334/? [01:10<00:00, 4.76it/s, train/loss=1.500] Epoch 0: | | 334/? [01:10<00:00, 4.76it/s, train/loss=15.70] Epoch 0: | | 335/? [01:10<00:00, 4.77it/s, train/loss=15.70] Epoch 0: | | 335/? [01:10<00:00, 4.77it/s, train/loss=1.510] Epoch 0: | | 336/? [01:10<00:00, 4.77it/s, train/loss=1.510] Epoch 0: | | 336/? [01:10<00:00, 4.77it/s, train/loss=40.90] Epoch 0: | | 337/? [01:10<00:00, 4.78it/s, train/loss=40.90] Epoch 0: | | 337/? [01:10<00:00, 4.78it/s, train/loss=1.530] Epoch 0: | | 338/? [01:10<00:00, 4.77it/s, train/loss=1.530] Epoch 0: | | 338/? [01:10<00:00, 4.77it/s, train/loss=52.10] Epoch 0: | | 339/? [01:10<00:00, 4.79it/s, train/loss=52.10] Epoch 0: | | 339/? [01:10<00:00, 4.79it/s, train/loss=1.570] Epoch 0: | | 340/? [01:11<00:00, 4.78it/s, train/loss=1.570] Epoch 0: | | 340/? [01:11<00:00, 4.78it/s, train/loss=13.10] Epoch 0: | | 341/? [01:11<00:00, 4.79it/s, train/loss=13.10] Epoch 0: | | 341/? [01:11<00:00, 4.79it/s, train/loss=1.650] Epoch 0: | | 342/? [01:11<00:00, 4.79it/s, train/loss=1.650] Epoch 0: | | 342/? [01:11<00:00, 4.79it/s, train/loss=35.70] Epoch 0: | | 343/? [01:11<00:00, 4.80it/s, train/loss=35.70] Epoch 0: | | 343/? [01:11<00:00, 4.80it/s, train/loss=1.690] Epoch 0: | | 344/? [01:11<00:00, 4.79it/s, train/loss=1.690] Epoch 0: | | 344/? [01:11<00:00, 4.79it/s, train/loss=37.80] Epoch 0: | | 345/? [01:11<00:00, 4.81it/s, train/loss=37.80] Epoch 0: | | 345/? [01:11<00:00, 4.81it/s, train/loss=1.700] Epoch 0: | | 346/? [01:12<00:00, 4.80it/s, train/loss=1.700] Epoch 0: | | 346/? [01:12<00:00, 4.80it/s, train/loss=14.10] Epoch 0: | | 347/? [01:12<00:00, 4.81it/s, train/loss=14.10] Epoch 0: | | 347/? [01:12<00:00, 4.81it/s, train/loss=1.700] Epoch 0: | | 348/? [01:12<00:00, 4.81it/s, train/loss=1.700] Epoch 0: | | 348/? [01:12<00:00, 4.81it/s, train/loss=43.30] Epoch 0: | | 349/? [01:12<00:00, 4.82it/s, train/loss=43.30] Epoch 0: | | 349/? [01:12<00:00, 4.82it/s, train/loss=1.670] Epoch 0: | | 350/? [01:12<00:00, 4.81it/s, train/loss=1.670] Epoch 0: | | 350/? [01:12<00:00, 4.81it/s, train/loss=21.80] Epoch 0: | | 351/? [01:12<00:00, 4.82it/s, train/loss=21.80] Epoch 0: | | 351/? [01:12<00:00, 4.82it/s, train/loss=1.620] Epoch 0: | | 352/? [01:13<00:00, 4.82it/s, train/loss=1.620] Epoch 0: | | 352/? [01:13<00:00, 4.82it/s, train/loss=38.20] Epoch 0: | | 353/? [01:13<00:00, 4.83it/s, train/loss=38.20] Epoch 0: | | 353/? [01:13<00:00, 4.83it/s, train/loss=1.580] Epoch 0: | | 354/? [01:13<00:00, 4.83it/s, train/loss=1.580] Epoch 0: | | 354/? [01:13<00:00, 4.83it/s, train/loss=14.50] Epoch 0: | | 355/? [01:13<00:00, 4.84it/s, train/loss=14.50] Epoch 0: | | 355/? [01:13<00:00, 4.84it/s, train/loss=1.550] Epoch 0: | | 356/? [01:13<00:00, 4.83it/s, train/loss=1.550] Epoch 0: | | 356/? [01:13<00:00, 4.83it/s, train/loss=27.10] Epoch 0: | | 357/? [01:13<00:00, 4.84it/s, train/loss=27.10] Epoch 0: | | 357/? [01:13<00:00, 4.84it/s, train/loss=1.530] Epoch 0: | | 358/? [01:13<00:00, 4.84it/s, train/loss=1.530] Epoch 0: | | 358/? [01:13<00:00, 4.84it/s, train/loss=22.20] Epoch 0: | | 359/? [01:14<00:00, 4.85it/s, train/loss=22.20] Epoch 0: | | 359/? [01:14<00:00, 4.85it/s, train/loss=1.510] Epoch 0: | | 360/? [01:14<00:00, 4.84it/s, train/loss=1.510] Epoch 0: | | 360/? [01:14<00:00, 4.84it/s, train/loss=16.60] Epoch 0: | | 361/? [01:14<00:00, 4.86it/s, train/loss=16.60] Epoch 0: | | 361/? [01:14<00:00, 4.86it/s, train/loss=1.510] Epoch 0: | | 362/? [01:14<00:00, 4.85it/s, train/loss=1.510] Epoch 0: | | 362/? [01:14<00:00, 4.85it/s, train/loss=29.70] Epoch 0: | | 363/? [01:14<00:00, 4.86it/s, train/loss=29.70] Epoch 0: | | 363/? [01:14<00:00, 4.86it/s, train/loss=1.500] Epoch 0: | | 364/? [01:14<00:00, 4.86it/s, train/loss=1.500] Epoch 0: | | 364/? [01:14<00:00, 4.86it/s, train/loss=34.00] Epoch 0: | | 365/? [01:14<00:00, 4.87it/s, train/loss=34.00] Epoch 0: | | 365/? [01:14<00:00, 4.87it/s, train/loss=1.500] Epoch 0: | | 366/? [01:15<00:00, 4.86it/s, train/loss=1.500] Epoch 0: | | 366/? [01:15<00:00, 4.86it/s, train/loss=15.00] Epoch 0: | | 367/? [01:15<00:00, 4.87it/s, train/loss=15.00] Epoch 0: | | 367/? [01:15<00:00, 4.87it/s, train/loss=1.490] Epoch 0: | | 368/? [01:15<00:00, 4.86it/s, train/loss=1.490] Epoch 0: | | 368/? [01:15<00:00, 4.86it/s, train/loss=24.70] Epoch 0: | | 369/? [01:15<00:00, 4.86it/s, train/loss=24.70] Epoch 0: | | 369/? [01:15<00:00, 4.86it/s, train/loss=1.630] Epoch 0: | | 370/? [01:16<00:00, 4.85it/s, train/loss=1.630] Epoch 0: | | 370/? [01:16<00:00, 4.85it/s, train/loss=30.90] Epoch 0: | | 371/? [01:16<00:00, 4.86it/s, train/loss=30.90] Epoch 0: | | 371/? [01:16<00:00, 4.86it/s, train/loss=1.620] Epoch 0: | | 372/? [01:16<00:00, 4.85it/s, train/loss=1.620] Epoch 0: | | 372/? [01:16<00:00, 4.85it/s, train/loss=26.20] Epoch 0: | | 373/? [01:16<00:00, 4.86it/s, train/loss=26.20] Epoch 0: | | 373/? [01:16<00:00, 4.86it/s, train/loss=1.610] Epoch 0: | | 374/? [01:17<00:00, 4.85it/s, train/loss=1.610] Epoch 0: | | 374/? [01:17<00:00, 4.85it/s, train/loss=15.60] Epoch 0: | | 375/? [01:17<00:00, 4.85it/s, train/loss=15.60] Epoch 0: | | 375/? [01:17<00:00, 4.85it/s, train/loss=1.600] Epoch 0: | | 376/? [01:17<00:00, 4.85it/s, train/loss=1.600] Epoch 0: | | 376/? [01:17<00:00, 4.85it/s, train/loss=30.70] Epoch 0: | | 377/? [01:17<00:00, 4.86it/s, train/loss=30.70] Epoch 0: | | 377/? [01:17<00:00, 4.86it/s, train/loss=1.590] Epoch 0: | | 378/? [01:17<00:00, 4.85it/s, train/loss=1.590] Epoch 0: | | 378/? [01:17<00:00, 4.85it/s, train/loss=28.90] Epoch 0: | | 379/? [01:17<00:00, 4.86it/s, train/loss=28.90] Epoch 0: | | 379/? [01:17<00:00, 4.86it/s, train/loss=1.580] Epoch 0: | | 380/? [01:18<00:00, 4.86it/s, train/loss=1.580] Epoch 0: | | 380/? [01:18<00:00, 4.86it/s, train/loss=39.10] Epoch 0: | | 381/? [01:18<00:00, 4.87it/s, train/loss=39.10] Epoch 0: | | 381/? [01:18<00:00, 4.87it/s, train/loss=1.600] Epoch 0: | | 382/? [01:18<00:00, 4.86it/s, train/loss=1.600] Epoch 0: | | 382/? [01:18<00:00, 4.86it/s, train/loss=20.10] Epoch 0: | | 383/? [01:18<00:00, 4.87it/s, train/loss=20.10] Epoch 0: | | 383/? [01:18<00:00, 4.87it/s, train/loss=1.660] Epoch 0: | | 384/? [01:18<00:00, 4.87it/s, train/loss=1.660] Epoch 0: | | 384/? [01:18<00:00, 4.87it/s, train/loss=39.30] Epoch 0: | | 385/? [01:18<00:00, 4.88it/s, train/loss=39.30] Epoch 0: | | 385/? [01:18<00:00, 4.88it/s, train/loss=1.710] Epoch 0: | | 386/? [01:19<00:00, 4.87it/s, train/loss=1.710] Epoch 0: | | 386/? [01:19<00:00, 4.87it/s, train/loss=9.900] Epoch 0: | | 387/? [01:19<00:00, 4.88it/s, train/loss=9.900] Epoch 0: | | 387/? [01:19<00:00, 4.88it/s, train/loss=1.710] Epoch 0: | | 388/? [01:19<00:00, 4.88it/s, train/loss=1.710] Epoch 0: | | 388/? [01:19<00:00, 4.88it/s, train/loss=27.30] Epoch 0: | | 389/? [01:19<00:00, 4.89it/s, train/loss=27.30] Epoch 0: | | 389/? [01:19<00:00, 4.89it/s, train/loss=1.700] Epoch 0: | | 390/? [01:19<00:00, 4.89it/s, train/loss=1.700] Epoch 0: | | 390/? [01:19<00:00, 4.89it/s, train/loss=23.70] Epoch 0: | | 391/? [01:19<00:00, 4.90it/s, train/loss=23.70] Epoch 0: | | 391/? [01:19<00:00, 4.90it/s, train/loss=1.670] Epoch 0: | | 392/? [01:20<00:00, 4.89it/s, train/loss=1.670] Epoch 0: | | 392/? [01:20<00:00, 4.89it/s, train/loss=22.80] Epoch 0: | | 393/? [01:20<00:00, 4.90it/s, train/loss=22.80] Epoch 0: | | 393/? [01:20<00:00, 4.90it/s, train/loss=1.640] Epoch 0: | | 394/? [01:20<00:00, 4.90it/s, train/loss=1.640] Epoch 0: | | 394/? [01:20<00:00, 4.90it/s, train/loss=26.00] Epoch 0: | | 395/? [01:20<00:00, 4.91it/s, train/loss=26.00] Epoch 0: | | 395/? [01:20<00:00, 4.91it/s, train/loss=1.640] Epoch 0: | | 396/? [01:20<00:00, 4.90it/s, train/loss=1.640] Epoch 0: | | 396/? [01:20<00:00, 4.90it/s, train/loss=9.660] Epoch 0: | | 397/? [01:20<00:00, 4.91it/s, train/loss=9.660] Epoch 0: | | 397/? [01:20<00:00, 4.91it/s, train/loss=1.630] Epoch 0: | | 398/? [01:21<00:00, 4.91it/s, train/loss=1.630] Epoch 0: | | 398/? [01:21<00:00, 4.91it/s, train/loss=12.90] Epoch 0: | | 399/? [01:21<00:00, 4.92it/s, train/loss=12.90] Epoch 0: | | 399/? [01:21<00:00, 4.92it/s, train/loss=1.610] Epoch 0: | | 400/? [01:21<00:00, 4.91it/s, train/loss=1.610] Epoch 0: | | 400/? [01:21<00:00, 4.91it/s, train/loss=37.30] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:08, 4.51it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:08, 4.40it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:08, 4.44it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:08, 4.44it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:01<00:07, 4.45it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:07, 4.44it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:07, 4.48it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:01<00:07, 4.47it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:02<00:06, 4.47it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:02<00:06, 4.50it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:02<00:06, 4.50it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:02<00:06, 4.50it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:02<00:05, 4.53it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:03<00:05, 4.52it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:03<00:05, 4.54it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:03<00:05, 4.56it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:03<00:05, 4.58it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:03<00:04, 4.58it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:04<00:04, 4.59it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:04<00:04, 4.60it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:04<00:04, 4.61it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:04<00:03, 4.62it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:04<00:03, 4.61it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:05<00:03, 4.61it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:05<00:03, 4.61it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:05<00:03, 4.62it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:05<00:02, 4.61it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:06<00:02, 4.60it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:06<00:02, 4.60it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:06<00:02, 4.61it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:06<00:01, 4.62it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:06<00:01, 4.63it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:07<00:01, 4.63it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:07<00:01, 4.64it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:07<00:01, 4.64it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:07<00:00, 4.64it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:07<00:00, 4.63it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:08<00:00, 4.62it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:08<00:00, 4.63it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:08<00:00, 4.63it/s] Epoch 0: | | 400/? [01:30<00:00, 4.40it/s, train/loss=37.30] Epoch 0: | | 401/? [01:31<00:00, 4.36it/s, train/loss=37.30] Epoch 0: | | 401/? [01:31<00:00, 4.36it/s, train/loss=1.570] Epoch 0: | | 402/? [01:32<00:00, 4.36it/s, train/loss=1.570] Epoch 0: | | 402/? [01:32<00:00, 4.36it/s, train/loss=12.40] Epoch 0: | | 403/? [01:32<00:00, 4.37it/s, train/loss=12.40] Epoch 0: | | 403/? [01:32<00:00, 4.37it/s, train/loss=1.540] Epoch 0: | | 404/? [01:32<00:00, 4.37it/s, train/loss=1.540] Epoch 0: | | 404/? [01:32<00:00, 4.37it/s, train/loss=18.20] Epoch 0: | | 405/? [01:32<00:00, 4.37it/s, train/loss=18.20] Epoch 0: | | 405/? [01:32<00:00, 4.37it/s, train/loss=1.510] Epoch 0: | | 406/? [01:32<00:00, 4.37it/s, train/loss=1.510] Epoch 0: | | 406/? [01:32<00:00, 4.37it/s, train/loss=23.10] Epoch 0: | | 407/? [01:32<00:00, 4.38it/s, train/loss=23.10] Epoch 0: | | 407/? [01:32<00:00, 4.38it/s, train/loss=1.500] Epoch 0: | | 408/? [01:33<00:00, 4.38it/s, train/loss=1.500] Epoch 0: | | 408/? [01:33<00:00, 4.38it/s, train/loss=16.30] Epoch 0: | | 409/? [01:33<00:00, 4.39it/s, train/loss=16.30] Epoch 0: | | 409/? [01:33<00:00, 4.39it/s, train/loss=1.490] Epoch 0: | | 410/? [01:33<00:00, 4.38it/s, train/loss=1.490] Epoch 0: | | 410/? [01:33<00:00, 4.38it/s, train/loss=27.70] Epoch 0: | | 411/? [01:33<00:00, 4.39it/s, train/loss=27.70] Epoch 0: | | 411/? [01:33<00:00, 4.39it/s, train/loss=1.500] Epoch 0: | | 412/? [01:33<00:00, 4.39it/s, train/loss=1.500] Epoch 0: | | 412/? [01:33<00:00, 4.39it/s, train/loss=11.30] Epoch 0: | | 413/? [01:33<00:00, 4.40it/s, train/loss=11.30] Epoch 0: | | 413/? [01:33<00:00, 4.40it/s, train/loss=1.490] Epoch 0: | | 414/? [01:34<00:00, 4.40it/s, train/loss=1.490] Epoch 0: | | 414/? [01:34<00:00, 4.40it/s, train/loss=11.10] Epoch 0: | | 415/? [01:34<00:00, 4.41it/s, train/loss=11.10] Epoch 0: | | 415/? [01:34<00:00, 4.41it/s, train/loss=1.480] Epoch 0: | | 416/? [01:34<00:00, 4.40it/s, train/loss=1.480] Epoch 0: | | 416/? [01:34<00:00, 4.40it/s, train/loss=21.90] Epoch 0: | | 417/? [01:34<00:00, 4.41it/s, train/loss=21.90] Epoch 0: | | 417/? [01:34<00:00, 4.41it/s, train/loss=1.460] Epoch 0: | | 418/? [01:34<00:00, 4.41it/s, train/loss=1.460] Epoch 0: | | 418/? [01:34<00:00, 4.41it/s, train/loss=35.50] Epoch 0: | | 419/? [01:34<00:00, 4.42it/s, train/loss=35.50] Epoch 0: | | 419/? [01:34<00:00, 4.42it/s, train/loss=1.440] Epoch 0: | | 420/? [01:35<00:00, 4.42it/s, train/loss=1.440] Epoch 0: | | 420/? [01:35<00:00, 4.42it/s, train/loss=40.30] Epoch 0: | | 421/? [01:35<00:00, 4.43it/s, train/loss=40.30] Epoch 0: | | 421/? [01:35<00:00, 4.43it/s, train/loss=1.400] Epoch 0: | | 422/? [01:35<00:00, 4.42it/s, train/loss=1.400] Epoch 0: | | 422/? [01:35<00:00, 4.42it/s, train/loss=23.00] Epoch 0: | | 423/? [01:35<00:00, 4.43it/s, train/loss=23.00] Epoch 0: | | 423/? [01:35<00:00, 4.43it/s, train/loss=1.370] Epoch 0: | | 424/? [01:35<00:00, 4.43it/s, train/loss=1.370] Epoch 0: | | 424/? [01:35<00:00, 4.43it/s, train/loss=17.50] Epoch 0: | | 425/? [01:35<00:00, 4.44it/s, train/loss=17.50] Epoch 0: | | 425/? [01:35<00:00, 4.44it/s, train/loss=1.360] Epoch 0: | | 426/? [01:36<00:00, 4.44it/s, train/loss=1.360] Epoch 0: | | 426/? [01:36<00:00, 4.44it/s, train/loss=26.50] Epoch 0: | | 427/? [01:36<00:00, 4.45it/s, train/loss=26.50] Epoch 0: | | 427/? [01:36<00:00, 4.45it/s, train/loss=1.370] Epoch 0: | | 428/? [01:36<00:00, 4.44it/s, train/loss=1.370] Epoch 0: | | 428/? [01:36<00:00, 4.44it/s, train/loss=40.60] Epoch 0: | | 429/? [01:36<00:00, 4.45it/s, train/loss=40.60] Epoch 0: | | 429/? [01:36<00:00, 4.45it/s, train/loss=1.410] Epoch 0: | | 430/? [01:36<00:00, 4.45it/s, train/loss=1.410] Epoch 0: | | 430/? [01:36<00:00, 4.45it/s, train/loss=9.530] Epoch 0: | | 431/? [01:36<00:00, 4.46it/s, train/loss=9.530] Epoch 0: | | 431/? [01:36<00:00, 4.46it/s, train/loss=1.460] Epoch 0: | | 432/? [01:36<00:00, 4.46it/s, train/loss=1.460] Epoch 0: | | 432/? [01:36<00:00, 4.46it/s, train/loss=10.90] Epoch 0: | | 433/? [01:36<00:00, 4.46it/s, train/loss=10.90] Epoch 0: | | 433/? [01:36<00:00, 4.46it/s, train/loss=1.410] Epoch 0: | | 434/? [01:37<00:00, 4.46it/s, train/loss=1.410] Epoch 0: | | 434/? [01:37<00:00, 4.46it/s, train/loss=13.10] Epoch 0: | | 435/? [01:37<00:00, 4.47it/s, train/loss=13.10] Epoch 0: | | 435/? [01:37<00:00, 4.47it/s, train/loss=1.380] Epoch 0: | | 436/? [01:37<00:00, 4.47it/s, train/loss=1.380] Epoch 0: | | 436/? [01:37<00:00, 4.47it/s, train/loss=30.50] Epoch 0: | | 437/? [01:37<00:00, 4.48it/s, train/loss=30.50] Epoch 0: | | 437/? [01:37<00:00, 4.48it/s, train/loss=1.340] Epoch 0: | | 438/? [01:37<00:00, 4.47it/s, train/loss=1.340] Epoch 0: | | 438/? [01:37<00:00, 4.47it/s, train/loss=19.70] Epoch 0: | | 439/? [01:37<00:00, 4.48it/s, train/loss=19.70] Epoch 0: | | 439/? [01:37<00:00, 4.48it/s, train/loss=1.300] Epoch 0: | | 440/? [01:38<00:00, 4.48it/s, train/loss=1.300] Epoch 0: | | 440/? [01:38<00:00, 4.48it/s, train/loss=8.380] Epoch 0: | | 441/? [01:38<00:00, 4.49it/s, train/loss=8.380] Epoch 0: | | 441/? [01:38<00:00, 4.49it/s, train/loss=1.310] Epoch 0: | | 442/? [01:38<00:00, 4.49it/s, train/loss=1.310] Epoch 0: | | 442/? [01:38<00:00, 4.49it/s, train/loss=20.80] Epoch 0: | | 443/? [01:38<00:00, 4.49it/s, train/loss=20.80] Epoch 0: | | 443/? [01:38<00:00, 4.49it/s, train/loss=1.340] Epoch 0: | | 444/? [01:38<00:00, 4.49it/s, train/loss=1.340] Epoch 0: | | 444/? [01:38<00:00, 4.49it/s, train/loss=19.60] Epoch 0: | | 445/? [01:38<00:00, 4.50it/s, train/loss=19.60] Epoch 0: | | 445/? [01:38<00:00, 4.50it/s, train/loss=1.360] Epoch 0: | | 446/? [01:39<00:00, 4.50it/s, train/loss=1.360] Epoch 0: | | 446/? [01:39<00:00, 4.50it/s, train/loss=27.50] Epoch 0: | | 447/? [01:39<00:00, 4.51it/s, train/loss=27.50] Epoch 0: | | 447/? [01:39<00:00, 4.51it/s, train/loss=1.350] Epoch 0: | | 448/? [01:39<00:00, 4.50it/s, train/loss=1.350] Epoch 0: | | 448/? [01:39<00:00, 4.50it/s, train/loss=21.00] Epoch 0: | | 449/? [01:39<00:00, 4.51it/s, train/loss=21.00] Epoch 0: | | 449/? [01:39<00:00, 4.51it/s, train/loss=1.310] Epoch 0: | | 450/? [01:39<00:00, 4.51it/s, train/loss=1.310] Epoch 0: | | 450/? [01:39<00:00, 4.51it/s, train/loss=23.30] Epoch 0: | | 451/? [01:39<00:00, 4.52it/s, train/loss=23.30] Epoch 0: | | 451/? [01:39<00:00, 4.52it/s, train/loss=1.240] Epoch 0: | | 452/? [01:40<00:00, 4.52it/s, train/loss=1.240] Epoch 0: | | 452/? [01:40<00:00, 4.52it/s, train/loss=35.10] Epoch 0: | | 453/? [01:40<00:00, 4.53it/s, train/loss=35.10] Epoch 0: | | 453/? [01:40<00:00, 4.53it/s, train/loss=1.200] Epoch 0: | | 454/? [01:40<00:00, 4.52it/s, train/loss=1.200] Epoch 0: | | 454/? [01:40<00:00, 4.52it/s, train/loss=20.00] Epoch 0: | | 455/? [01:40<00:00, 4.53it/s, train/loss=20.00] Epoch 0: | | 455/? [01:40<00:00, 4.53it/s, train/loss=1.200] Epoch 0: | | 456/? [01:40<00:00, 4.53it/s, train/loss=1.200] Epoch 0: | | 456/? [01:40<00:00, 4.53it/s, train/loss=33.20] Epoch 0: | | 457/? [01:40<00:00, 4.54it/s, train/loss=33.20] Epoch 0: | | 457/? [01:40<00:00, 4.54it/s, train/loss=1.240] Epoch 0: | | 458/? [01:41<00:00, 4.53it/s, train/loss=1.240] Epoch 0: | | 458/? [01:41<00:00, 4.53it/s, train/loss=12.90] Epoch 0: | | 459/? [01:41<00:00, 4.54it/s, train/loss=12.90] Epoch 0: | | 459/? [01:41<00:00, 4.54it/s, train/loss=1.340] Epoch 0: | | 460/? [01:41<00:00, 4.54it/s, train/loss=1.340] Epoch 0: | | 460/? [01:41<00:00, 4.54it/s, train/loss=27.10] Epoch 0: | | 461/? [01:41<00:00, 4.55it/s, train/loss=27.10] Epoch 0: | | 461/? [01:41<00:00, 4.55it/s, train/loss=1.450] Epoch 0: | | 462/? [01:41<00:00, 4.55it/s, train/loss=1.450] Epoch 0: | | 462/? [01:41<00:00, 4.55it/s, train/loss=14.40] Epoch 0: | | 463/? [01:41<00:00, 4.55it/s, train/loss=14.40] Epoch 0: | | 463/? [01:41<00:00, 4.55it/s, train/loss=1.480] Epoch 0: | | 464/? [01:41<00:00, 4.55it/s, train/loss=1.480] Epoch 0: | | 464/? [01:41<00:00, 4.55it/s, train/loss=11.30] Epoch 0: | | 465/? [01:41<00:00, 4.56it/s, train/loss=11.30] Epoch 0: | | 465/? [01:41<00:00, 4.56it/s, train/loss=1.420] Epoch 0: | | 466/? [01:42<00:00, 4.56it/s, train/loss=1.420] Epoch 0: | | 466/? [01:42<00:00, 4.56it/s, train/loss=27.20] Epoch 0: | | 467/? [01:42<00:00, 4.57it/s, train/loss=27.20] Epoch 0: | | 467/? [01:42<00:00, 4.57it/s, train/loss=1.320] Epoch 0: | | 468/? [01:42<00:00, 4.56it/s, train/loss=1.320] Epoch 0: | | 468/? [01:42<00:00, 4.56it/s, train/loss=30.50] Epoch 0: | | 469/? [01:42<00:00, 4.57it/s, train/loss=30.50] Epoch 0: | | 469/? [01:42<00:00, 4.57it/s, train/loss=1.240] Epoch 0: | | 470/? [01:42<00:00, 4.57it/s, train/loss=1.240] Epoch 0: | | 470/? [01:42<00:00, 4.57it/s, train/loss=14.90] Epoch 0: | | 471/? [01:42<00:00, 4.58it/s, train/loss=14.90] Epoch 0: | | 471/? [01:42<00:00, 4.58it/s, train/loss=1.200] Epoch 0: | | 472/? [01:43<00:00, 4.57it/s, train/loss=1.200] Epoch 0: | | 472/? [01:43<00:00, 4.57it/s, train/loss=12.10] Epoch 0: | | 473/? [01:43<00:00, 4.58it/s, train/loss=12.10] Epoch 0: | | 473/? [01:43<00:00, 4.58it/s, train/loss=1.180] Epoch 0: | | 474/? [01:43<00:00, 4.58it/s, train/loss=1.180] Epoch 0: | | 474/? [01:43<00:00, 4.58it/s, train/loss=41.20] Epoch 0: | | 475/? [01:43<00:00, 4.59it/s, train/loss=41.20] Epoch 0: | | 475/? [01:43<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 476/? [01:43<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 476/? [01:43<00:00, 4.59it/s, train/loss=29.90] Epoch 0: | | 477/? [01:43<00:00, 4.59it/s, train/loss=29.90] Epoch 0: | | 477/? [01:43<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 478/? [01:44<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 478/? [01:44<00:00, 4.59it/s, train/loss=25.50] Epoch 0: | | 479/? [01:44<00:00, 4.60it/s, train/loss=25.50] Epoch 0: | | 479/? [01:44<00:00, 4.60it/s, train/loss=1.160] Epoch 0: | | 480/? [01:44<00:00, 4.60it/s, train/loss=1.160] Epoch 0: | | 480/? [01:44<00:00, 4.60it/s, train/loss=8.880] Epoch 0: | | 481/? [01:44<00:00, 4.60it/s, train/loss=8.880] Epoch 0: | | 481/? [01:44<00:00, 4.60it/s, train/loss=1.140] Epoch 0: | | 482/? [01:44<00:00, 4.60it/s, train/loss=1.140] Epoch 0: | | 482/? [01:44<00:00, 4.60it/s, train/loss=17.90] Epoch 0: | | 483/? [01:44<00:00, 4.61it/s, train/loss=17.90] Epoch 0: | | 483/? [01:44<00:00, 4.61it/s, train/loss=1.110] Epoch 0: | | 484/? [01:45<00:00, 4.61it/s, train/loss=1.110] Epoch 0: | | 484/? [01:45<00:00, 4.61it/s, train/loss=32.30] Epoch 0: | | 485/? [01:45<00:00, 4.62it/s, train/loss=32.30] Epoch 0: | | 485/? [01:45<00:00, 4.62it/s, train/loss=1.080] Epoch 0: | | 486/? [01:45<00:00, 4.61it/s, train/loss=1.080] Epoch 0: | | 486/? [01:45<00:00, 4.61it/s, train/loss=22.40] Epoch 0: | | 487/? [01:45<00:00, 4.62it/s, train/loss=22.40] Epoch 0: | | 487/? [01:45<00:00, 4.62it/s, train/loss=1.080] Epoch 0: | | 488/? [01:45<00:00, 4.62it/s, train/loss=1.080] Epoch 0: | | 488/? [01:45<00:00, 4.62it/s, train/loss=19.40] Epoch 0: | | 489/? [01:45<00:00, 4.63it/s, train/loss=19.40] Epoch 0: | | 489/? [01:45<00:00, 4.63it/s, train/loss=1.080] Epoch 0: | | 490/? [01:45<00:00, 4.62it/s, train/loss=1.080] Epoch 0: | | 490/? [01:45<00:00, 4.62it/s, train/loss=22.90] Epoch 0: | | 491/? [01:46<00:00, 4.63it/s, train/loss=22.90] Epoch 0: | | 491/? [01:46<00:00, 4.63it/s, train/loss=1.080] Epoch 0: | | 492/? [01:46<00:00, 4.63it/s, train/loss=1.080] Epoch 0: | | 492/? [01:46<00:00, 4.63it/s, train/loss=24.60] Epoch 0: | | 493/? [01:46<00:00, 4.64it/s, train/loss=24.60] Epoch 0: | | 493/? [01:46<00:00, 4.64it/s, train/loss=1.080] Epoch 0: | | 494/? [01:46<00:00, 4.63it/s, train/loss=1.080] Epoch 0: | | 494/? [01:46<00:00, 4.63it/s, train/loss=29.80] Epoch 0: | | 495/? [01:46<00:00, 4.64it/s, train/loss=29.80] Epoch 0: | | 495/? [01:46<00:00, 4.64it/s, train/loss=1.100] Epoch 0: | | 496/? [01:46<00:00, 4.64it/s, train/loss=1.100] Epoch 0: | | 496/? [01:46<00:00, 4.64it/s, train/loss=31.80] Epoch 0: | | 497/? [01:46<00:00, 4.65it/s, train/loss=31.80] Epoch 0: | | 497/? [01:46<00:00, 4.65it/s, train/loss=1.130] Epoch 0: | | 498/? [01:47<00:00, 4.64it/s, train/loss=1.130] Epoch 0: | | 498/? [01:47<00:00, 4.64it/s, train/loss=11.90] Epoch 0: | | 499/? [01:47<00:00, 4.65it/s, train/loss=11.90] Epoch 0: | | 499/? [01:47<00:00, 4.65it/s, train/loss=1.140] Epoch 0: | | 500/? [01:47<00:00, 4.65it/s, train/loss=1.140] Epoch 0: | | 500/? [01:47<00:00, 4.65it/s, train/loss=31.60] Epoch 0: | | 501/? [01:47<00:00, 4.66it/s, train/loss=31.60] Epoch 0: | | 501/? [01:47<00:00, 4.66it/s, train/loss=1.140] Epoch 0: | | 502/? [01:47<00:00, 4.65it/s, train/loss=1.140] Epoch 0: | | 502/? [01:47<00:00, 4.65it/s, train/loss=56.30] Epoch 0: | | 503/? [01:47<00:00, 4.66it/s, train/loss=56.30] Epoch 0: | | 503/? [01:47<00:00, 4.66it/s, train/loss=1.150] Epoch 0: | | 504/? [01:48<00:00, 4.66it/s, train/loss=1.150] Epoch 0: | | 504/? [01:48<00:00, 4.66it/s, train/loss=45.80] Epoch 0: | | 505/? [01:48<00:00, 4.67it/s, train/loss=45.80] Epoch 0: | | 505/? [01:48<00:00, 4.67it/s, train/loss=1.150] Epoch 0: | | 506/? [01:48<00:00, 4.66it/s, train/loss=1.150] Epoch 0: | | 506/? [01:48<00:00, 4.66it/s, train/loss=10.50] Epoch 0: | | 507/? [01:48<00:00, 4.67it/s, train/loss=10.50] Epoch 0: | | 507/? [01:48<00:00, 4.67it/s, train/loss=1.150] Epoch 0: | | 508/? [01:48<00:00, 4.67it/s, train/loss=1.150] Epoch 0: | | 508/? [01:48<00:00, 4.67it/s, train/loss=33.40] Epoch 0: | | 509/? [01:48<00:00, 4.68it/s, train/loss=33.40] Epoch 0: | | 509/? [01:48<00:00, 4.68it/s, train/loss=1.140] Epoch 0: | | 510/? [01:49<00:00, 4.67it/s, train/loss=1.140] Epoch 0: | | 510/? [01:49<00:00, 4.67it/s, train/loss=16.90] Epoch 0: | | 511/? [01:49<00:00, 4.68it/s, train/loss=16.90] Epoch 0: | | 511/? [01:49<00:00, 4.68it/s, train/loss=1.140] Epoch 0: | | 512/? [01:49<00:00, 4.68it/s, train/loss=1.140] Epoch 0: | | 512/? [01:49<00:00, 4.68it/s, train/loss=26.30] Epoch 0: | | 513/? [01:49<00:00, 4.69it/s, train/loss=26.30] Epoch 0: | | 513/? [01:49<00:00, 4.69it/s, train/loss=1.150] Epoch 0: | | 514/? [01:49<00:00, 4.69it/s, train/loss=1.150] Epoch 0: | | 514/? [01:49<00:00, 4.68it/s, train/loss=15.90] Epoch 0: | | 515/? [01:49<00:00, 4.69it/s, train/loss=15.90] Epoch 0: | | 515/? [01:49<00:00, 4.69it/s, train/loss=1.170] Epoch 0: | | 516/? [01:50<00:00, 4.69it/s, train/loss=1.170] Epoch 0: | | 516/? [01:50<00:00, 4.69it/s, train/loss=29.20] Epoch 0: | | 517/? [01:50<00:00, 4.70it/s, train/loss=29.20] Epoch 0: | | 517/? [01:50<00:00, 4.70it/s, train/loss=1.210] Epoch 0: | | 518/? [01:50<00:00, 4.69it/s, train/loss=1.210] Epoch 0: | | 518/? [01:50<00:00, 4.69it/s, train/loss=35.40] Epoch 0: | | 519/? [01:50<00:00, 4.70it/s, train/loss=35.40] Epoch 0: | | 519/? [01:50<00:00, 4.70it/s, train/loss=1.210] Epoch 0: | | 520/? [01:50<00:00, 4.70it/s, train/loss=1.210] Epoch 0: | | 520/? [01:50<00:00, 4.70it/s, train/loss=31.80] Epoch 0: | | 521/? [01:50<00:00, 4.71it/s, train/loss=31.80] Epoch 0: | | 521/? [01:50<00:00, 4.71it/s, train/loss=1.160] Epoch 0: | | 522/? [01:50<00:00, 4.70it/s, train/loss=1.160] Epoch 0: | | 522/? [01:50<00:00, 4.70it/s, train/loss=28.70] Epoch 0: | | 523/? [01:50<00:00, 4.71it/s, train/loss=28.70] Epoch 0: | | 523/? [01:50<00:00, 4.71it/s, train/loss=1.140] Epoch 0: | | 524/? [01:51<00:00, 4.71it/s, train/loss=1.140] Epoch 0: | | 524/? [01:51<00:00, 4.71it/s, train/loss=26.10] Epoch 0: | | 525/? [01:51<00:00, 4.72it/s, train/loss=26.10] Epoch 0: | | 525/? [01:51<00:00, 4.72it/s, train/loss=1.160] Epoch 0: | | 526/? [01:51<00:00, 4.71it/s, train/loss=1.160] Epoch 0: | | 526/? [01:51<00:00, 4.71it/s, train/loss=21.50] Epoch 0: | | 527/? [01:51<00:00, 4.72it/s, train/loss=21.50] Epoch 0: | | 527/? [01:51<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 528/? [01:51<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 528/? [01:51<00:00, 4.72it/s, train/loss=27.90] Epoch 0: | | 529/? [01:51<00:00, 4.73it/s, train/loss=27.90] Epoch 0: | | 529/? [01:51<00:00, 4.73it/s, train/loss=1.250] Epoch 0: | | 530/? [01:52<00:00, 4.72it/s, train/loss=1.250] Epoch 0: | | 530/? [01:52<00:00, 4.72it/s, train/loss=14.70] Epoch 0: | | 531/? [01:52<00:00, 4.73it/s, train/loss=14.70] Epoch 0: | | 531/? [01:52<00:00, 4.73it/s, train/loss=1.250] Epoch 0: | | 532/? [01:52<00:00, 4.73it/s, train/loss=1.250] Epoch 0: | | 532/? [01:52<00:00, 4.73it/s, train/loss=23.20] Epoch 0: | | 533/? [01:52<00:00, 4.74it/s, train/loss=23.20] Epoch 0: | | 533/? [01:52<00:00, 4.74it/s, train/loss=1.240] Epoch 0: | | 534/? [01:52<00:00, 4.73it/s, train/loss=1.240] Epoch 0: | | 534/? [01:52<00:00, 4.73it/s, train/loss=12.80] Epoch 0: | | 535/? [01:52<00:00, 4.74it/s, train/loss=12.80] Epoch 0: | | 535/? [01:52<00:00, 4.74it/s, train/loss=1.230] Epoch 0: | | 536/? [01:53<00:00, 4.74it/s, train/loss=1.230] Epoch 0: | | 536/? [01:53<00:00, 4.74it/s, train/loss=44.10] Epoch 0: | | 537/? [01:53<00:00, 4.75it/s, train/loss=44.10] Epoch 0: | | 537/? [01:53<00:00, 4.75it/s, train/loss=1.210] Epoch 0: | | 538/? [01:53<00:00, 4.74it/s, train/loss=1.210] Epoch 0: | | 538/? [01:53<00:00, 4.74it/s, train/loss=16.80] Epoch 0: | | 539/? [01:53<00:00, 4.75it/s, train/loss=16.80] Epoch 0: | | 539/? [01:53<00:00, 4.75it/s, train/loss=1.200] Epoch 0: | | 540/? [01:53<00:00, 4.75it/s, train/loss=1.200] Epoch 0: | | 540/? [01:53<00:00, 4.75it/s, train/loss=16.80] Epoch 0: | | 541/? [01:53<00:00, 4.76it/s, train/loss=16.80] Epoch 0: | | 541/? [01:53<00:00, 4.76it/s, train/loss=1.190] Epoch 0: | | 542/? [01:54<00:00, 4.75it/s, train/loss=1.190] Epoch 0: | | 542/? [01:54<00:00, 4.75it/s, train/loss=17.30] Epoch 0: | | 543/? [01:54<00:00, 4.76it/s, train/loss=17.30] Epoch 0: | | 543/? [01:54<00:00, 4.76it/s, train/loss=1.170] Epoch 0: | | 544/? [01:54<00:00, 4.76it/s, train/loss=1.170] Epoch 0: | | 544/? [01:54<00:00, 4.76it/s, train/loss=12.40] Epoch 0: | | 545/? [01:54<00:00, 4.76it/s, train/loss=12.40] Epoch 0: | | 545/? [01:54<00:00, 4.76it/s, train/loss=1.170] Epoch 0: | | 546/? [01:54<00:00, 4.76it/s, train/loss=1.170] Epoch 0: | | 546/? [01:54<00:00, 4.76it/s, train/loss=25.30] Epoch 0: | | 547/? [01:54<00:00, 4.76it/s, train/loss=25.30] Epoch 0: | | 547/? [01:54<00:00, 4.76it/s, train/loss=1.150] Epoch 0: | | 548/? [01:55<00:00, 4.76it/s, train/loss=1.150] Epoch 0: | | 548/? [01:55<00:00, 4.76it/s, train/loss=25.90] Epoch 0: | | 549/? [01:55<00:00, 4.76it/s, train/loss=25.90] Epoch 0: | | 549/? [01:55<00:00, 4.76it/s, train/loss=1.110] Epoch 0: | | 550/? [01:55<00:00, 4.76it/s, train/loss=1.110] Epoch 0: | | 550/? [01:55<00:00, 4.76it/s, train/loss=17.80] Epoch 0: | | 551/? [01:55<00:00, 4.77it/s, train/loss=17.80] Epoch 0: | | 551/? [01:55<00:00, 4.77it/s, train/loss=1.070] Epoch 0: | | 552/? [01:55<00:00, 4.77it/s, train/loss=1.070] Epoch 0: | | 552/? [01:55<00:00, 4.77it/s, train/loss=36.40] Epoch 0: | | 553/? [01:55<00:00, 4.77it/s, train/loss=36.40] Epoch 0: | | 553/? [01:55<00:00, 4.77it/s, train/loss=1.030] Epoch 0: | | 554/? [01:56<00:00, 4.77it/s, train/loss=1.030] Epoch 0: | | 554/? [01:56<00:00, 4.77it/s, train/loss=16.90] Epoch 0: | | 555/? [01:56<00:00, 4.78it/s, train/loss=16.90] Epoch 0: | | 555/? [01:56<00:00, 4.78it/s, train/loss=1.020] Epoch 0: | | 556/? [01:56<00:00, 4.77it/s, train/loss=1.020] Epoch 0: | | 556/? [01:56<00:00, 4.77it/s, train/loss=20.60] Epoch 0: | | 557/? [01:56<00:00, 4.78it/s, train/loss=20.60] Epoch 0: | | 557/? [01:56<00:00, 4.78it/s, train/loss=1.010] Epoch 0: | | 558/? [01:56<00:00, 4.78it/s, train/loss=1.010] Epoch 0: | | 558/? [01:56<00:00, 4.78it/s, train/loss=28.10] Epoch 0: | | 559/? [01:56<00:00, 4.78it/s, train/loss=28.10] Epoch 0: | | 559/? [01:56<00:00, 4.78it/s, train/loss=1.020] Epoch 0: | | 560/? [01:57<00:00, 4.77it/s, train/loss=1.020] Epoch 0: | | 560/? [01:57<00:00, 4.77it/s, train/loss=37.20] Epoch 0: | | 561/? [01:57<00:00, 4.78it/s, train/loss=37.20] Epoch 0: | | 561/? [01:57<00:00, 4.78it/s, train/loss=1.030] Epoch 0: | | 562/? [01:57<00:00, 4.77it/s, train/loss=1.030] Epoch 0: | | 562/? [01:57<00:00, 4.77it/s, train/loss=10.80] Epoch 0: | | 563/? [01:57<00:00, 4.78it/s, train/loss=10.80] Epoch 0: | | 563/? [01:57<00:00, 4.78it/s, train/loss=1.050] Epoch 0: | | 564/? [01:58<00:00, 4.77it/s, train/loss=1.050] Epoch 0: | | 564/? [01:58<00:00, 4.77it/s, train/loss=23.20] Epoch 0: | | 565/? [01:58<00:00, 4.77it/s, train/loss=23.20] Epoch 0: | | 565/? [01:58<00:00, 4.77it/s, train/loss=1.080] Epoch 0: | | 566/? [01:58<00:00, 4.77it/s, train/loss=1.080] Epoch 0: | | 566/? [01:58<00:00, 4.77it/s, train/loss=23.40] Epoch 0: | | 567/? [01:58<00:00, 4.77it/s, train/loss=23.40] Epoch 0: | | 567/? [01:58<00:00, 4.77it/s, train/loss=1.130] Epoch 0: | | 568/? [01:59<00:00, 4.77it/s, train/loss=1.130] Epoch 0: | | 568/? [01:59<00:00, 4.77it/s, train/loss=53.80] Epoch 0: | | 569/? [01:59<00:00, 4.77it/s, train/loss=53.80] Epoch 0: | | 569/? [01:59<00:00, 4.77it/s, train/loss=1.140] Epoch 0: | | 570/? [01:59<00:00, 4.77it/s, train/loss=1.140] Epoch 0: | | 570/? [01:59<00:00, 4.77it/s, train/loss=18.30] Epoch 0: | | 571/? [01:59<00:00, 4.77it/s, train/loss=18.30] Epoch 0: | | 571/? [01:59<00:00, 4.77it/s, train/loss=1.120] Epoch 0: | | 572/? [02:00<00:00, 4.76it/s, train/loss=1.120] Epoch 0: | | 572/? [02:00<00:00, 4.76it/s, train/loss=11.50] Epoch 0: | | 573/? [02:00<00:00, 4.77it/s, train/loss=11.50] Epoch 0: | | 573/? [02:00<00:00, 4.77it/s, train/loss=1.090] Epoch 0: | | 574/? [02:00<00:00, 4.76it/s, train/loss=1.090] Epoch 0: | | 574/? [02:00<00:00, 4.76it/s, train/loss=15.20] Epoch 0: | | 575/? [02:00<00:00, 4.77it/s, train/loss=15.20] Epoch 0: | | 575/? [02:00<00:00, 4.77it/s, train/loss=1.060] Epoch 0: | | 576/? [02:00<00:00, 4.76it/s, train/loss=1.060] Epoch 0: | | 576/? [02:00<00:00, 4.76it/s, train/loss=33.00] Epoch 0: | | 577/? [02:01<00:00, 4.77it/s, train/loss=33.00] Epoch 0: | | 577/? [02:01<00:00, 4.77it/s, train/loss=1.060] Epoch 0: | | 578/? [02:01<00:00, 4.76it/s, train/loss=1.060] Epoch 0: | | 578/? [02:01<00:00, 4.76it/s, train/loss=21.20] Epoch 0: | | 579/? [02:01<00:00, 4.76it/s, train/loss=21.20] Epoch 0: | | 579/? [02:01<00:00, 4.76it/s, train/loss=1.090] Epoch 0: | | 580/? [02:01<00:00, 4.76it/s, train/loss=1.090] Epoch 0: | | 580/? [02:01<00:00, 4.76it/s, train/loss=83.40] Epoch 0: | | 581/? [02:02<00:00, 4.76it/s, train/loss=83.40] Epoch 0: | | 581/? [02:02<00:00, 4.76it/s, train/loss=1.160] Epoch 0: | | 582/? [02:02<00:00, 4.76it/s, train/loss=1.160] Epoch 0: | | 582/? [02:02<00:00, 4.76it/s, train/loss=19.10] Epoch 0: | | 583/? [02:02<00:00, 4.76it/s, train/loss=19.10] Epoch 0: | | 583/? [02:02<00:00, 4.76it/s, train/loss=1.240] Epoch 0: | | 584/? [02:02<00:00, 4.75it/s, train/loss=1.240] Epoch 0: | | 584/? [02:02<00:00, 4.75it/s, train/loss=60.20] Epoch 0: | | 585/? [02:02<00:00, 4.76it/s, train/loss=60.20] Epoch 0: | | 585/? [02:02<00:00, 4.76it/s, train/loss=1.230] Epoch 0: | | 586/? [02:03<00:00, 4.75it/s, train/loss=1.230] Epoch 0: | | 586/? [02:03<00:00, 4.75it/s, train/loss=21.30] Epoch 0: | | 587/? [02:03<00:00, 4.76it/s, train/loss=21.30] Epoch 0: | | 587/? [02:03<00:00, 4.76it/s, train/loss=1.210] Epoch 0: | | 588/? [02:03<00:00, 4.75it/s, train/loss=1.210] Epoch 0: | | 588/? [02:03<00:00, 4.75it/s, train/loss=32.10] Epoch 0: | | 589/? [02:03<00:00, 4.76it/s, train/loss=32.10] Epoch 0: | | 589/? [02:03<00:00, 4.76it/s, train/loss=1.240] Epoch 0: | | 590/? [02:04<00:00, 4.75it/s, train/loss=1.240] Epoch 0: | | 590/? [02:04<00:00, 4.75it/s, train/loss=28.90] Epoch 0: | | 591/? [02:04<00:00, 4.76it/s, train/loss=28.90] Epoch 0: | | 591/? [02:04<00:00, 4.76it/s, train/loss=1.270] Epoch 0: | | 592/? [02:04<00:00, 4.75it/s, train/loss=1.270] Epoch 0: | | 592/? [02:04<00:00, 4.75it/s, train/loss=12.50] Epoch 0: | | 593/? [02:04<00:00, 4.76it/s, train/loss=12.50] Epoch 0: | | 593/? [02:04<00:00, 4.76it/s, train/loss=1.260] Epoch 0: | | 594/? [02:04<00:00, 4.76it/s, train/loss=1.260] Epoch 0: | | 594/? [02:04<00:00, 4.76it/s, train/loss=24.00] Epoch 0: | | 595/? [02:04<00:00, 4.77it/s, train/loss=24.00] Epoch 0: | | 595/? [02:04<00:00, 4.77it/s, train/loss=1.230] Epoch 0: | | 596/? [02:05<00:00, 4.76it/s, train/loss=1.230] Epoch 0: | | 596/? [02:05<00:00, 4.76it/s, train/loss=15.00] Epoch 0: | | 597/? [02:05<00:00, 4.77it/s, train/loss=15.00] Epoch 0: | | 597/? [02:05<00:00, 4.77it/s, train/loss=1.210] Epoch 0: | | 598/? [02:05<00:00, 4.77it/s, train/loss=1.210] Epoch 0: | | 598/? [02:05<00:00, 4.77it/s, train/loss=10.30] Epoch 0: | | 599/? [02:05<00:00, 4.77it/s, train/loss=10.30] Epoch 0: | | 599/? [02:05<00:00, 4.77it/s, train/loss=1.200] Epoch 0: | | 600/? [02:05<00:00, 4.77it/s, train/loss=1.200] Epoch 0: | | 600/? [02:05<00:00, 4.77it/s, train/loss=21.10] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:06, 5.79it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:06, 5.50it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:06, 5.39it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:06, 5.34it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:06, 5.42it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:01<00:06, 5.44it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:06, 5.47it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:01<00:05, 5.50it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:05, 5.53it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:05, 5.57it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:05, 5.60it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:02<00:04, 5.62it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:02<00:04, 5.60it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:02<00:04, 5.58it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:02<00:04, 5.55it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:02<00:04, 5.53it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:03<00:04, 5.51it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:03<00:04, 5.49it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:03<00:03, 5.48it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:03<00:03, 5.47it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:03<00:03, 5.46it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:04<00:03, 5.46it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:04<00:03, 5.47it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:04<00:02, 5.46it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:04<00:02, 5.46it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:04<00:02, 5.46it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:04<00:02, 5.45it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:05<00:02, 5.45it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:05<00:02, 5.45it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:05<00:01, 5.45it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:05<00:01, 5.45it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:05<00:01, 5.46it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:06<00:01, 5.46it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:06<00:01, 5.48it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:06<00:00, 5.49it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:06<00:00, 5.48it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:06<00:00, 5.48it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:06<00:00, 5.49it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:07<00:00, 5.50it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:07<00:00, 5.51it/s] Epoch 0: | | 600/? [02:13<00:00, 4.48it/s, train/loss=21.10] Epoch 0: | | 601/? [02:14<00:00, 4.47it/s, train/loss=21.10] Epoch 0: | | 601/? [02:14<00:00, 4.47it/s, train/loss=1.190] Epoch 0: | | 602/? [02:14<00:00, 4.47it/s, train/loss=1.190] Epoch 0: | | 602/? [02:14<00:00, 4.47it/s, train/loss=34.40] Epoch 0: | | 603/? [02:14<00:00, 4.48it/s, train/loss=34.40] Epoch 0: | | 603/? [02:14<00:00, 4.48it/s, train/loss=1.200] Epoch 0: | | 604/? [02:14<00:00, 4.47it/s, train/loss=1.200] Epoch 0: | | 604/? [02:14<00:00, 4.47it/s, train/loss=17.70] Epoch 0: | | 605/? [02:15<00:00, 4.48it/s, train/loss=17.70] Epoch 0: | | 605/? [02:15<00:00, 4.48it/s, train/loss=1.220] Epoch 0: | | 606/? [02:15<00:00, 4.48it/s, train/loss=1.220] Epoch 0: | | 606/? [02:15<00:00, 4.48it/s, train/loss=21.60] Epoch 0: | | 607/? [02:15<00:00, 4.49it/s, train/loss=21.60] Epoch 0: | | 607/? [02:15<00:00, 4.49it/s, train/loss=1.190] Epoch 0: | | 608/? [02:15<00:00, 4.48it/s, train/loss=1.190] Epoch 0: | | 608/? [02:15<00:00, 4.48it/s, train/loss=21.10] Epoch 0: | | 609/? [02:15<00:00, 4.49it/s, train/loss=21.10] Epoch 0: | | 609/? [02:15<00:00, 4.49it/s, train/loss=1.120] Epoch 0: | | 610/? [02:15<00:00, 4.49it/s, train/loss=1.120] Epoch 0: | | 610/? [02:15<00:00, 4.49it/s, train/loss=23.20] Epoch 0: | | 611/? [02:15<00:00, 4.49it/s, train/loss=23.20] Epoch 0: | | 611/? [02:15<00:00, 4.49it/s, train/loss=1.070] Epoch 0: | | 612/? [02:16<00:00, 4.49it/s, train/loss=1.070] Epoch 0: | | 612/? [02:16<00:00, 4.49it/s, train/loss=24.80] Epoch 0: | | 613/? [02:16<00:00, 4.50it/s, train/loss=24.80] Epoch 0: | | 613/? [02:16<00:00, 4.50it/s, train/loss=1.040] Epoch 0: | | 614/? [02:16<00:00, 4.50it/s, train/loss=1.040] Epoch 0: | | 614/? [02:16<00:00, 4.50it/s, train/loss=12.10] Epoch 0: | | 615/? [02:16<00:00, 4.50it/s, train/loss=12.10] Epoch 0: | | 615/? [02:16<00:00, 4.50it/s, train/loss=1.030] Epoch 0: | | 616/? [02:16<00:00, 4.50it/s, train/loss=1.030] Epoch 0: | | 616/? [02:16<00:00, 4.50it/s, train/loss=43.70] Epoch 0: | | 617/? [02:16<00:00, 4.51it/s, train/loss=43.70] Epoch 0: | | 617/? [02:16<00:00, 4.51it/s, train/loss=1.050] Epoch 0: | | 618/? [02:17<00:00, 4.51it/s, train/loss=1.050] Epoch 0: | | 618/? [02:17<00:00, 4.51it/s, train/loss=19.50] Epoch 0: | | 619/? [02:17<00:00, 4.51it/s, train/loss=19.50] Epoch 0: | | 619/? [02:17<00:00, 4.51it/s, train/loss=1.090] Epoch 0: | | 620/? [02:17<00:00, 4.51it/s, train/loss=1.090] Epoch 0: | | 620/? [02:17<00:00, 4.51it/s, train/loss=31.00] Epoch 0: | | 621/? [02:17<00:00, 4.52it/s, train/loss=31.00] Epoch 0: | | 621/? [02:17<00:00, 4.52it/s, train/loss=1.130] Epoch 0: | | 622/? [02:17<00:00, 4.52it/s, train/loss=1.130] Epoch 0: | | 622/? [02:17<00:00, 4.52it/s, train/loss=18.60] Epoch 0: | | 623/? [02:17<00:00, 4.52it/s, train/loss=18.60] Epoch 0: | | 623/? [02:17<00:00, 4.52it/s, train/loss=1.170] Epoch 0: | | 624/? [02:18<00:00, 4.52it/s, train/loss=1.170] Epoch 0: | | 624/? [02:18<00:00, 4.52it/s, train/loss=16.00] Epoch 0: | | 625/? [02:18<00:00, 4.53it/s, train/loss=16.00] Epoch 0: | | 625/? [02:18<00:00, 4.53it/s, train/loss=1.190] Epoch 0: | | 626/? [02:18<00:00, 4.52it/s, train/loss=1.190] Epoch 0: | | 626/? [02:18<00:00, 4.52it/s, train/loss=38.30] Epoch 0: | | 627/? [02:18<00:00, 4.53it/s, train/loss=38.30] Epoch 0: | | 627/? [02:18<00:00, 4.53it/s, train/loss=1.220] Epoch 0: | | 628/? [02:18<00:00, 4.53it/s, train/loss=1.220] Epoch 0: | | 628/? [02:18<00:00, 4.53it/s, train/loss=27.00] Epoch 0: | | 629/? [02:18<00:00, 4.53it/s, train/loss=27.00] Epoch 0: | | 629/? [02:18<00:00, 4.53it/s, train/loss=1.220] Epoch 0: | | 630/? [02:18<00:00, 4.53it/s, train/loss=1.220] Epoch 0: | | 630/? [02:18<00:00, 4.53it/s, train/loss=23.60] Epoch 0: | | 631/? [02:19<00:00, 4.54it/s, train/loss=23.60] Epoch 0: | | 631/? [02:19<00:00, 4.54it/s, train/loss=1.170] Epoch 0: | | 632/? [02:19<00:00, 4.54it/s, train/loss=1.170] Epoch 0: | | 632/? [02:19<00:00, 4.54it/s, train/loss=9.630] Epoch 0: | | 633/? [02:19<00:00, 4.54it/s, train/loss=9.630] Epoch 0: | | 633/? [02:19<00:00, 4.54it/s, train/loss=1.140] Epoch 0: | | 634/? [02:19<00:00, 4.54it/s, train/loss=1.140] Epoch 0: | | 634/? [02:19<00:00, 4.54it/s, train/loss=78.00] Epoch 0: | | 635/? [02:19<00:00, 4.55it/s, train/loss=78.00] Epoch 0: | | 635/? [02:19<00:00, 4.55it/s, train/loss=1.120] Epoch 0: | | 636/? [02:19<00:00, 4.55it/s, train/loss=1.120] Epoch 0: | | 636/? [02:19<00:00, 4.55it/s, train/loss=11.30] Epoch 0: | | 637/? [02:19<00:00, 4.55it/s, train/loss=11.30] Epoch 0: | | 637/? [02:19<00:00, 4.55it/s, train/loss=1.110] Epoch 0: | | 638/? [02:20<00:00, 4.55it/s, train/loss=1.110] Epoch 0: | | 638/? [02:20<00:00, 4.55it/s, train/loss=18.90] Epoch 0: | | 639/? [02:20<00:00, 4.56it/s, train/loss=18.90] Epoch 0: | | 639/? [02:20<00:00, 4.56it/s, train/loss=1.110] Epoch 0: | | 640/? [02:20<00:00, 4.55it/s, train/loss=1.110] Epoch 0: | | 640/? [02:20<00:00, 4.55it/s, train/loss=26.10] Epoch 0: | | 641/? [02:20<00:00, 4.56it/s, train/loss=26.10] Epoch 0: | | 641/? [02:20<00:00, 4.56it/s, train/loss=1.100] Epoch 0: | | 642/? [02:21<00:00, 4.55it/s, train/loss=1.100] Epoch 0: | | 642/? [02:21<00:00, 4.55it/s, train/loss=14.20] Epoch 0: | | 643/? [02:21<00:00, 4.56it/s, train/loss=14.20] Epoch 0: | | 643/? [02:21<00:00, 4.56it/s, train/loss=1.080] Epoch 0: | | 644/? [02:21<00:00, 4.55it/s, train/loss=1.080] Epoch 0: | | 644/? [02:21<00:00, 4.55it/s, train/loss=40.70] Epoch 0: | | 645/? [02:21<00:00, 4.56it/s, train/loss=40.70] Epoch 0: | | 645/? [02:21<00:00, 4.56it/s, train/loss=1.070] Epoch 0: | | 646/? [02:21<00:00, 4.55it/s, train/loss=1.070] Epoch 0: | | 646/? [02:21<00:00, 4.55it/s, train/loss=32.30] Epoch 0: | | 647/? [02:21<00:00, 4.56it/s, train/loss=32.30] Epoch 0: | | 647/? [02:21<00:00, 4.56it/s, train/loss=1.080] Epoch 0: | | 648/? [02:22<00:00, 4.56it/s, train/loss=1.080] Epoch 0: | | 648/? [02:22<00:00, 4.56it/s, train/loss=38.60] Epoch 0: | | 649/? [02:22<00:00, 4.56it/s, train/loss=38.60] Epoch 0: | | 649/? [02:22<00:00, 4.56it/s, train/loss=1.080] Epoch 0: | | 650/? [02:22<00:00, 4.56it/s, train/loss=1.080] Epoch 0: | | 650/? [02:22<00:00, 4.56it/s, train/loss=26.00] Epoch 0: | | 651/? [02:22<00:00, 4.57it/s, train/loss=26.00] Epoch 0: | | 651/? [02:22<00:00, 4.57it/s, train/loss=1.080] Epoch 0: | | 652/? [02:22<00:00, 4.57it/s, train/loss=1.080] Epoch 0: | | 652/? [02:22<00:00, 4.57it/s, train/loss=40.00] Epoch 0: | | 653/? [02:22<00:00, 4.57it/s, train/loss=40.00] Epoch 0: | | 653/? [02:22<00:00, 4.57it/s, train/loss=1.080] Epoch 0: | | 654/? [02:23<00:00, 4.57it/s, train/loss=1.080] Epoch 0: | | 654/? [02:23<00:00, 4.57it/s, train/loss=32.60] Epoch 0: | | 655/? [02:23<00:00, 4.58it/s, train/loss=32.60] Epoch 0: | | 655/? [02:23<00:00, 4.58it/s, train/loss=1.110] Epoch 0: | | 656/? [02:23<00:00, 4.57it/s, train/loss=1.110] Epoch 0: | | 656/? [02:23<00:00, 4.57it/s, train/loss=13.30] Epoch 0: | | 657/? [02:23<00:00, 4.58it/s, train/loss=13.30] Epoch 0: | | 657/? [02:23<00:00, 4.58it/s, train/loss=1.140] Epoch 0: | | 658/? [02:23<00:00, 4.58it/s, train/loss=1.140] Epoch 0: | | 658/? [02:23<00:00, 4.58it/s, train/loss=41.00] Epoch 0: | | 659/? [02:23<00:00, 4.58it/s, train/loss=41.00] Epoch 0: | | 659/? [02:23<00:00, 4.58it/s, train/loss=1.150] Epoch 0: | | 660/? [02:24<00:00, 4.58it/s, train/loss=1.150] Epoch 0: | | 660/? [02:24<00:00, 4.58it/s, train/loss=13.90] Epoch 0: | | 661/? [02:24<00:00, 4.59it/s, train/loss=13.90] Epoch 0: | | 661/? [02:24<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 662/? [02:24<00:00, 4.59it/s, train/loss=1.170] Epoch 0: | | 662/? [02:24<00:00, 4.59it/s, train/loss=81.40] Epoch 0: | | 663/? [02:24<00:00, 4.59it/s, train/loss=81.40] Epoch 0: | | 663/? [02:24<00:00, 4.59it/s, train/loss=1.220] Epoch 0: | | 664/? [02:24<00:00, 4.59it/s, train/loss=1.220] Epoch 0: | | 664/? [02:24<00:00, 4.59it/s, train/loss=12.20] Epoch 0: | | 665/? [02:24<00:00, 4.60it/s, train/loss=12.20] Epoch 0: | | 665/? [02:24<00:00, 4.60it/s, train/loss=1.240] Epoch 0: | | 666/? [02:24<00:00, 4.59it/s, train/loss=1.240] Epoch 0: | | 666/? [02:24<00:00, 4.59it/s, train/loss=26.10] Epoch 0: | | 667/? [02:24<00:00, 4.60it/s, train/loss=26.10] Epoch 0: | | 667/? [02:24<00:00, 4.60it/s, train/loss=1.150] Epoch 0: | | 668/? [02:25<00:00, 4.60it/s, train/loss=1.150] Epoch 0: | | 668/? [02:25<00:00, 4.60it/s, train/loss=38.30] Epoch 0: | | 669/? [02:25<00:00, 4.60it/s, train/loss=38.30] Epoch 0: | | 669/? [02:25<00:00, 4.60it/s, train/loss=1.090] Epoch 0: | | 670/? [02:25<00:00, 4.60it/s, train/loss=1.090] Epoch 0: | | 670/? [02:25<00:00, 4.60it/s, train/loss=25.60] Epoch 0: | | 671/? [02:25<00:00, 4.61it/s, train/loss=25.60] Epoch 0: | | 671/? [02:25<00:00, 4.61it/s, train/loss=1.060] Epoch 0: | | 672/? [02:25<00:00, 4.61it/s, train/loss=1.060] Epoch 0: | | 672/? [02:25<00:00, 4.61it/s, train/loss=14.40] Epoch 0: | | 673/? [02:25<00:00, 4.61it/s, train/loss=14.40] Epoch 0: | | 673/? [02:25<00:00, 4.61it/s, train/loss=1.060] Epoch 0: | | 674/? [02:26<00:00, 4.61it/s, train/loss=1.060] Epoch 0: | | 674/? [02:26<00:00, 4.61it/s, train/loss=20.00] Epoch 0: | | 675/? [02:26<00:00, 4.62it/s, train/loss=20.00] Epoch 0: | | 675/? [02:26<00:00, 4.62it/s, train/loss=1.060] Epoch 0: | | 676/? [02:26<00:00, 4.61it/s, train/loss=1.060] Epoch 0: | | 676/? [02:26<00:00, 4.61it/s, train/loss=18.30] Epoch 0: | | 677/? [02:26<00:00, 4.62it/s, train/loss=18.30] Epoch 0: | | 677/? [02:26<00:00, 4.62it/s, train/loss=1.060] Epoch 0: | | 678/? [02:26<00:00, 4.62it/s, train/loss=1.060] Epoch 0: | | 678/? [02:26<00:00, 4.62it/s, train/loss=46.40] Epoch 0: | | 679/? [02:26<00:00, 4.62it/s, train/loss=46.40] Epoch 0: | | 679/? [02:26<00:00, 4.62it/s, train/loss=1.050] Epoch 0: | | 680/? [02:27<00:00, 4.62it/s, train/loss=1.050] Epoch 0: | | 680/? [02:27<00:00, 4.62it/s, train/loss=14.70] Epoch 0: | | 681/? [02:27<00:00, 4.63it/s, train/loss=14.70] Epoch 0: | | 681/? [02:27<00:00, 4.63it/s, train/loss=1.050] Epoch 0: | | 682/? [02:27<00:00, 4.63it/s, train/loss=1.050] Epoch 0: | | 682/? [02:27<00:00, 4.63it/s, train/loss=29.90] Epoch 0: | | 683/? [02:27<00:00, 4.63it/s, train/loss=29.90] Epoch 0: | | 683/? [02:27<00:00, 4.63it/s, train/loss=1.050] Epoch 0: | | 684/? [02:27<00:00, 4.63it/s, train/loss=1.050] Epoch 0: | | 684/? [02:27<00:00, 4.63it/s, train/loss=20.00] Epoch 0: | | 685/? [02:27<00:00, 4.64it/s, train/loss=20.00] Epoch 0: | | 685/? [02:27<00:00, 4.64it/s, train/loss=1.030] Epoch 0: | | 686/? [02:28<00:00, 4.63it/s, train/loss=1.030] Epoch 0: | | 686/? [02:28<00:00, 4.63it/s, train/loss=23.60] Epoch 0: | | 687/? [02:28<00:00, 4.64it/s, train/loss=23.60] Epoch 0: | | 687/? [02:28<00:00, 4.64it/s, train/loss=1.010] Epoch 0: | | 688/? [02:28<00:00, 4.64it/s, train/loss=1.010] Epoch 0: | | 688/? [02:28<00:00, 4.64it/s, train/loss=18.60] Epoch 0: | | 689/? [02:28<00:00, 4.64it/s, train/loss=18.60] Epoch 0: | | 689/? [02:28<00:00, 4.64it/s, train/loss=0.995] Epoch 0: | | 690/? [02:28<00:00, 4.64it/s, train/loss=0.995] Epoch 0: | | 690/? [02:28<00:00, 4.64it/s, train/loss=21.90] Epoch 0: | | 691/? [02:28<00:00, 4.65it/s, train/loss=21.90] Epoch 0: | | 691/? [02:28<00:00, 4.65it/s, train/loss=0.975] Epoch 0: | | 692/? [02:28<00:00, 4.65it/s, train/loss=0.975] Epoch 0: | | 692/? [02:28<00:00, 4.65it/s, train/loss=37.90] Epoch 0: | | 693/? [02:28<00:00, 4.65it/s, train/loss=37.90] Epoch 0: | | 693/? [02:28<00:00, 4.65it/s, train/loss=0.958] Epoch 0: | | 694/? [02:29<00:00, 4.65it/s, train/loss=0.958] Epoch 0: | | 694/? [02:29<00:00, 4.65it/s, train/loss=23.10] Epoch 0: | | 695/? [02:29<00:00, 4.66it/s, train/loss=23.10] Epoch 0: | | 695/? [02:29<00:00, 4.66it/s, train/loss=0.954] Epoch 0: | | 696/? [02:29<00:00, 4.65it/s, train/loss=0.954] Epoch 0: | | 696/? [02:29<00:00, 4.65it/s, train/loss=32.60] Epoch 0: | | 697/? [02:29<00:00, 4.66it/s, train/loss=32.60] Epoch 0: | | 697/? [02:29<00:00, 4.66it/s, train/loss=0.965] Epoch 0: | | 698/? [02:29<00:00, 4.66it/s, train/loss=0.965] Epoch 0: | | 698/? [02:29<00:00, 4.66it/s, train/loss=23.20] Epoch 0: | | 699/? [02:29<00:00, 4.66it/s, train/loss=23.20] Epoch 0: | | 699/? [02:29<00:00, 4.66it/s, train/loss=0.967] Epoch 0: | | 700/? [02:30<00:00, 4.66it/s, train/loss=0.967] Epoch 0: | | 700/? [02:30<00:00, 4.66it/s, train/loss=41.20] Epoch 0: | | 701/? [02:30<00:00, 4.67it/s, train/loss=41.20] Epoch 0: | | 701/? [02:30<00:00, 4.67it/s, train/loss=0.955] Epoch 0: | | 702/? [02:30<00:00, 4.67it/s, train/loss=0.955] Epoch 0: | | 702/? [02:30<00:00, 4.67it/s, train/loss=24.60] Epoch 0: | | 703/? [02:30<00:00, 4.67it/s, train/loss=24.60] Epoch 0: | | 703/? [02:30<00:00, 4.67it/s, train/loss=0.931] Epoch 0: | | 704/? [02:30<00:00, 4.67it/s, train/loss=0.931] Epoch 0: | | 704/? [02:30<00:00, 4.67it/s, train/loss=8.580] Epoch 0: | | 705/? [02:30<00:00, 4.68it/s, train/loss=8.580] Epoch 0: | | 705/? [02:30<00:00, 4.68it/s, train/loss=0.905] Epoch 0: | | 706/? [02:31<00:00, 4.67it/s, train/loss=0.905] Epoch 0: | | 706/? [02:31<00:00, 4.67it/s, train/loss=20.60] Epoch 0: | | 707/? [02:31<00:00, 4.68it/s, train/loss=20.60] Epoch 0: | | 707/? [02:31<00:00, 4.68it/s, train/loss=0.894] Epoch 0: | | 708/? [02:31<00:00, 4.68it/s, train/loss=0.894] Epoch 0: | | 708/? [02:31<00:00, 4.68it/s, train/loss=23.60] Epoch 0: | | 709/? [02:31<00:00, 4.68it/s, train/loss=23.60] Epoch 0: | | 709/? [02:31<00:00, 4.68it/s, train/loss=0.883] Epoch 0: | | 710/? [02:31<00:00, 4.68it/s, train/loss=0.883] Epoch 0: | | 710/? [02:31<00:00, 4.68it/s, train/loss=14.50] Epoch 0: | | 711/? [02:31<00:00, 4.68it/s, train/loss=14.50] Epoch 0: | | 711/? [02:31<00:00, 4.68it/s, train/loss=0.874] Epoch 0: | | 712/? [02:32<00:00, 4.68it/s, train/loss=0.874] Epoch 0: | | 712/? [02:32<00:00, 4.68it/s, train/loss=16.80] Epoch 0: | | 713/? [02:32<00:00, 4.68it/s, train/loss=16.80] Epoch 0: | | 713/? [02:32<00:00, 4.68it/s, train/loss=0.883] Epoch 0: | | 714/? [02:32<00:00, 4.68it/s, train/loss=0.883] Epoch 0: | | 714/? [02:32<00:00, 4.68it/s, train/loss=28.60] Epoch 0: | | 715/? [02:32<00:00, 4.68it/s, train/loss=28.60] Epoch 0: | | 715/? [02:32<00:00, 4.68it/s, train/loss=0.896] Epoch 0: | | 716/? [02:33<00:00, 4.68it/s, train/loss=0.896] Epoch 0: | | 716/? [02:33<00:00, 4.68it/s, train/loss=13.50] Epoch 0: | | 717/? [02:33<00:00, 4.68it/s, train/loss=13.50] Epoch 0: | | 717/? [02:33<00:00, 4.68it/s, train/loss=0.912] Epoch 0: | | 718/? [02:33<00:00, 4.68it/s, train/loss=0.912] Epoch 0: | | 718/? [02:33<00:00, 4.68it/s, train/loss=24.30] Epoch 0: | | 719/? [02:33<00:00, 4.69it/s, train/loss=24.30] Epoch 0: | | 719/? [02:33<00:00, 4.69it/s, train/loss=0.939] Epoch 0: | | 720/? [02:33<00:00, 4.68it/s, train/loss=0.939] Epoch 0: | | 720/? [02:33<00:00, 4.68it/s, train/loss=27.00] Epoch 0: | | 721/? [02:33<00:00, 4.69it/s, train/loss=27.00] Epoch 0: | | 721/? [02:33<00:00, 4.69it/s, train/loss=0.974] Epoch 0: | | 722/? [02:34<00:00, 4.69it/s, train/loss=0.974] Epoch 0: | | 722/? [02:34<00:00, 4.69it/s, train/loss=36.20] Epoch 0: | | 723/? [02:34<00:00, 4.69it/s, train/loss=36.20] Epoch 0: | | 723/? [02:34<00:00, 4.69it/s, train/loss=0.974] Epoch 0: | | 724/? [02:34<00:00, 4.69it/s, train/loss=0.974] Epoch 0: | | 724/? [02:34<00:00, 4.69it/s, train/loss=20.80] Epoch 0: | | 725/? [02:34<00:00, 4.70it/s, train/loss=20.80] Epoch 0: | | 725/? [02:34<00:00, 4.70it/s, train/loss=0.970] Epoch 0: | | 726/? [02:34<00:00, 4.69it/s, train/loss=0.970] Epoch 0: | | 726/? [02:34<00:00, 4.69it/s, train/loss=20.00] Epoch 0: | | 727/? [02:34<00:00, 4.70it/s, train/loss=20.00] Epoch 0: | | 727/? [02:34<00:00, 4.70it/s, train/loss=0.968] Epoch 0: | | 728/? [02:34<00:00, 4.70it/s, train/loss=0.968] Epoch 0: | | 728/? [02:34<00:00, 4.70it/s, train/loss=12.10] Epoch 0: | | 729/? [02:34<00:00, 4.70it/s, train/loss=12.10] Epoch 0: | | 729/? [02:34<00:00, 4.70it/s, train/loss=0.960] Epoch 0: | | 730/? [02:35<00:00, 4.70it/s, train/loss=0.960] Epoch 0: | | 730/? [02:35<00:00, 4.70it/s, train/loss=19.20] Epoch 0: | | 731/? [02:35<00:00, 4.71it/s, train/loss=19.20] Epoch 0: | | 731/? [02:35<00:00, 4.71it/s, train/loss=0.948] Epoch 0: | | 732/? [02:35<00:00, 4.71it/s, train/loss=0.948] Epoch 0: | | 732/? [02:35<00:00, 4.71it/s, train/loss=18.60] Epoch 0: | | 733/? [02:35<00:00, 4.71it/s, train/loss=18.60] Epoch 0: | | 733/? [02:35<00:00, 4.71it/s, train/loss=0.951] Epoch 0: | | 734/? [02:35<00:00, 4.71it/s, train/loss=0.951] Epoch 0: | | 734/? [02:35<00:00, 4.71it/s, train/loss=12.20] Epoch 0: | | 735/? [02:35<00:00, 4.71it/s, train/loss=12.20] Epoch 0: | | 735/? [02:35<00:00, 4.71it/s, train/loss=0.977] Epoch 0: | | 736/? [02:36<00:00, 4.71it/s, train/loss=0.977] Epoch 0: | | 736/? [02:36<00:00, 4.71it/s, train/loss=37.10] Epoch 0: | | 737/? [02:36<00:00, 4.72it/s, train/loss=37.10] Epoch 0: | | 737/? [02:36<00:00, 4.72it/s, train/loss=1.170] Epoch 0: | | 738/? [02:36<00:00, 4.72it/s, train/loss=1.170] Epoch 0: | | 738/? [02:36<00:00, 4.72it/s, train/loss=22.80] Epoch 0: | | 739/? [02:36<00:00, 4.72it/s, train/loss=22.80] Epoch 0: | | 739/? [02:36<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 740/? [02:36<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 740/? [02:36<00:00, 4.72it/s, train/loss=29.60] Epoch 0: | | 741/? [02:36<00:00, 4.72it/s, train/loss=29.60] Epoch 0: | | 741/? [02:36<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 742/? [02:37<00:00, 4.72it/s, train/loss=1.210] Epoch 0: | | 742/? [02:37<00:00, 4.72it/s, train/loss=35.50] Epoch 0: | | 743/? [02:37<00:00, 4.73it/s, train/loss=35.50] Epoch 0: | | 743/? [02:37<00:00, 4.73it/s, train/loss=1.200] Epoch 0: | | 744/? [02:37<00:00, 4.73it/s, train/loss=1.200] Epoch 0: | | 744/? [02:37<00:00, 4.73it/s, train/loss=42.00] Epoch 0: | | 745/? [02:37<00:00, 4.73it/s, train/loss=42.00] Epoch 0: | | 745/? [02:37<00:00, 4.73it/s, train/loss=1.180] Epoch 0: | | 746/? [02:37<00:00, 4.73it/s, train/loss=1.180] Epoch 0: | | 746/? [02:37<00:00, 4.73it/s, train/loss=34.50] Epoch 0: | | 747/? [02:37<00:00, 4.74it/s, train/loss=34.50] Epoch 0: | | 747/? [02:37<00:00, 4.74it/s, train/loss=1.170] Epoch 0: | | 748/? [02:38<00:00, 4.73it/s, train/loss=1.170] Epoch 0: | | 748/? [02:38<00:00, 4.73it/s, train/loss=29.70] Epoch 0: | | 749/? [02:38<00:00, 4.74it/s, train/loss=29.70] Epoch 0: | | 749/? [02:38<00:00, 4.74it/s, train/loss=1.180] Epoch 0: | | 750/? [02:38<00:00, 4.74it/s, train/loss=1.180] Epoch 0: | | 750/? [02:38<00:00, 4.74it/s, train/loss=29.00] Epoch 0: | | 751/? [02:38<00:00, 4.74it/s, train/loss=29.00] Epoch 0: | | 751/? [02:38<00:00, 4.74it/s, train/loss=1.190] Epoch 0: | | 752/? [02:38<00:00, 4.74it/s, train/loss=1.190] Epoch 0: | | 752/? [02:38<00:00, 4.74it/s, train/loss=17.00] Epoch 0: | | 753/? [02:38<00:00, 4.75it/s, train/loss=17.00] Epoch 0: | | 753/? [02:38<00:00, 4.75it/s, train/loss=1.210] Epoch 0: | | 754/? [02:38<00:00, 4.74it/s, train/loss=1.210] Epoch 0: | | 754/? [02:38<00:00, 4.74it/s, train/loss=7.800] Epoch 0: | | 755/? [02:38<00:00, 4.75it/s, train/loss=7.800] Epoch 0: | | 755/? [02:38<00:00, 4.75it/s, train/loss=1.220] Epoch 0: | | 756/? [02:39<00:00, 4.75it/s, train/loss=1.220] Epoch 0: | | 756/? [02:39<00:00, 4.75it/s, train/loss=35.00] Epoch 0: | | 757/? [02:39<00:00, 4.75it/s, train/loss=35.00] Epoch 0: | | 757/? [02:39<00:00, 4.75it/s, train/loss=1.220] Epoch 0: | | 758/? [02:39<00:00, 4.75it/s, train/loss=1.220] Epoch 0: | | 758/? [02:39<00:00, 4.75it/s, train/loss=15.80] Epoch 0: | | 759/? [02:39<00:00, 4.76it/s, train/loss=15.80] Epoch 0: | | 759/? [02:39<00:00, 4.76it/s, train/loss=1.210] Epoch 0: | | 760/? [02:39<00:00, 4.75it/s, train/loss=1.210] Epoch 0: | | 760/? [02:39<00:00, 4.75it/s, train/loss=19.90] Epoch 0: | | 761/? [02:39<00:00, 4.76it/s, train/loss=19.90] Epoch 0: | | 761/? [02:39<00:00, 4.76it/s, train/loss=1.190] Epoch 0: | | 762/? [02:40<00:00, 4.76it/s, train/loss=1.190] Epoch 0: | | 762/? [02:40<00:00, 4.76it/s, train/loss=27.10] Epoch 0: | | 763/? [02:40<00:00, 4.76it/s, train/loss=27.10] Epoch 0: | | 763/? [02:40<00:00, 4.76it/s, train/loss=1.160] Epoch 0: | | 764/? [02:40<00:00, 4.76it/s, train/loss=1.160] Epoch 0: | | 764/? [02:40<00:00, 4.76it/s, train/loss=19.60] Epoch 0: | | 765/? [02:40<00:00, 4.77it/s, train/loss=19.60] Epoch 0: | | 765/? [02:40<00:00, 4.77it/s, train/loss=1.150] Epoch 0: | | 766/? [02:40<00:00, 4.76it/s, train/loss=1.150] Epoch 0: | | 766/? [02:40<00:00, 4.76it/s, train/loss=23.80] Epoch 0: | | 767/? [02:40<00:00, 4.77it/s, train/loss=23.80] Epoch 0: | | 767/? [02:40<00:00, 4.77it/s, train/loss=1.170] Epoch 0: | | 768/? [02:41<00:00, 4.77it/s, train/loss=1.170] Epoch 0: | | 768/? [02:41<00:00, 4.77it/s, train/loss=35.60] Epoch 0: | | 769/? [02:41<00:00, 4.77it/s, train/loss=35.60] Epoch 0: | | 769/? [02:41<00:00, 4.77it/s, train/loss=1.140] Epoch 0: | | 770/? [02:41<00:00, 4.77it/s, train/loss=1.140] Epoch 0: | | 770/? [02:41<00:00, 4.77it/s, train/loss=41.80] Epoch 0: | | 771/? [02:41<00:00, 4.78it/s, train/loss=41.80] Epoch 0: | | 771/? [02:41<00:00, 4.78it/s, train/loss=1.090] Epoch 0: | | 772/? [02:41<00:00, 4.77it/s, train/loss=1.090] Epoch 0: | | 772/? [02:41<00:00, 4.77it/s, train/loss=15.80] Epoch 0: | | 773/? [02:41<00:00, 4.78it/s, train/loss=15.80] Epoch 0: | | 773/? [02:41<00:00, 4.78it/s, train/loss=1.070] Epoch 0: | | 774/? [02:42<00:00, 4.78it/s, train/loss=1.070] Epoch 0: | | 774/? [02:42<00:00, 4.78it/s, train/loss=16.30] Epoch 0: | | 775/? [02:42<00:00, 4.78it/s, train/loss=16.30] Epoch 0: | | 775/? [02:42<00:00, 4.78it/s, train/loss=1.070] Epoch 0: | | 776/? [02:42<00:00, 4.78it/s, train/loss=1.070] Epoch 0: | | 776/? [02:42<00:00, 4.78it/s, train/loss=22.50] Epoch 0: | | 777/? [02:42<00:00, 4.79it/s, train/loss=22.50] Epoch 0: | | 777/? [02:42<00:00, 4.79it/s, train/loss=1.070] Epoch 0: | | 778/? [02:42<00:00, 4.78it/s, train/loss=1.070] Epoch 0: | | 778/? [02:42<00:00, 4.78it/s, train/loss=15.30] Epoch 0: | | 779/? [02:42<00:00, 4.78it/s, train/loss=15.30] Epoch 0: | | 779/? [02:42<00:00, 4.78it/s, train/loss=1.080] Epoch 0: | | 780/? [02:43<00:00, 4.78it/s, train/loss=1.080] Epoch 0: | | 780/? [02:43<00:00, 4.78it/s, train/loss=7.950] Epoch 0: | | 781/? [02:43<00:00, 4.78it/s, train/loss=7.950] Epoch 0: | | 781/? [02:43<00:00, 4.78it/s, train/loss=1.080] Epoch 0: | | 782/? [02:43<00:00, 4.78it/s, train/loss=1.080] Epoch 0: | | 782/? [02:43<00:00, 4.78it/s, train/loss=11.60] Epoch 0: | | 783/? [02:43<00:00, 4.79it/s, train/loss=11.60] Epoch 0: | | 783/? [02:43<00:00, 4.79it/s, train/loss=1.090] Epoch 0: | | 784/? [02:43<00:00, 4.78it/s, train/loss=1.090] Epoch 0: | | 784/? [02:43<00:00, 4.78it/s, train/loss=52.90] Epoch 0: | | 785/? [02:43<00:00, 4.79it/s, train/loss=52.90] Epoch 0: | | 785/? [02:43<00:00, 4.79it/s, train/loss=1.100] Epoch 0: | | 786/? [02:44<00:00, 4.79it/s, train/loss=1.100] Epoch 0: | | 786/? [02:44<00:00, 4.79it/s, train/loss=25.70] Epoch 0: | | 787/? [02:44<00:00, 4.79it/s, train/loss=25.70] Epoch 0: | | 787/? [02:44<00:00, 4.79it/s, train/loss=1.110] Epoch 0: | | 788/? [02:44<00:00, 4.79it/s, train/loss=1.110] Epoch 0: | | 788/? [02:44<00:00, 4.79it/s, train/loss=15.70] Epoch 0: | | 789/? [02:44<00:00, 4.79it/s, train/loss=15.70] Epoch 0: | | 789/? [02:44<00:00, 4.79it/s, train/loss=1.110] Epoch 0: | | 790/? [02:44<00:00, 4.79it/s, train/loss=1.110] Epoch 0: | | 790/? [02:44<00:00, 4.79it/s, train/loss=15.20] Epoch 0: | | 791/? [02:44<00:00, 4.80it/s, train/loss=15.20] Epoch 0: | | 791/? [02:44<00:00, 4.80it/s, train/loss=1.100] Epoch 0: | | 792/? [02:45<00:00, 4.79it/s, train/loss=1.100] Epoch 0: | | 792/? [02:45<00:00, 4.79it/s, train/loss=21.60] Epoch 0: | | 793/? [02:45<00:00, 4.80it/s, train/loss=21.60] Epoch 0: | | 793/? [02:45<00:00, 4.80it/s, train/loss=1.090] Epoch 0: | | 794/? [02:45<00:00, 4.80it/s, train/loss=1.090] Epoch 0: | | 794/? [02:45<00:00, 4.80it/s, train/loss=11.20] Epoch 0: | | 795/? [02:45<00:00, 4.80it/s, train/loss=11.20] Epoch 0: | | 795/? [02:45<00:00, 4.80it/s, train/loss=1.090] Epoch 0: | | 796/? [02:45<00:00, 4.80it/s, train/loss=1.090] Epoch 0: | | 796/? [02:45<00:00, 4.80it/s, train/loss=8.000] Epoch 0: | | 797/? [02:45<00:00, 4.80it/s, train/loss=8.000] Epoch 0: | | 797/? [02:45<00:00, 4.80it/s, train/loss=1.060] Epoch 0: | | 798/? [02:46<00:00, 4.80it/s, train/loss=1.060] Epoch 0: | | 798/? [02:46<00:00, 4.80it/s, train/loss=19.90] Epoch 0: | | 799/? [02:46<00:00, 4.81it/s, train/loss=19.90] Epoch 0: | | 799/? [02:46<00:00, 4.81it/s, train/loss=1.020] Epoch 0: | | 800/? [02:46<00:00, 4.81it/s, train/loss=1.020] Epoch 0: | | 800/? [02:46<00:00, 4.81it/s, train/loss=19.30] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:06, 6.44it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:05, 6.56it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:05, 6.62it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:05, 6.57it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:05, 6.47it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:05, 6.49it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:01<00:05, 6.51it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:01<00:04, 6.51it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:04, 6.53it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:04, 6.56it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:04, 6.57it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:04, 6.58it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:04, 6.59it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:02<00:03, 6.61it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:02<00:03, 6.61it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:02<00:03, 6.56it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:02<00:03, 6.52it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:03, 6.49it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:03, 6.47it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:03<00:03, 6.48it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:03<00:02, 6.48it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:03<00:02, 6.49it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:03<00:02, 6.51it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:03<00:02, 6.52it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:03<00:02, 6.53it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:03<00:02, 6.54it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:04<00:01, 6.56it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:04<00:01, 6.57it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:04<00:01, 6.57it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:04<00:01, 6.57it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:04<00:01, 6.58it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:04<00:01, 6.59it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:05<00:01, 6.60it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:05<00:00, 6.60it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:05<00:00, 6.59it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:05<00:00, 6.60it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:05<00:00, 6.60it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:05<00:00, 6.58it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:05<00:00, 6.59it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:06<00:00, 6.59it/s] Epoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30] `Trainer.fit` stopped: `max_steps=800` reached. Epoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30] Epoch 0: | | 800/? [02:53<00:00, 4.60it/s, train/loss=19.30] [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 128, 128, 3]) [INFO] single image dataset: load depth /src/outputs/image_depth.png torch.Size([1, 128, 128]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Testing: | | 0/? [00:00<?, ?it/s] Testing: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 1%| | 1/120 [00:00<00:18, 6.41it/s] Testing DataLoader 0: 2%|▏ | 2/120 [00:00<00:18, 6.53it/s] Testing DataLoader 0: 2%|▎ | 3/120 [00:00<00:18, 6.50it/s] Testing DataLoader 0: 3%|▎ | 4/120 [00:00<00:17, 6.57it/s] Testing DataLoader 0: 4%|▍ | 5/120 [00:00<00:17, 6.61it/s] Testing DataLoader 0: 5%|▌ | 6/120 [00:00<00:17, 6.63it/s] Testing DataLoader 0: 6%|▌ | 7/120 [00:01<00:17, 6.64it/s] Testing DataLoader 0: 7%|▋ | 8/120 [00:01<00:16, 6.65it/s] Testing DataLoader 0: 8%|▊ | 9/120 [00:01<00:16, 6.66it/s] Testing DataLoader 0: 8%|▊ | 10/120 [00:01<00:16, 6.65it/s] Testing DataLoader 0: 9%|▉ | 11/120 [00:01<00:16, 6.65it/s] Testing DataLoader 0: 10%|█ | 12/120 [00:01<00:16, 6.63it/s] Testing DataLoader 0: 11%|█ | 13/120 [00:01<00:16, 6.65it/s] Testing DataLoader 0: 12%|█▏ | 14/120 [00:02<00:16, 6.62it/s] Testing DataLoader 0: 12%|█▎ | 15/120 [00:02<00:15, 6.60it/s] Testing DataLoader 0: 13%|█▎ | 16/120 [00:02<00:15, 6.61it/s] Testing DataLoader 0: 14%|█▍ | 17/120 [00:02<00:15, 6.61it/s] Testing DataLoader 0: 15%|█▌ | 18/120 [00:02<00:15, 6.61it/s] Testing DataLoader 0: 16%|█▌ | 19/120 [00:02<00:15, 6.60it/s] Testing DataLoader 0: 17%|█▋ | 20/120 [00:03<00:15, 6.60it/s] Testing DataLoader 0: 18%|█▊ | 21/120 [00:03<00:14, 6.61it/s] Testing DataLoader 0: 18%|█▊ | 22/120 [00:03<00:14, 6.61it/s] Testing DataLoader 0: 19%|█▉ | 23/120 [00:03<00:14, 6.60it/s] Testing DataLoader 0: 20%|██ | 24/120 [00:03<00:14, 6.58it/s] Testing DataLoader 0: 21%|██ | 25/120 [00:03<00:14, 6.57it/s] Testing DataLoader 0: 22%|██▏ | 26/120 [00:03<00:14, 6.56it/s] Testing DataLoader 0: 22%|██▎ | 27/120 [00:04<00:14, 6.55it/s] Testing DataLoader 0: 23%|██▎ | 28/120 [00:04<00:14, 6.55it/s] Testing DataLoader 0: 24%|██▍ | 29/120 [00:04<00:13, 6.55it/s] Testing DataLoader 0: 25%|██▌ | 30/120 [00:04<00:13, 6.54it/s] Testing DataLoader 0: 26%|██▌ | 31/120 [00:04<00:13, 6.55it/s] Testing DataLoader 0: 27%|██▋ | 32/120 [00:04<00:13, 6.53it/s] Testing DataLoader 0: 28%|██▊ | 33/120 [00:05<00:13, 6.54it/s] Testing DataLoader 0: 28%|██▊ | 34/120 [00:05<00:13, 6.55it/s] Testing DataLoader 0: 29%|██▉ | 35/120 [00:05<00:12, 6.55it/s] Testing DataLoader 0: 30%|███ | 36/120 [00:05<00:12, 6.55it/s] Testing DataLoader 0: 31%|███ | 37/120 [00:05<00:12, 6.56it/s] Testing DataLoader 0: 32%|███▏ | 38/120 [00:05<00:12, 6.56it/s] Testing DataLoader 0: 32%|███▎ | 39/120 [00:05<00:12, 6.57it/s] Testing DataLoader 0: 33%|███▎ | 40/120 [00:06<00:12, 6.57it/s] Testing DataLoader 0: 34%|███▍ | 41/120 [00:06<00:12, 6.57it/s] Testing DataLoader 0: 35%|███▌ | 42/120 [00:06<00:11, 6.57it/s] Testing DataLoader 0: 36%|███▌ | 43/120 [00:06<00:11, 6.56it/s] Testing DataLoader 0: 37%|███▋ | 44/120 [00:06<00:11, 6.57it/s] Testing DataLoader 0: 38%|███▊ | 45/120 [00:06<00:11, 6.57it/s] Testing DataLoader 0: 38%|███▊ | 46/120 [00:06<00:11, 6.57it/s] Testing DataLoader 0: 39%|███▉ | 47/120 [00:07<00:11, 6.57it/s] Testing DataLoader 0: 40%|████ | 48/120 [00:07<00:10, 6.58it/s] Testing DataLoader 0: 41%|████ | 49/120 [00:07<00:10, 6.58it/s] Testing DataLoader 0: 42%|████▏ | 50/120 [00:07<00:10, 6.59it/s] Testing DataLoader 0: 42%|████▎ | 51/120 [00:07<00:10, 6.59it/s] Testing DataLoader 0: 43%|████▎ | 52/120 [00:07<00:10, 6.59it/s] Testing DataLoader 0: 44%|████▍ | 53/120 [00:08<00:10, 6.59it/s] Testing DataLoader 0: 45%|████▌ | 54/120 [00:08<00:10, 6.59it/s] Testing DataLoader 0: 46%|████▌ | 55/120 [00:08<00:09, 6.60it/s] Testing DataLoader 0: 47%|████▋ | 56/120 [00:08<00:09, 6.60it/s] Testing DataLoader 0: 48%|████▊ | 57/120 [00:08<00:09, 6.60it/s] Testing DataLoader 0: 48%|████▊ | 58/120 [00:08<00:09, 6.60it/s] Testing DataLoader 0: 49%|████▉ | 59/120 [00:08<00:09, 6.61it/s] Testing DataLoader 0: 50%|█████ | 60/120 [00:09<00:09, 6.61it/s] Testing DataLoader 0: 51%|█████ | 61/120 [00:09<00:08, 6.61it/s] Testing DataLoader 0: 52%|█████▏ | 62/120 [00:09<00:08, 6.61it/s] Testing DataLoader 0: 52%|█████▎ | 63/120 [00:09<00:08, 6.61it/s] Testing DataLoader 0: 53%|█████▎ | 64/120 [00:09<00:08, 6.62it/s] Testing DataLoader 0: 54%|█████▍ | 65/120 [00:09<00:08, 6.62it/s] Testing DataLoader 0: 55%|█████▌ | 66/120 [00:09<00:08, 6.62it/s] Testing DataLoader 0: 56%|█████▌ | 67/120 [00:10<00:08, 6.62it/s] Testing DataLoader 0: 57%|█████▋ | 68/120 [00:10<00:07, 6.62it/s] Testing DataLoader 0: 57%|█████▊ | 69/120 [00:10<00:07, 6.62it/s] Testing DataLoader 0: 58%|█████▊ | 70/120 [00:10<00:07, 6.63it/s] Testing DataLoader 0: 59%|█████▉ | 71/120 [00:10<00:07, 6.63it/s] Testing DataLoader 0: 60%|██████ | 72/120 [00:10<00:07, 6.63it/s] Testing DataLoader 0: 61%|██████ | 73/120 [00:10<00:07, 6.64it/s] Testing DataLoader 0: 62%|██████▏ | 74/120 [00:11<00:06, 6.63it/s] Testing DataLoader 0: 62%|██████▎ | 75/120 [00:11<00:06, 6.62it/s] Testing DataLoader 0: 63%|██████▎ | 76/120 [00:11<00:06, 6.61it/s] Testing DataLoader 0: 64%|██████▍ | 77/120 [00:11<00:06, 6.60it/s] Testing DataLoader 0: 65%|██████▌ | 78/120 [00:11<00:06, 6.59it/s] Testing DataLoader 0: 66%|██████▌ | 79/120 [00:11<00:06, 6.59it/s] Testing DataLoader 0: 67%|██████▋ | 80/120 [00:12<00:06, 6.59it/s] Testing DataLoader 0: 68%|██████▊ | 81/120 [00:12<00:05, 6.59it/s] Testing DataLoader 0: 68%|██████▊ | 82/120 [00:12<00:05, 6.58it/s] Testing DataLoader 0: 69%|██████▉ | 83/120 [00:12<00:05, 6.58it/s] Testing DataLoader 0: 70%|███████ | 84/120 [00:12<00:05, 6.59it/s] Testing DataLoader 0: 71%|███████ | 85/120 [00:12<00:05, 6.59it/s] Testing DataLoader 0: 72%|███████▏ | 86/120 [00:13<00:05, 6.59it/s] Testing DataLoader 0: 72%|███████▎ | 87/120 [00:13<00:05, 6.59it/s] Testing DataLoader 0: 73%|███████▎ | 88/120 [00:13<00:04, 6.60it/s] Testing DataLoader 0: 74%|███████▍ | 89/120 [00:13<00:04, 6.60it/s] Testing DataLoader 0: 75%|███████▌ | 90/120 [00:13<00:04, 6.60it/s] Testing DataLoader 0: 76%|███████▌ | 91/120 [00:13<00:04, 6.60it/s] Testing DataLoader 0: 77%|███████▋ | 92/120 [00:13<00:04, 6.60it/s] Testing DataLoader 0: 78%|███████▊ | 93/120 [00:14<00:04, 6.61it/s] Testing DataLoader 0: 78%|███████▊ | 94/120 [00:14<00:03, 6.61it/s] Testing DataLoader 0: 79%|███████▉ | 95/120 [00:14<00:03, 6.60it/s] Testing DataLoader 0: 80%|████████ | 96/120 [00:14<00:03, 6.60it/s] Testing DataLoader 0: 81%|████████ | 97/120 [00:14<00:03, 6.60it/s] Testing DataLoader 0: 82%|████████▏ | 98/120 [00:14<00:03, 6.61it/s] Testing DataLoader 0: 82%|████████▎ | 99/120 [00:14<00:03, 6.61it/s] Testing DataLoader 0: 83%|████████▎ | 100/120 [00:15<00:03, 6.61it/s] Testing DataLoader 0: 84%|████████▍ | 101/120 [00:15<00:02, 6.61it/s] Testing DataLoader 0: 85%|████████▌ | 102/120 [00:15<00:02, 6.61it/s] Testing DataLoader 0: 86%|████████▌ | 103/120 [00:15<00:02, 6.61it/s] Testing DataLoader 0: 87%|████████▋ | 104/120 [00:15<00:02, 6.61it/s] Testing DataLoader 0: 88%|████████▊ | 105/120 [00:15<00:02, 6.62it/s] Testing DataLoader 0: 88%|████████▊ | 106/120 [00:16<00:02, 6.62it/s] Testing DataLoader 0: 89%|████████▉ | 107/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 90%|█████████ | 108/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 91%|█████████ | 109/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 92%|█████████▏| 110/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 92%|█████████▎| 111/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 93%|█████████▎| 112/120 [00:16<00:01, 6.62it/s] Testing DataLoader 0: 94%|█████████▍| 113/120 [00:17<00:01, 6.62it/s] Testing DataLoader 0: 95%|█████████▌| 114/120 [00:17<00:00, 6.61it/s] Testing DataLoader 0: 96%|█████████▌| 115/120 [00:17<00:00, 6.61it/s] Testing DataLoader 0: 97%|█████████▋| 116/120 [00:17<00:00, 6.61it/s] Testing DataLoader 0: 98%|█████████▊| 117/120 [00:17<00:00, 6.61it/s] Testing DataLoader 0: 98%|█████████▊| 118/120 [00:17<00:00, 6.61it/s] Testing DataLoader 0: 99%|█████████▉| 119/120 [00:18<00:00, 6.61it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:18<00:00, 6.60it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:19<00:00, 6.17it/s] Test results saved to outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/save Running step 3: geometry refinement {'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}, 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'data_type': 'dreamcraft3d-single-image-datamodule', 'description': '', 'exp_dir': 'outputs/dreamcraft3d-geometry', 'exp_root_dir': 'outputs', 'n_gpus': 1, 'name': 'dreamcraft3d-geometry', 'resume': None, 'seed': 0, 'system': {'stage': 'geometry', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'deep-floyd-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'prompt': 'A green leafy plant in a striped terracotta pot', 'use_perp_neg': True}, 'guidance_type': 'deep-floyd-guidance', 'guidance': {'pretrained_model_name_or_path': 'DeepFloyd/IF-I-XL-v1.0', 'guidance_scale': 5.0, 'min_step_percent': 0.02, 'max_step_percent': 0.5}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'accumulate', 'no_diff_steps': 0, 'guidance_eval': 0, 'n_rgb': 4}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_sds': 0.1, 'lambda_3d_sds': 0.1, 'lambda_rgb': 1000.0, 'lambda_mask': 100.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_normal_consistency': 10.0, 'lambda_laplacian_smoothness': 0.0}, 'optimizer': {'name': 'Adam', 'args': {'lr': 0.005, 'betas': [0.9, 0.99], 'eps': 1e-15}}, 'geometry_convert_from': 'outputs/dreamcraft3d-coarse-neus/replicate_user@20240222-134422/ckpts/last.ckpt'}, 'system_type': 'dreamcraft3d-system', 'tag': 'replicate_user', 'timestamp': '@20240222-134756', 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32}, 'trial_dir': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756', 'trial_name': 'replicate_user@20240222-134756', 'use_timestamp': True} Initializing geometry from a given checkpoint ... Loading Deep Floyd ... Couldn't connect to the Hub: 401 Client Error. (Request ID: Root=1-65d7509e-6347b4da73b31fa229296b6e;25483ae6-ebc7-4a7b-ac33-672d284154c2) Cannot access gated repo for url https://huggingface.co/api/models/DeepFloyd/IF-I-XL-v1.0. Repo model DeepFloyd/IF-I-XL-v1.0 is gated. You must be authenticated to access it.. Will try to load from local cache. Loading pipeline components...: 0%| | 0/3 [00:00<?, ?it/s] Loading pipeline components...: 33%|███▎ | 1/3 [00:00<00:00, 5.14it/s] Loading pipeline components...: 100%|██████████| 3/3 [00:00<00:00, 13.15it/s] Loaded Deep Floyd! Loading Stable Zero123 ... get obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion LatentDiffusion: Running in eps-prediction mode DiffusionWrapper has 859.53 M params. Keeping EMAs of 688. making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels Loaded Stable Zero123! Using prompt [A green leafy plant in a striped terracotta pot] and negative prompt [] Using view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view] loaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params ---------------------------------------------------- 0 | geometry | TetrahedraSDFGrid | 13.7 M 1 | material | NoMaterial | 0 2 | background | SolidColorBackground | 0 3 | renderer | NVDiffRasterizer | 0 ---------------------------------------------------- 13.7 M Trainable params 0 Non-trainable params 13.7 M Total params 54.847 Total estimated model params size (MB) Validation results will be saved to outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/save /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Training: | | 0/? [00:00<?, ?it/s] Training: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 1/? [00:00<00:00, 7.59it/s] Epoch 0: | | 1/? [00:00<00:00, 7.51it/s, train/loss=21.80] Epoch 0: | | 2/? [00:00<00:00, 3.74it/s, train/loss=21.80] Epoch 0: | | 2/? [00:00<00:00, 3.73it/s, train/loss=32.90] Epoch 0: | | 3/? [00:00<00:00, 3.50it/s, train/loss=32.90] Epoch 0: | | 3/? [00:00<00:00, 3.49it/s, train/loss=48.70] Epoch 0: | | 4/? [00:01<00:00, 3.36it/s, train/loss=48.70] Epoch 0: | | 4/? [00:01<00:00, 3.36it/s, train/loss=23.90] Epoch 0: | | 5/? [00:01<00:00, 3.28it/s, train/loss=23.90] Epoch 0: | | 5/? [00:01<00:00, 3.28it/s, train/loss=35.10] Epoch 0: | | 6/? [00:01<00:00, 3.26it/s, train/loss=35.10] Epoch 0: | | 6/? [00:01<00:00, 3.25it/s, train/loss=23.40] Epoch 0: | | 7/? [00:02<00:00, 3.22it/s, train/loss=23.40] Epoch 0: | | 7/? [00:02<00:00, 3.22it/s, train/loss=15.90] Epoch 0: | | 8/? [00:02<00:00, 3.21it/s, train/loss=15.90] Epoch 0: | | 8/? [00:02<00:00, 3.21it/s, train/loss=19.40] Epoch 0: | | 9/? [00:02<00:00, 3.19it/s, train/loss=19.40] Epoch 0: | | 9/? [00:02<00:00, 3.18it/s, train/loss=31.50] Epoch 0: | | 10/? [00:03<00:00, 3.18it/s, train/loss=31.50] Epoch 0: | | 10/? [00:03<00:00, 3.18it/s, train/loss=13.20] Epoch 0: | | 11/? [00:03<00:00, 3.17it/s, train/loss=13.20] Epoch 0: | | 11/? [00:03<00:00, 3.17it/s, train/loss=19.80] Epoch 0: | | 12/? [00:03<00:00, 3.17it/s, train/loss=19.80] Epoch 0: | | 12/? [00:03<00:00, 3.17it/s, train/loss=42.70] Epoch 0: | | 13/? [00:04<00:00, 3.15it/s, train/loss=42.70] Epoch 0: | | 13/? [00:04<00:00, 3.15it/s, train/loss=59.50] Epoch 0: | | 14/? [00:04<00:00, 3.15it/s, train/loss=59.50] Epoch 0: | | 14/? [00:04<00:00, 3.15it/s, train/loss=20.30] Epoch 0: | | 15/? [00:04<00:00, 3.15it/s, train/loss=20.30] Epoch 0: | | 15/? [00:04<00:00, 3.15it/s, train/loss=17.40] Epoch 0: | | 16/? [00:05<00:00, 3.15it/s, train/loss=17.40] Epoch 0: | | 16/? [00:05<00:00, 3.14it/s, train/loss=34.70] Epoch 0: | | 17/? [00:05<00:00, 3.14it/s, train/loss=34.70] Epoch 0: | | 17/? [00:05<00:00, 3.14it/s, train/loss=23.60] Epoch 0: | | 18/? [00:05<00:00, 3.14it/s, train/loss=23.60] Epoch 0: | | 18/? [00:05<00:00, 3.13it/s, train/loss=14.50] Epoch 0: | | 19/? [00:06<00:00, 3.13it/s, train/loss=14.50] Epoch 0: | | 19/? [00:06<00:00, 3.13it/s, train/loss=26.20] Epoch 0: | | 20/? [00:06<00:00, 3.13it/s, train/loss=26.20] Epoch 0: | | 20/? [00:06<00:00, 3.13it/s, train/loss=38.50] Epoch 0: | | 21/? [00:06<00:00, 3.12it/s, train/loss=38.50] Epoch 0: | | 21/? [00:06<00:00, 3.12it/s, train/loss=43.40] Epoch 0: | | 22/? [00:07<00:00, 3.12it/s, train/loss=43.40] Epoch 0: | | 22/? [00:07<00:00, 3.12it/s, train/loss=31.60] Epoch 0: | | 23/? [00:07<00:00, 3.12it/s, train/loss=31.60] Epoch 0: | | 23/? [00:07<00:00, 3.12it/s, train/loss=82.20] Epoch 0: | | 24/? [00:07<00:00, 3.12it/s, train/loss=82.20] Epoch 0: | | 24/? [00:07<00:00, 3.12it/s, train/loss=9.930] Epoch 0: | | 25/? [00:08<00:00, 3.11it/s, train/loss=9.930] Epoch 0: | | 25/? [00:08<00:00, 3.11it/s, train/loss=35.30] Epoch 0: | | 26/? [00:08<00:00, 3.11it/s, train/loss=35.30] Epoch 0: | | 26/? [00:08<00:00, 3.11it/s, train/loss=20.50] Epoch 0: | | 27/? [00:08<00:00, 3.11it/s, train/loss=20.50] Epoch 0: | | 27/? [00:08<00:00, 3.11it/s, train/loss=31.80] Epoch 0: | | 28/? [00:08<00:00, 3.11it/s, train/loss=31.80] Epoch 0: | | 28/? [00:08<00:00, 3.11it/s, train/loss=24.90] Epoch 0: | | 29/? [00:09<00:00, 3.11it/s, train/loss=24.90] Epoch 0: | | 29/? [00:09<00:00, 3.11it/s, train/loss=51.90] Epoch 0: | | 30/? [00:09<00:00, 3.11it/s, train/loss=51.90] Epoch 0: | | 30/? [00:09<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 31/? [00:09<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 31/? [00:09<00:00, 3.11it/s, train/loss=20.10] Epoch 0: | | 32/? [00:10<00:00, 3.11it/s, train/loss=20.10] Epoch 0: | | 32/? [00:10<00:00, 3.11it/s, train/loss=24.10] Epoch 0: | | 33/? [00:10<00:00, 3.11it/s, train/loss=24.10] Epoch 0: | | 33/? [00:10<00:00, 3.11it/s, train/loss=40.80] Epoch 0: | | 34/? [00:10<00:00, 3.11it/s, train/loss=40.80] Epoch 0: | | 34/? [00:10<00:00, 3.11it/s, train/loss=10.70] Epoch 0: | | 35/? [00:11<00:00, 3.11it/s, train/loss=10.70] Epoch 0: | | 35/? [00:11<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 36/? [00:11<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 36/? [00:11<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 37/? [00:11<00:00, 3.11it/s, train/loss=20.80] Epoch 0: | | 37/? [00:11<00:00, 3.11it/s, train/loss=35.00] Epoch 0: | | 38/? [00:12<00:00, 3.11it/s, train/loss=35.00] Epoch 0: | | 38/? [00:12<00:00, 3.11it/s, train/loss=15.10] Epoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=15.10] Epoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=8.780] Epoch 0: | | 40/? [00:12<00:00, 3.11it/s, train/loss=8.780] Epoch 0: | | 40/? [00:12<00:00, 3.11it/s, train/loss=19.80] Epoch 0: | | 41/? [00:13<00:00, 3.10it/s, train/loss=19.80] Epoch 0: | | 41/? [00:13<00:00, 3.10it/s, train/loss=30.00] Epoch 0: | | 42/? [00:13<00:00, 3.11it/s, train/loss=30.00] Epoch 0: | | 42/? [00:13<00:00, 3.11it/s, train/loss=17.70] Epoch 0: | | 43/? [00:13<00:00, 3.11it/s, train/loss=17.70] Epoch 0: | | 43/? [00:13<00:00, 3.11it/s, train/loss=8.890] Epoch 0: | | 44/? [00:14<00:00, 3.11it/s, train/loss=8.890] Epoch 0: | | 44/? [00:14<00:00, 3.11it/s, train/loss=10.90] Epoch 0: | | 45/? [00:14<00:00, 3.11it/s, train/loss=10.90] Epoch 0: | | 45/? [00:14<00:00, 3.11it/s, train/loss=24.40] Epoch 0: | | 46/? [00:14<00:00, 3.11it/s, train/loss=24.40] Epoch 0: | | 46/? [00:14<00:00, 3.11it/s, train/loss=39.40] Epoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=39.40] Epoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=31.50] Epoch 0: | | 48/? [00:15<00:00, 3.10it/s, train/loss=31.50] Epoch 0: | | 48/? [00:15<00:00, 3.10it/s, train/loss=21.20] Epoch 0: | | 49/? [00:15<00:00, 3.10it/s, train/loss=21.20] Epoch 0: | | 49/? [00:15<00:00, 3.10it/s, train/loss=35.10] Epoch 0: | | 50/? [00:16<00:00, 3.10it/s, train/loss=35.10] Epoch 0: | | 50/? [00:16<00:00, 3.10it/s, train/loss=30.50] Epoch 0: | | 51/? [00:16<00:00, 3.10it/s, train/loss=30.50] Epoch 0: | | 51/? [00:16<00:00, 3.10it/s, train/loss=11.50] Epoch 0: | | 52/? [00:16<00:00, 3.10it/s, train/loss=11.50] Epoch 0: | | 52/? [00:16<00:00, 3.10it/s, train/loss=31.30] Epoch 0: | | 53/? [00:17<00:00, 3.10it/s, train/loss=31.30] Epoch 0: | | 53/? [00:17<00:00, 3.10it/s, train/loss=50.10] Epoch 0: | | 54/? [00:17<00:00, 3.10it/s, train/loss=50.10] Epoch 0: | | 54/? [00:17<00:00, 3.10it/s, train/loss=11.20] Epoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=11.20] Epoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=26.00] Epoch 0: | | 56/? [00:18<00:00, 3.10it/s, train/loss=26.00] Epoch 0: | | 56/? [00:18<00:00, 3.10it/s, train/loss=25.00] Epoch 0: | | 57/? [00:18<00:00, 3.10it/s, train/loss=25.00] Epoch 0: | | 57/? [00:18<00:00, 3.10it/s, train/loss=22.20] Epoch 0: | | 58/? [00:18<00:00, 3.10it/s, train/loss=22.20] Epoch 0: | | 58/? [00:18<00:00, 3.10it/s, train/loss=14.50] Epoch 0: | | 59/? [00:19<00:00, 3.10it/s, train/loss=14.50] Epoch 0: | | 59/? [00:19<00:00, 3.10it/s, train/loss=16.70] Epoch 0: | | 60/? [00:19<00:00, 3.10it/s, train/loss=16.70] Epoch 0: | | 60/? [00:19<00:00, 3.10it/s, train/loss=37.50] Epoch 0: | | 61/? [00:19<00:00, 3.10it/s, train/loss=37.50] Epoch 0: | | 61/? [00:19<00:00, 3.10it/s, train/loss=36.60] Epoch 0: | | 62/? [00:20<00:00, 3.10it/s, train/loss=36.60] Epoch 0: | | 62/? [00:20<00:00, 3.10it/s, train/loss=62.90] Epoch 0: | | 63/? [00:20<00:00, 3.10it/s, train/loss=62.90] Epoch 0: | | 63/? [00:20<00:00, 3.10it/s, train/loss=31.40] Epoch 0: | | 64/? [00:20<00:00, 3.10it/s, train/loss=31.40] Epoch 0: | | 64/? [00:20<00:00, 3.10it/s, train/loss=23.80] Epoch 0: | | 65/? [00:20<00:00, 3.10it/s, train/loss=23.80] Epoch 0: | | 65/? [00:20<00:00, 3.10it/s, train/loss=32.90] Epoch 0: | | 66/? [00:21<00:00, 3.10it/s, train/loss=32.90] Epoch 0: | | 66/? [00:21<00:00, 3.10it/s, train/loss=23.90] Epoch 0: | | 67/? [00:21<00:00, 3.10it/s, train/loss=23.90] Epoch 0: | | 67/? [00:21<00:00, 3.10it/s, train/loss=14.50] Epoch 0: | | 68/? [00:21<00:00, 3.10it/s, train/loss=14.50] Epoch 0: | | 68/? [00:21<00:00, 3.10it/s, train/loss=29.40] Epoch 0: | | 69/? [00:22<00:00, 3.10it/s, train/loss=29.40] Epoch 0: | | 69/? [00:22<00:00, 3.10it/s, train/loss=38.10] Epoch 0: | | 70/? [00:22<00:00, 3.10it/s, train/loss=38.10] Epoch 0: | | 70/? [00:22<00:00, 3.10it/s, train/loss=39.80] Epoch 0: | | 71/? [00:22<00:00, 3.10it/s, train/loss=39.80] Epoch 0: | | 71/? [00:22<00:00, 3.10it/s, train/loss=22.10] Epoch 0: | | 72/? [00:23<00:00, 3.10it/s, train/loss=22.10] Epoch 0: | | 72/? [00:23<00:00, 3.10it/s, train/loss=25.50] Epoch 0: | | 73/? [00:23<00:00, 3.10it/s, train/loss=25.50] Epoch 0: | | 73/? [00:23<00:00, 3.10it/s, train/loss=25.70] Epoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=25.70] Epoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=18.70] Epoch 0: | | 75/? [00:24<00:00, 3.10it/s, train/loss=18.70] Epoch 0: | | 75/? [00:24<00:00, 3.10it/s, train/loss=25.40] Epoch 0: | | 76/? [00:24<00:00, 3.10it/s, train/loss=25.40] Epoch 0: | | 76/? [00:24<00:00, 3.10it/s, train/loss=22.10] Epoch 0: | | 77/? [00:24<00:00, 3.10it/s, train/loss=22.10] Epoch 0: | | 77/? [00:24<00:00, 3.10it/s, train/loss=33.50] Epoch 0: | | 78/? [00:25<00:00, 3.08it/s, train/loss=33.50] Epoch 0: | | 78/? [00:25<00:00, 3.08it/s, train/loss=13.40] Epoch 0: | | 79/? [00:25<00:00, 3.06it/s, train/loss=13.40] Epoch 0: | | 79/? [00:25<00:00, 3.06it/s, train/loss=9.540] Epoch 0: | | 80/? [00:26<00:00, 3.05it/s, train/loss=9.540] Epoch 0: | | 80/? [00:26<00:00, 3.05it/s, train/loss=13.70] Epoch 0: | | 81/? [00:26<00:00, 3.04it/s, train/loss=13.70] Epoch 0: | | 81/? [00:26<00:00, 3.04it/s, train/loss=32.00] Epoch 0: | | 82/? [00:26<00:00, 3.04it/s, train/loss=32.00] Epoch 0: | | 82/? [00:26<00:00, 3.04it/s, train/loss=23.60] Epoch 0: | | 83/? [00:27<00:00, 3.05it/s, train/loss=23.60] Epoch 0: | | 83/? [00:27<00:00, 3.05it/s, train/loss=27.50] Epoch 0: | | 84/? [00:27<00:00, 3.05it/s, train/loss=27.50] Epoch 0: | | 84/? [00:27<00:00, 3.05it/s, train/loss=41.20] Epoch 0: | | 85/? [00:27<00:00, 3.04it/s, train/loss=41.20] Epoch 0: | | 85/? [00:27<00:00, 3.04it/s, train/loss=31.90] Epoch 0: | | 86/? [00:28<00:00, 3.05it/s, train/loss=31.90] Epoch 0: | | 86/? [00:28<00:00, 3.05it/s, train/loss=10.30] Epoch 0: | | 87/? [00:28<00:00, 3.05it/s, train/loss=10.30] Epoch 0: | | 87/? [00:28<00:00, 3.05it/s, train/loss=30.40] Epoch 0: | | 88/? [00:28<00:00, 3.05it/s, train/loss=30.40] Epoch 0: | | 88/? [00:28<00:00, 3.05it/s, train/loss=27.20] Epoch 0: | | 89/? [00:29<00:00, 3.05it/s, train/loss=27.20] Epoch 0: | | 89/? [00:29<00:00, 3.05it/s, train/loss=36.90] Epoch 0: | | 90/? [00:29<00:00, 3.04it/s, train/loss=36.90] Epoch 0: | | 90/? [00:29<00:00, 3.04it/s, train/loss=15.30] Epoch 0: | | 91/? [00:29<00:00, 3.04it/s, train/loss=15.30] Epoch 0: | | 91/? [00:29<00:00, 3.04it/s, train/loss=25.40] Epoch 0: | | 92/? [00:30<00:00, 3.04it/s, train/loss=25.40] Epoch 0: | | 92/? [00:30<00:00, 3.04it/s, train/loss=18.00] Epoch 0: | | 93/? [00:30<00:00, 3.04it/s, train/loss=18.00] Epoch 0: | | 93/? [00:30<00:00, 3.04it/s, train/loss=30.60] Epoch 0: | | 94/? [00:30<00:00, 3.04it/s, train/loss=30.60] Epoch 0: | | 94/? [00:30<00:00, 3.04it/s, train/loss=22.00] Epoch 0: | | 95/? [00:31<00:00, 3.04it/s, train/loss=22.00] Epoch 0: | | 95/? [00:31<00:00, 3.04it/s, train/loss=13.20] Epoch 0: | | 96/? [00:31<00:00, 3.05it/s, train/loss=13.20] Epoch 0: | | 96/? [00:31<00:00, 3.05it/s, train/loss=28.90] Epoch 0: | | 97/? [00:31<00:00, 3.04it/s, train/loss=28.90] Epoch 0: | | 97/? [00:31<00:00, 3.04it/s, train/loss=43.10] Epoch 0: | | 98/? [00:32<00:00, 3.04it/s, train/loss=43.10] Epoch 0: | | 98/? [00:32<00:00, 3.04it/s, train/loss=24.10] Epoch 0: | | 99/? [00:32<00:00, 3.04it/s, train/loss=24.10] Epoch 0: | | 99/? [00:32<00:00, 3.04it/s, train/loss=35.90] Epoch 0: | | 100/? [00:32<00:00, 3.04it/s, train/loss=35.90] Epoch 0: | | 100/? [00:32<00:00, 3.04it/s, train/loss=54.40] Epoch 0: | | 101/? [00:33<00:00, 3.04it/s, train/loss=54.40] Epoch 0: | | 101/? [00:33<00:00, 3.04it/s, train/loss=39.20] Epoch 0: | | 102/? [00:33<00:00, 3.02it/s, train/loss=39.20] Epoch 0: | | 102/? [00:33<00:00, 3.02it/s, train/loss=26.30] Epoch 0: | | 103/? [00:34<00:00, 3.01it/s, train/loss=26.30] Epoch 0: | | 103/? [00:34<00:00, 3.01it/s, train/loss=11.30] Epoch 0: | | 104/? [00:34<00:00, 3.00it/s, train/loss=11.30] Epoch 0: | | 104/? [00:34<00:00, 3.00it/s, train/loss=16.80] Epoch 0: | | 105/? [00:35<00:00, 2.99it/s, train/loss=16.80] Epoch 0: | | 105/? [00:35<00:00, 2.99it/s, train/loss=28.70] Epoch 0: | | 106/? [00:35<00:00, 2.98it/s, train/loss=28.70] Epoch 0: | | 106/? [00:35<00:00, 2.98it/s, train/loss=24.10] Epoch 0: | | 107/? [00:36<00:00, 2.97it/s, train/loss=24.10] Epoch 0: | | 107/? [00:36<00:00, 2.97it/s, train/loss=25.80] Epoch 0: | | 108/? [00:36<00:00, 2.95it/s, train/loss=25.80] Epoch 0: | | 108/? [00:36<00:00, 2.95it/s, train/loss=35.10] Epoch 0: | | 109/? [00:37<00:00, 2.94it/s, train/loss=35.10] Epoch 0: | | 109/? [00:37<00:00, 2.94it/s, train/loss=34.00] Epoch 0: | | 110/? [00:37<00:00, 2.95it/s, train/loss=34.00] Epoch 0: | | 110/? [00:37<00:00, 2.95it/s, train/loss=10.00] Epoch 0: | | 111/? [00:37<00:00, 2.95it/s, train/loss=10.00] Epoch 0: | | 111/? [00:37<00:00, 2.95it/s, train/loss=18.90] Epoch 0: | | 112/? [00:37<00:00, 2.95it/s, train/loss=18.90] Epoch 0: | | 112/? [00:37<00:00, 2.95it/s, train/loss=16.30] Epoch 0: | | 113/? [00:38<00:00, 2.95it/s, train/loss=16.30] Epoch 0: | | 113/? [00:38<00:00, 2.95it/s, train/loss=26.50] Epoch 0: | | 114/? [00:38<00:00, 2.95it/s, train/loss=26.50] Epoch 0: | | 114/? [00:38<00:00, 2.95it/s, train/loss=23.80] Epoch 0: | | 115/? [00:38<00:00, 2.95it/s, train/loss=23.80] Epoch 0: | | 115/? [00:38<00:00, 2.95it/s, train/loss=19.70] Epoch 0: | | 116/? [00:39<00:00, 2.95it/s, train/loss=19.70] Epoch 0: | | 116/? [00:39<00:00, 2.95it/s, train/loss=28.20] Epoch 0: | | 117/? [00:39<00:00, 2.95it/s, train/loss=28.20] Epoch 0: | | 117/? [00:39<00:00, 2.95it/s, train/loss=26.90] Epoch 0: | | 118/? [00:39<00:00, 2.95it/s, train/loss=26.90] Epoch 0: | | 118/? [00:39<00:00, 2.95it/s, train/loss=12.40] Epoch 0: | | 119/? [00:40<00:00, 2.95it/s, train/loss=12.40] Epoch 0: | | 119/? [00:40<00:00, 2.95it/s, train/loss=25.70] Epoch 0: | | 120/? [00:40<00:00, 2.96it/s, train/loss=25.70] Epoch 0: | | 120/? [00:40<00:00, 2.96it/s, train/loss=15.50] Epoch 0: | | 121/? [00:40<00:00, 2.96it/s, train/loss=15.50] Epoch 0: | | 121/? [00:40<00:00, 2.96it/s, train/loss=33.20] Epoch 0: | | 122/? [00:41<00:00, 2.96it/s, train/loss=33.20] Epoch 0: | | 122/? [00:41<00:00, 2.96it/s, train/loss=29.20] Epoch 0: | | 123/? [00:41<00:00, 2.96it/s, train/loss=29.20] Epoch 0: | | 123/? [00:41<00:00, 2.96it/s, train/loss=14.80] Epoch 0: | | 124/? [00:41<00:00, 2.96it/s, train/loss=14.80] Epoch 0: | | 124/? [00:41<00:00, 2.96it/s, train/loss=19.00] Epoch 0: | | 125/? [00:42<00:00, 2.96it/s, train/loss=19.00] Epoch 0: | | 125/? [00:42<00:00, 2.96it/s, train/loss=35.50] Epoch 0: | | 126/? [00:42<00:00, 2.96it/s, train/loss=35.50] Epoch 0: | | 126/? [00:42<00:00, 2.96it/s, train/loss=30.20] Epoch 0: | | 127/? [00:42<00:00, 2.96it/s, train/loss=30.20] Epoch 0: | | 127/? [00:42<00:00, 2.96it/s, train/loss=11.70] Epoch 0: | | 128/? [00:43<00:00, 2.96it/s, train/loss=11.70] Epoch 0: | | 128/? [00:43<00:00, 2.96it/s, train/loss=33.50] Epoch 0: | | 129/? [00:43<00:00, 2.96it/s, train/loss=33.50] Epoch 0: | | 129/? [00:43<00:00, 2.96it/s, train/loss=21.60] Epoch 0: | | 130/? [00:43<00:00, 2.96it/s, train/loss=21.60] Epoch 0: | | 130/? [00:43<00:00, 2.96it/s, train/loss=31.00] Epoch 0: | | 131/? [00:44<00:00, 2.96it/s, train/loss=31.00] Epoch 0: | | 131/? [00:44<00:00, 2.96it/s, train/loss=7.040] Epoch 0: | | 132/? [00:44<00:00, 2.96it/s, train/loss=7.040] Epoch 0: | | 132/? [00:44<00:00, 2.96it/s, train/loss=18.30] Epoch 0: | | 133/? [00:44<00:00, 2.96it/s, train/loss=18.30] Epoch 0: | | 133/? [00:44<00:00, 2.96it/s, train/loss=50.90] Epoch 0: | | 134/? [00:45<00:00, 2.96it/s, train/loss=50.90] Epoch 0: | | 134/? [00:45<00:00, 2.96it/s, train/loss=36.30] Epoch 0: | | 135/? [00:45<00:00, 2.96it/s, train/loss=36.30] Epoch 0: | | 135/? [00:45<00:00, 2.96it/s, train/loss=16.50] Epoch 0: | | 136/? [00:45<00:00, 2.96it/s, train/loss=16.50] Epoch 0: | | 136/? [00:45<00:00, 2.96it/s, train/loss=37.00] Epoch 0: | | 137/? [00:46<00:00, 2.96it/s, train/loss=37.00] Epoch 0: | | 137/? [00:46<00:00, 2.96it/s, train/loss=30.50] Epoch 0: | | 138/? [00:46<00:00, 2.96it/s, train/loss=30.50] Epoch 0: | | 138/? [00:46<00:00, 2.96it/s, train/loss=9.030] Epoch 0: | | 139/? [00:46<00:00, 2.96it/s, train/loss=9.030] Epoch 0: | | 139/? [00:46<00:00, 2.96it/s, train/loss=64.00] Epoch 0: | | 140/? [00:47<00:00, 2.97it/s, train/loss=64.00] Epoch 0: | | 140/? [00:47<00:00, 2.97it/s, train/loss=21.90] Epoch 0: | | 141/? [00:47<00:00, 2.97it/s, train/loss=21.90] Epoch 0: | | 141/? [00:47<00:00, 2.97it/s, train/loss=20.40] Epoch 0: | | 142/? [00:47<00:00, 2.97it/s, train/loss=20.40] Epoch 0: | | 142/? [00:47<00:00, 2.97it/s, train/loss=23.60] Epoch 0: | | 143/? [00:48<00:00, 2.97it/s, train/loss=23.60] Epoch 0: | | 143/? [00:48<00:00, 2.97it/s, train/loss=9.380] Epoch 0: | | 144/? [00:48<00:00, 2.97it/s, train/loss=9.380] Epoch 0: | | 144/? [00:48<00:00, 2.97it/s, train/loss=28.20] Epoch 0: | | 145/? [00:48<00:00, 2.97it/s, train/loss=28.20] Epoch 0: | | 145/? [00:48<00:00, 2.97it/s, train/loss=49.70] Epoch 0: | | 146/? [00:49<00:00, 2.97it/s, train/loss=49.70] Epoch 0: | | 146/? [00:49<00:00, 2.97it/s, train/loss=22.60] Epoch 0: | | 147/? [00:49<00:00, 2.97it/s, train/loss=22.60] Epoch 0: | | 147/? [00:49<00:00, 2.97it/s, train/loss=31.20] Epoch 0: | | 148/? [00:49<00:00, 2.97it/s, train/loss=31.20] Epoch 0: | | 148/? [00:49<00:00, 2.97it/s, train/loss=12.40] Epoch 0: | | 149/? [00:50<00:00, 2.97it/s, train/loss=12.40] Epoch 0: | | 149/? [00:50<00:00, 2.97it/s, train/loss=26.90] Epoch 0: | | 150/? [00:50<00:00, 2.97it/s, train/loss=26.90] Epoch 0: | | 150/? [00:50<00:00, 2.97it/s, train/loss=29.40] Epoch 0: | | 151/? [00:50<00:00, 2.97it/s, train/loss=29.40] Epoch 0: | | 151/? [00:50<00:00, 2.97it/s, train/loss=15.90] Epoch 0: | | 152/? [00:51<00:00, 2.97it/s, train/loss=15.90] Epoch 0: | | 152/? [00:51<00:00, 2.97it/s, train/loss=34.20] Epoch 0: | | 153/? [00:51<00:00, 2.97it/s, train/loss=34.20] Epoch 0: | | 153/? [00:51<00:00, 2.97it/s, train/loss=27.00] Epoch 0: | | 154/? [00:51<00:00, 2.97it/s, train/loss=27.00] Epoch 0: | | 154/? [00:51<00:00, 2.97it/s, train/loss=20.90] Epoch 0: | | 155/? [00:52<00:00, 2.97it/s, train/loss=20.90] Epoch 0: | | 155/? [00:52<00:00, 2.97it/s, train/loss=28.60] Epoch 0: | | 156/? [00:52<00:00, 2.97it/s, train/loss=28.60] Epoch 0: | | 156/? [00:52<00:00, 2.97it/s, train/loss=15.00] Epoch 0: | | 157/? [00:52<00:00, 2.97it/s, train/loss=15.00] Epoch 0: | | 157/? [00:52<00:00, 2.97it/s, train/loss=18.70] Epoch 0: | | 158/? [00:53<00:00, 2.98it/s, train/loss=18.70] Epoch 0: | | 158/? [00:53<00:00, 2.98it/s, train/loss=21.40] Epoch 0: | | 159/? [00:53<00:00, 2.98it/s, train/loss=21.40] Epoch 0: | | 159/? [00:53<00:00, 2.98it/s, train/loss=37.80] Epoch 0: | | 160/? [00:53<00:00, 2.98it/s, train/loss=37.80] Epoch 0: | | 160/? [00:53<00:00, 2.98it/s, train/loss=16.10] Epoch 0: | | 161/? [00:54<00:00, 2.98it/s, train/loss=16.10] Epoch 0: | | 161/? [00:54<00:00, 2.98it/s, train/loss=29.40] Epoch 0: | | 162/? [00:54<00:00, 2.98it/s, train/loss=29.40] Epoch 0: | | 162/? [00:54<00:00, 2.98it/s, train/loss=27.00] Epoch 0: | | 163/? [00:54<00:00, 2.98it/s, train/loss=27.00] Epoch 0: | | 163/? [00:54<00:00, 2.98it/s, train/loss=30.00] Epoch 0: | | 164/? [00:55<00:00, 2.98it/s, train/loss=30.00] Epoch 0: | | 164/? [00:55<00:00, 2.98it/s, train/loss=23.00] Epoch 0: | | 165/? [00:55<00:00, 2.98it/s, train/loss=23.00] Epoch 0: | | 165/? [00:55<00:00, 2.98it/s, train/loss=19.30] Epoch 0: | | 166/? [00:55<00:00, 2.98it/s, train/loss=19.30] Epoch 0: | | 166/? [00:55<00:00, 2.98it/s, train/loss=7.840] Epoch 0: | | 167/? [00:56<00:00, 2.98it/s, train/loss=7.840] Epoch 0: | | 167/? [00:56<00:00, 2.98it/s, train/loss=23.30] Epoch 0: | | 168/? [00:56<00:00, 2.98it/s, train/loss=23.30] Epoch 0: | | 168/? [00:56<00:00, 2.98it/s, train/loss=28.90] Epoch 0: | | 169/? [00:56<00:00, 2.98it/s, train/loss=28.90] Epoch 0: | | 169/? [00:56<00:00, 2.98it/s, train/loss=41.70] Epoch 0: | | 170/? [00:57<00:00, 2.98it/s, train/loss=41.70] Epoch 0: | | 170/? [00:57<00:00, 2.98it/s, train/loss=25.60] Epoch 0: | | 171/? [00:57<00:00, 2.98it/s, train/loss=25.60] Epoch 0: | | 171/? [00:57<00:00, 2.98it/s, train/loss=9.550] Epoch 0: | | 172/? [00:57<00:00, 2.98it/s, train/loss=9.550] Epoch 0: | | 172/? [00:57<00:00, 2.98it/s, train/loss=8.980] Epoch 0: | | 173/? [00:58<00:00, 2.98it/s, train/loss=8.980] Epoch 0: | | 173/? [00:58<00:00, 2.98it/s, train/loss=41.40] Epoch 0: | | 174/? [00:58<00:00, 2.97it/s, train/loss=41.40] Epoch 0: | | 174/? [00:58<00:00, 2.97it/s, train/loss=14.10] Epoch 0: | | 175/? [00:58<00:00, 2.97it/s, train/loss=14.10] Epoch 0: | | 175/? [00:58<00:00, 2.97it/s, train/loss=42.50] Epoch 0: | | 176/? [00:59<00:00, 2.97it/s, train/loss=42.50] Epoch 0: | | 176/? [00:59<00:00, 2.97it/s, train/loss=18.90] Epoch 0: | | 177/? [00:59<00:00, 2.97it/s, train/loss=18.90] Epoch 0: | | 177/? [00:59<00:00, 2.97it/s, train/loss=52.70] Epoch 0: | | 178/? [00:59<00:00, 2.97it/s, train/loss=52.70] Epoch 0: | | 178/? [00:59<00:00, 2.97it/s, train/loss=21.30] Epoch 0: | | 179/? [01:00<00:00, 2.97it/s, train/loss=21.30] Epoch 0: | | 179/? [01:00<00:00, 2.97it/s, train/loss=26.90] Epoch 0: | | 180/? [01:00<00:00, 2.97it/s, train/loss=26.90] Epoch 0: | | 180/? [01:00<00:00, 2.97it/s, train/loss=43.90] Epoch 0: | | 181/? [01:00<00:00, 2.97it/s, train/loss=43.90] Epoch 0: | | 181/? [01:00<00:00, 2.97it/s, train/loss=30.30] Epoch 0: | | 182/? [01:01<00:00, 2.97it/s, train/loss=30.30] Epoch 0: | | 182/? [01:01<00:00, 2.97it/s, train/loss=14.80] Epoch 0: | | 183/? [01:01<00:00, 2.97it/s, train/loss=14.80] Epoch 0: | | 183/? [01:01<00:00, 2.97it/s, train/loss=9.860] Epoch 0: | | 184/? [01:01<00:00, 2.97it/s, train/loss=9.860] Epoch 0: | | 184/? [01:01<00:00, 2.97it/s, train/loss=40.60] Epoch 0: | | 185/? [01:02<00:00, 2.97it/s, train/loss=40.60] Epoch 0: | | 185/? [01:02<00:00, 2.97it/s, train/loss=17.30] Epoch 0: | | 186/? [01:02<00:00, 2.97it/s, train/loss=17.30] Epoch 0: | | 186/? [01:02<00:00, 2.97it/s, train/loss=17.20] Epoch 0: | | 187/? [01:02<00:00, 2.97it/s, train/loss=17.20] Epoch 0: | | 187/? [01:02<00:00, 2.97it/s, train/loss=30.70] Epoch 0: | | 188/? [01:03<00:00, 2.97it/s, train/loss=30.70] Epoch 0: | | 188/? [01:03<00:00, 2.97it/s, train/loss=30.50] Epoch 0: | | 189/? [01:03<00:00, 2.97it/s, train/loss=30.50] Epoch 0: | | 189/? [01:03<00:00, 2.97it/s, train/loss=34.40] Epoch 0: | | 190/? [01:03<00:00, 2.97it/s, train/loss=34.40] Epoch 0: | | 190/? [01:03<00:00, 2.97it/s, train/loss=18.50] Epoch 0: | | 191/? [01:04<00:00, 2.97it/s, train/loss=18.50] Epoch 0: | | 191/? [01:04<00:00, 2.97it/s, train/loss=10.70] Epoch 0: | | 192/? [01:04<00:00, 2.98it/s, train/loss=10.70] Epoch 0: | | 192/? [01:04<00:00, 2.98it/s, train/loss=10.90] Epoch 0: | | 193/? [01:04<00:00, 2.98it/s, train/loss=10.90] Epoch 0: | | 193/? [01:04<00:00, 2.98it/s, train/loss=42.30] Epoch 0: | | 194/? [01:05<00:00, 2.98it/s, train/loss=42.30] Epoch 0: | | 194/? [01:05<00:00, 2.98it/s, train/loss=15.00] Epoch 0: | | 195/? [01:05<00:00, 2.98it/s, train/loss=15.00] Epoch 0: | | 195/? [01:05<00:00, 2.98it/s, train/loss=24.30] Epoch 0: | | 196/? [01:05<00:00, 2.98it/s, train/loss=24.30] Epoch 0: | | 196/? [01:05<00:00, 2.98it/s, train/loss=23.80] Epoch 0: | | 197/? [01:06<00:00, 2.98it/s, train/loss=23.80] Epoch 0: | | 197/? [01:06<00:00, 2.98it/s, train/loss=23.20] Epoch 0: | | 198/? [01:06<00:00, 2.98it/s, train/loss=23.20] Epoch 0: | | 198/? [01:06<00:00, 2.98it/s, train/loss=9.060] Epoch 0: | | 199/? [01:06<00:00, 2.98it/s, train/loss=9.060] Epoch 0: | | 199/? [01:06<00:00, 2.98it/s, train/loss=24.10] Epoch 0: | | 200/? [01:07<00:00, 2.98it/s, train/loss=24.10] Epoch 0: | | 200/? [01:07<00:00, 2.98it/s, train/loss=19.50] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 9.75it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 10.64it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 10.96it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.13it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.22it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.32it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.34it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.39it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.38it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.46it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.53it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.59it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.56it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.57it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.60it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.61it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:01, 11.63it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.64it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.65it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.66it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.65it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.67it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:01<00:01, 11.68it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.66it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.65it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.64it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.64it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.63it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.65it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.67it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.67it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.66it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.67it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.66it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.64it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.62it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.60it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.59it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.58it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.57it/s] Epoch 0: | | 200/? [01:14<00:00, 2.70it/s, train/loss=19.50] Epoch 0: | | 201/? [01:15<00:00, 2.68it/s, train/loss=19.50] Epoch 0: | | 201/? [01:15<00:00, 2.68it/s, train/loss=18.40] Epoch 0: | | 202/? [01:15<00:00, 2.68it/s, train/loss=18.40] Epoch 0: | | 202/? [01:15<00:00, 2.68it/s, train/loss=21.90] Epoch 0: | | 203/? [01:15<00:00, 2.68it/s, train/loss=21.90] Epoch 0: | | 203/? [01:15<00:00, 2.68it/s, train/loss=24.70] Epoch 0: | | 204/? [01:16<00:00, 2.68it/s, train/loss=24.70] Epoch 0: | | 204/? [01:16<00:00, 2.68it/s, train/loss=20.40] Epoch 0: | | 205/? [01:16<00:00, 2.68it/s, train/loss=20.40] Epoch 0: | | 205/? [01:16<00:00, 2.68it/s, train/loss=24.10] Epoch 0: | | 206/? [01:16<00:00, 2.68it/s, train/loss=24.10] Epoch 0: | | 206/? [01:16<00:00, 2.68it/s, train/loss=29.90] Epoch 0: | | 207/? [01:17<00:00, 2.68it/s, train/loss=29.90] Epoch 0: | | 207/? [01:17<00:00, 2.68it/s, train/loss=9.750] Epoch 0: | | 208/? [01:17<00:00, 2.68it/s, train/loss=9.750] Epoch 0: | | 208/? [01:17<00:00, 2.68it/s, train/loss=20.60] Epoch 0: | | 209/? [01:17<00:00, 2.68it/s, train/loss=20.60] Epoch 0: | | 209/? [01:17<00:00, 2.68it/s, train/loss=31.50] Epoch 0: | | 210/? [01:18<00:00, 2.69it/s, train/loss=31.50] Epoch 0: | | 210/? [01:18<00:00, 2.69it/s, train/loss=26.50] Epoch 0: | | 211/? [01:18<00:00, 2.69it/s, train/loss=26.50] Epoch 0: | | 211/? [01:18<00:00, 2.69it/s, train/loss=44.80] Epoch 0: | | 212/? [01:18<00:00, 2.69it/s, train/loss=44.80] Epoch 0: | | 212/? [01:18<00:00, 2.69it/s, train/loss=12.50] Epoch 0: | | 213/? [01:19<00:00, 2.69it/s, train/loss=12.50] Epoch 0: | | 213/? [01:19<00:00, 2.69it/s, train/loss=22.50] Epoch 0: | | 214/? [01:19<00:00, 2.69it/s, train/loss=22.50] Epoch 0: | | 214/? [01:19<00:00, 2.69it/s, train/loss=22.90] Epoch 0: | | 215/? [01:19<00:00, 2.69it/s, train/loss=22.90] Epoch 0: | | 215/? [01:19<00:00, 2.69it/s, train/loss=12.00] Epoch 0: | | 216/? [01:20<00:00, 2.70it/s, train/loss=12.00] Epoch 0: | | 216/? [01:20<00:00, 2.70it/s, train/loss=22.50] Epoch 0: | | 217/? [01:20<00:00, 2.70it/s, train/loss=22.50] Epoch 0: | | 217/? [01:20<00:00, 2.70it/s, train/loss=22.90] Epoch 0: | | 218/? [01:20<00:00, 2.70it/s, train/loss=22.90] Epoch 0: | | 218/? [01:20<00:00, 2.70it/s, train/loss=26.30] Epoch 0: | | 219/? [01:21<00:00, 2.70it/s, train/loss=26.30] Epoch 0: | | 219/? [01:21<00:00, 2.70it/s, train/loss=12.70] Epoch 0: | | 220/? [01:21<00:00, 2.70it/s, train/loss=12.70] Epoch 0: | | 220/? [01:21<00:00, 2.70it/s, train/loss=12.20] Epoch 0: | | 221/? [01:21<00:00, 2.70it/s, train/loss=12.20] Epoch 0: | | 221/? [01:21<00:00, 2.70it/s, train/loss=33.90] Epoch 0: | | 222/? [01:22<00:00, 2.70it/s, train/loss=33.90] Epoch 0: | | 222/? [01:22<00:00, 2.70it/s, train/loss=21.90] Epoch 0: | | 223/? [01:22<00:00, 2.70it/s, train/loss=21.90] Epoch 0: | | 223/? [01:22<00:00, 2.70it/s, train/loss=9.470] Epoch 0: | | 224/? [01:22<00:00, 2.70it/s, train/loss=9.470] Epoch 0: | | 224/? [01:22<00:00, 2.70it/s, train/loss=29.10] Epoch 0: | | 225/? [01:23<00:00, 2.70it/s, train/loss=29.10] Epoch 0: | | 225/? [01:23<00:00, 2.70it/s, train/loss=34.40] Epoch 0: | | 226/? [01:23<00:00, 2.71it/s, train/loss=34.40] Epoch 0: | | 226/? [01:23<00:00, 2.71it/s, train/loss=17.00] Epoch 0: | | 227/? [01:23<00:00, 2.71it/s, train/loss=17.00] Epoch 0: | | 227/? [01:23<00:00, 2.71it/s, train/loss=23.90] Epoch 0: | | 228/? [01:24<00:00, 2.71it/s, train/loss=23.90] Epoch 0: | | 228/? [01:24<00:00, 2.71it/s, train/loss=12.90] Epoch 0: | | 229/? [01:24<00:00, 2.70it/s, train/loss=12.90] Epoch 0: | | 229/? [01:24<00:00, 2.70it/s, train/loss=27.10] Epoch 0: | | 230/? [01:25<00:00, 2.70it/s, train/loss=27.10] Epoch 0: | | 230/? [01:25<00:00, 2.70it/s, train/loss=18.10] Epoch 0: | | 231/? [01:25<00:00, 2.70it/s, train/loss=18.10] Epoch 0: | | 231/? [01:25<00:00, 2.70it/s, train/loss=23.10] Epoch 0: | | 232/? [01:25<00:00, 2.70it/s, train/loss=23.10] Epoch 0: | | 232/? [01:25<00:00, 2.70it/s, train/loss=32.00] Epoch 0: | | 233/? [01:26<00:00, 2.70it/s, train/loss=32.00] Epoch 0: | | 233/? [01:26<00:00, 2.70it/s, train/loss=39.00] Epoch 0: | | 234/? [01:26<00:00, 2.70it/s, train/loss=39.00] Epoch 0: | | 234/? [01:26<00:00, 2.70it/s, train/loss=17.50] Epoch 0: | | 235/? [01:27<00:00, 2.70it/s, train/loss=17.50] Epoch 0: | | 235/? [01:27<00:00, 2.70it/s, train/loss=27.30] Epoch 0: | | 236/? [01:27<00:00, 2.70it/s, train/loss=27.30] Epoch 0: | | 236/? [01:27<00:00, 2.70it/s, train/loss=17.20] Epoch 0: | | 237/? [01:27<00:00, 2.70it/s, train/loss=17.20] Epoch 0: | | 237/? [01:27<00:00, 2.70it/s, train/loss=21.60] Epoch 0: | | 238/? [01:28<00:00, 2.70it/s, train/loss=21.60] Epoch 0: | | 238/? [01:28<00:00, 2.70it/s, train/loss=27.00] Epoch 0: | | 239/? [01:28<00:00, 2.70it/s, train/loss=27.00] Epoch 0: | | 239/? [01:28<00:00, 2.70it/s, train/loss=24.70] Epoch 0: | | 240/? [01:28<00:00, 2.71it/s, train/loss=24.70] Epoch 0: | | 240/? [01:28<00:00, 2.71it/s, train/loss=19.30] Epoch 0: | | 241/? [01:29<00:00, 2.71it/s, train/loss=19.30] Epoch 0: | | 241/? [01:29<00:00, 2.71it/s, train/loss=31.30] Epoch 0: | | 242/? [01:29<00:00, 2.71it/s, train/loss=31.30] Epoch 0: | | 242/? [01:29<00:00, 2.71it/s, train/loss=33.00] Epoch 0: | | 243/? [01:29<00:00, 2.71it/s, train/loss=33.00] Epoch 0: | | 243/? [01:29<00:00, 2.71it/s, train/loss=36.70] Epoch 0: | | 244/? [01:29<00:00, 2.71it/s, train/loss=36.70] Epoch 0: | | 244/? [01:29<00:00, 2.71it/s, train/loss=11.30] Epoch 0: | | 245/? [01:30<00:00, 2.71it/s, train/loss=11.30] Epoch 0: | | 245/? [01:30<00:00, 2.71it/s, train/loss=29.30] Epoch 0: | | 246/? [01:30<00:00, 2.71it/s, train/loss=29.30] Epoch 0: | | 246/? [01:30<00:00, 2.71it/s, train/loss=29.50] Epoch 0: | | 247/? [01:30<00:00, 2.72it/s, train/loss=29.50] Epoch 0: | | 247/? [01:30<00:00, 2.71it/s, train/loss=38.30] Epoch 0: | | 248/? [01:31<00:00, 2.72it/s, train/loss=38.30] Epoch 0: | | 248/? [01:31<00:00, 2.72it/s, train/loss=31.60] Epoch 0: | | 249/? [01:31<00:00, 2.72it/s, train/loss=31.60] Epoch 0: | | 249/? [01:31<00:00, 2.72it/s, train/loss=25.80] Epoch 0: | | 250/? [01:31<00:00, 2.72it/s, train/loss=25.80] Epoch 0: | | 250/? [01:31<00:00, 2.72it/s, train/loss=22.20] Epoch 0: | | 251/? [01:32<00:00, 2.72it/s, train/loss=22.20] Epoch 0: | | 251/? [01:32<00:00, 2.72it/s, train/loss=20.50] Epoch 0: | | 252/? [01:32<00:00, 2.72it/s, train/loss=20.50] Epoch 0: | | 252/? [01:32<00:00, 2.72it/s, train/loss=12.90] Epoch 0: | | 253/? [01:32<00:00, 2.72it/s, train/loss=12.90] Epoch 0: | | 253/? [01:32<00:00, 2.72it/s, train/loss=34.50] Epoch 0: | | 254/? [01:33<00:00, 2.72it/s, train/loss=34.50] Epoch 0: | | 254/? [01:33<00:00, 2.72it/s, train/loss=21.40] Epoch 0: | | 255/? [01:33<00:00, 2.72it/s, train/loss=21.40] Epoch 0: | | 255/? [01:33<00:00, 2.72it/s, train/loss=20.10] Epoch 0: | | 256/? [01:33<00:00, 2.73it/s, train/loss=20.10] Epoch 0: | | 256/? [01:33<00:00, 2.73it/s, train/loss=9.920] Epoch 0: | | 257/? [01:34<00:00, 2.73it/s, train/loss=9.920] Epoch 0: | | 257/? [01:34<00:00, 2.73it/s, train/loss=26.10] Epoch 0: | | 258/? [01:34<00:00, 2.73it/s, train/loss=26.10] Epoch 0: | | 258/? [01:34<00:00, 2.73it/s, train/loss=22.30] Epoch 0: | | 259/? [01:34<00:00, 2.73it/s, train/loss=22.30] Epoch 0: | | 259/? [01:34<00:00, 2.73it/s, train/loss=22.70] Epoch 0: | | 260/? [01:35<00:00, 2.73it/s, train/loss=22.70] Epoch 0: | | 260/? [01:35<00:00, 2.73it/s, train/loss=10.50] Epoch 0: | | 261/? [01:35<00:00, 2.73it/s, train/loss=10.50] Epoch 0: | | 261/? [01:35<00:00, 2.73it/s, train/loss=19.80] Epoch 0: | | 262/? [01:35<00:00, 2.73it/s, train/loss=19.80] Epoch 0: | | 262/? [01:35<00:00, 2.73it/s, train/loss=26.50] Epoch 0: | | 263/? [01:36<00:00, 2.73it/s, train/loss=26.50] Epoch 0: | | 263/? [01:36<00:00, 2.73it/s, train/loss=15.90] Epoch 0: | | 264/? [01:36<00:00, 2.73it/s, train/loss=15.90] Epoch 0: | | 264/? [01:36<00:00, 2.73it/s, train/loss=83.00] Epoch 0: | | 265/? [01:36<00:00, 2.73it/s, train/loss=83.00] Epoch 0: | | 265/? [01:36<00:00, 2.73it/s, train/loss=19.80] Epoch 0: | | 266/? [01:37<00:00, 2.74it/s, train/loss=19.80] Epoch 0: | | 266/? [01:37<00:00, 2.74it/s, train/loss=27.80] Epoch 0: | | 267/? [01:37<00:00, 2.74it/s, train/loss=27.80] Epoch 0: | | 267/? [01:37<00:00, 2.74it/s, train/loss=12.90] Epoch 0: | | 268/? [01:37<00:00, 2.74it/s, train/loss=12.90] Epoch 0: | | 268/? [01:37<00:00, 2.74it/s, train/loss=37.60] Epoch 0: | | 269/? [01:38<00:00, 2.74it/s, train/loss=37.60] Epoch 0: | | 269/? [01:38<00:00, 2.74it/s, train/loss=18.00] Epoch 0: | | 270/? [01:38<00:00, 2.74it/s, train/loss=18.00] Epoch 0: | | 270/? [01:38<00:00, 2.74it/s, train/loss=30.10] Epoch 0: | | 271/? [01:38<00:00, 2.74it/s, train/loss=30.10] Epoch 0: | | 271/? [01:38<00:00, 2.74it/s, train/loss=26.90] Epoch 0: | | 272/? [01:39<00:00, 2.74it/s, train/loss=26.90] Epoch 0: | | 272/? [01:39<00:00, 2.74it/s, train/loss=24.70] Epoch 0: | | 273/? [01:39<00:00, 2.74it/s, train/loss=24.70] Epoch 0: | | 273/? [01:39<00:00, 2.74it/s, train/loss=30.30] Epoch 0: | | 274/? [01:40<00:00, 2.73it/s, train/loss=30.30] Epoch 0: | | 274/? [01:40<00:00, 2.73it/s, train/loss=23.30] Epoch 0: | | 275/? [01:40<00:00, 2.74it/s, train/loss=23.30] Epoch 0: | | 275/? [01:40<00:00, 2.74it/s, train/loss=19.70] Epoch 0: | | 276/? [01:40<00:00, 2.74it/s, train/loss=19.70] Epoch 0: | | 276/? [01:40<00:00, 2.74it/s, train/loss=25.70] Epoch 0: | | 277/? [01:41<00:00, 2.74it/s, train/loss=25.70] Epoch 0: | | 277/? [01:41<00:00, 2.74it/s, train/loss=43.30] Epoch 0: | | 278/? [01:41<00:00, 2.74it/s, train/loss=43.30] Epoch 0: | | 278/? [01:41<00:00, 2.74it/s, train/loss=29.50] Epoch 0: | | 279/? [01:41<00:00, 2.74it/s, train/loss=29.50] Epoch 0: | | 279/? [01:41<00:00, 2.74it/s, train/loss=25.80] Epoch 0: | | 280/? [01:42<00:00, 2.74it/s, train/loss=25.80] Epoch 0: | | 280/? [01:42<00:00, 2.74it/s, train/loss=73.00] Epoch 0: | | 281/? [01:42<00:00, 2.74it/s, train/loss=73.00] Epoch 0: | | 281/? [01:42<00:00, 2.74it/s, train/loss=34.10] Epoch 0: | | 282/? [01:42<00:00, 2.74it/s, train/loss=34.10] Epoch 0: | | 282/? [01:42<00:00, 2.74it/s, train/loss=16.80] Epoch 0: | | 283/? [01:43<00:00, 2.74it/s, train/loss=16.80] Epoch 0: | | 283/? [01:43<00:00, 2.74it/s, train/loss=23.70] Epoch 0: | | 284/? [01:43<00:00, 2.73it/s, train/loss=23.70] Epoch 0: | | 284/? [01:43<00:00, 2.73it/s, train/loss=42.90] Epoch 0: | | 285/? [01:44<00:00, 2.74it/s, train/loss=42.90] Epoch 0: | | 285/? [01:44<00:00, 2.73it/s, train/loss=18.10] Epoch 0: | | 286/? [01:44<00:00, 2.74it/s, train/loss=18.10] Epoch 0: | | 286/? [01:44<00:00, 2.74it/s, train/loss=16.30] Epoch 0: | | 287/? [01:44<00:00, 2.74it/s, train/loss=16.30] Epoch 0: | | 287/? [01:44<00:00, 2.74it/s, train/loss=24.40] Epoch 0: | | 288/? [01:45<00:00, 2.74it/s, train/loss=24.40] Epoch 0: | | 288/? [01:45<00:00, 2.74it/s, train/loss=18.90] Epoch 0: | | 289/? [01:45<00:00, 2.74it/s, train/loss=18.90] Epoch 0: | | 289/? [01:45<00:00, 2.74it/s, train/loss=29.20] Epoch 0: | | 290/? [01:45<00:00, 2.74it/s, train/loss=29.20] Epoch 0: | | 290/? [01:45<00:00, 2.74it/s, train/loss=15.30] Epoch 0: | | 291/? [01:46<00:00, 2.74it/s, train/loss=15.30] Epoch 0: | | 291/? [01:46<00:00, 2.74it/s, train/loss=48.50] Epoch 0: | | 292/? [01:46<00:00, 2.74it/s, train/loss=48.50] Epoch 0: | | 292/? [01:46<00:00, 2.74it/s, train/loss=17.30] Epoch 0: | | 293/? [01:46<00:00, 2.74it/s, train/loss=17.30] Epoch 0: | | 293/? [01:46<00:00, 2.74it/s, train/loss=32.00] Epoch 0: | | 294/? [01:47<00:00, 2.74it/s, train/loss=32.00] Epoch 0: | | 294/? [01:47<00:00, 2.74it/s, train/loss=15.80] Epoch 0: | | 295/? [01:47<00:00, 2.74it/s, train/loss=15.80] Epoch 0: | | 295/? [01:47<00:00, 2.74it/s, train/loss=11.20] Epoch 0: | | 296/? [01:48<00:00, 2.74it/s, train/loss=11.20] Epoch 0: | | 296/? [01:48<00:00, 2.74it/s, train/loss=13.20] Epoch 0: | | 297/? [01:48<00:00, 2.74it/s, train/loss=13.20] Epoch 0: | | 297/? [01:48<00:00, 2.74it/s, train/loss=17.20] Epoch 0: | | 298/? [01:48<00:00, 2.74it/s, train/loss=17.20] Epoch 0: | | 298/? [01:48<00:00, 2.74it/s, train/loss=16.80] Epoch 0: | | 299/? [01:49<00:00, 2.74it/s, train/loss=16.80] Epoch 0: | | 299/? [01:49<00:00, 2.74it/s, train/loss=20.00] Epoch 0: | | 300/? [01:49<00:00, 2.74it/s, train/loss=20.00] Epoch 0: | | 300/? [01:49<00:00, 2.74it/s, train/loss=17.50] Epoch 0: | | 301/? [01:49<00:00, 2.74it/s, train/loss=17.50] Epoch 0: | | 301/? [01:49<00:00, 2.74it/s, train/loss=31.60] Epoch 0: | | 302/? [01:50<00:00, 2.74it/s, train/loss=31.60] Epoch 0: | | 302/? [01:50<00:00, 2.74it/s, train/loss=17.70] Epoch 0: | | 303/? [01:50<00:00, 2.74it/s, train/loss=17.70] Epoch 0: | | 303/? [01:50<00:00, 2.74it/s, train/loss=6.190] Epoch 0: | | 304/? [01:50<00:00, 2.74it/s, train/loss=6.190] Epoch 0: | | 304/? [01:50<00:00, 2.74it/s, train/loss=22.80] Epoch 0: | | 305/? [01:51<00:00, 2.74it/s, train/loss=22.80] Epoch 0: | | 305/? [01:51<00:00, 2.74it/s, train/loss=20.90] Epoch 0: | | 306/? [01:51<00:00, 2.74it/s, train/loss=20.90] Epoch 0: | | 306/? [01:51<00:00, 2.74it/s, train/loss=26.30] Epoch 0: | | 307/? [01:51<00:00, 2.74it/s, train/loss=26.30] Epoch 0: | | 307/? [01:51<00:00, 2.74it/s, train/loss=24.20] Epoch 0: | | 308/? [01:52<00:00, 2.74it/s, train/loss=24.20] Epoch 0: | | 308/? [01:52<00:00, 2.74it/s, train/loss=14.50] Epoch 0: | | 309/? [01:52<00:00, 2.74it/s, train/loss=14.50] Epoch 0: | | 309/? [01:52<00:00, 2.74it/s, train/loss=28.30] Epoch 0: | | 310/? [01:52<00:00, 2.74it/s, train/loss=28.30] Epoch 0: | | 310/? [01:52<00:00, 2.74it/s, train/loss=28.40] Epoch 0: | | 311/? [01:53<00:00, 2.74it/s, train/loss=28.40] Epoch 0: | | 311/? [01:53<00:00, 2.74it/s, train/loss=25.70] Epoch 0: | | 312/? [01:53<00:00, 2.75it/s, train/loss=25.70] Epoch 0: | | 312/? [01:53<00:00, 2.75it/s, train/loss=43.80] Epoch 0: | | 313/? [01:53<00:00, 2.75it/s, train/loss=43.80] Epoch 0: | | 313/? [01:53<00:00, 2.75it/s, train/loss=20.80] Epoch 0: | | 314/? [01:54<00:00, 2.75it/s, train/loss=20.80] Epoch 0: | | 314/? [01:54<00:00, 2.75it/s, train/loss=41.50] Epoch 0: | | 315/? [01:54<00:00, 2.75it/s, train/loss=41.50] Epoch 0: | | 315/? [01:54<00:00, 2.75it/s, train/loss=18.30] Epoch 0: | | 316/? [01:54<00:00, 2.75it/s, train/loss=18.30] Epoch 0: | | 316/? [01:54<00:00, 2.75it/s, train/loss=16.40] Epoch 0: | | 317/? [01:55<00:00, 2.75it/s, train/loss=16.40] Epoch 0: | | 317/? [01:55<00:00, 2.75it/s, train/loss=21.20] Epoch 0: | | 318/? [01:55<00:00, 2.75it/s, train/loss=21.20] Epoch 0: | | 318/? [01:55<00:00, 2.75it/s, train/loss=32.10] Epoch 0: | | 319/? [01:55<00:00, 2.75it/s, train/loss=32.10] Epoch 0: | | 319/? [01:55<00:00, 2.75it/s, train/loss=21.10] Epoch 0: | | 320/? [01:56<00:00, 2.75it/s, train/loss=21.10] Epoch 0: | | 320/? [01:56<00:00, 2.75it/s, train/loss=17.00] Epoch 0: | | 321/? [01:56<00:00, 2.75it/s, train/loss=17.00] Epoch 0: | | 321/? [01:56<00:00, 2.75it/s, train/loss=23.70] Epoch 0: | | 322/? [01:56<00:00, 2.75it/s, train/loss=23.70] Epoch 0: | | 322/? [01:56<00:00, 2.75it/s, train/loss=26.10] Epoch 0: | | 323/? [01:57<00:00, 2.76it/s, train/loss=26.10] Epoch 0: | | 323/? [01:57<00:00, 2.76it/s, train/loss=24.10] Epoch 0: | | 324/? [01:57<00:00, 2.76it/s, train/loss=24.10] Epoch 0: | | 324/? [01:57<00:00, 2.76it/s, train/loss=17.70] Epoch 0: | | 325/? [01:57<00:00, 2.76it/s, train/loss=17.70] Epoch 0: | | 325/? [01:57<00:00, 2.76it/s, train/loss=33.40] Epoch 0: | | 326/? [01:58<00:00, 2.76it/s, train/loss=33.40] Epoch 0: | | 326/? [01:58<00:00, 2.76it/s, train/loss=22.60] Epoch 0: | | 327/? [01:58<00:00, 2.76it/s, train/loss=22.60] Epoch 0: | | 327/? [01:58<00:00, 2.76it/s, train/loss=14.40] Epoch 0: | | 328/? [01:58<00:00, 2.76it/s, train/loss=14.40] Epoch 0: | | 328/? [01:58<00:00, 2.76it/s, train/loss=23.20] Epoch 0: | | 329/? [01:59<00:00, 2.76it/s, train/loss=23.20] Epoch 0: | | 329/? [01:59<00:00, 2.76it/s, train/loss=32.80] Epoch 0: | | 330/? [01:59<00:00, 2.76it/s, train/loss=32.80] Epoch 0: | | 330/? [01:59<00:00, 2.76it/s, train/loss=25.70] Epoch 0: | | 331/? [01:59<00:00, 2.76it/s, train/loss=25.70] Epoch 0: | | 331/? [01:59<00:00, 2.76it/s, train/loss=10.00] Epoch 0: | | 332/? [02:00<00:00, 2.76it/s, train/loss=10.00] Epoch 0: | | 332/? [02:00<00:00, 2.76it/s, train/loss=13.80] Epoch 0: | | 333/? [02:00<00:00, 2.76it/s, train/loss=13.80] Epoch 0: | | 333/? [02:00<00:00, 2.76it/s, train/loss=14.90] Epoch 0: | | 334/? [02:00<00:00, 2.76it/s, train/loss=14.90] Epoch 0: | | 334/? [02:00<00:00, 2.76it/s, train/loss=25.70] Epoch 0: | | 335/? [02:01<00:00, 2.77it/s, train/loss=25.70] Epoch 0: | | 335/? [02:01<00:00, 2.77it/s, train/loss=28.00] Epoch 0: | | 336/? [02:01<00:00, 2.77it/s, train/loss=28.00] Epoch 0: | | 336/? [02:01<00:00, 2.77it/s, train/loss=8.200] Epoch 0: | | 337/? [02:01<00:00, 2.77it/s, train/loss=8.200] Epoch 0: | | 337/? [02:01<00:00, 2.77it/s, train/loss=28.30] Epoch 0: | | 338/? [02:02<00:00, 2.77it/s, train/loss=28.30] Epoch 0: | | 338/? [02:02<00:00, 2.77it/s, train/loss=18.60] Epoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=18.60] Epoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=31.30] Epoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=31.30] Epoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=33.80] Epoch 0: | | 341/? [02:03<00:00, 2.77it/s, train/loss=33.80] Epoch 0: | | 341/? [02:03<00:00, 2.77it/s, train/loss=27.80] Epoch 0: | | 342/? [02:03<00:00, 2.77it/s, train/loss=27.80] Epoch 0: | | 342/? [02:03<00:00, 2.77it/s, train/loss=25.80] Epoch 0: | | 343/? [02:03<00:00, 2.77it/s, train/loss=25.80] Epoch 0: | | 343/? [02:03<00:00, 2.77it/s, train/loss=10.80] Epoch 0: | | 344/? [02:04<00:00, 2.77it/s, train/loss=10.80] Epoch 0: | | 344/? [02:04<00:00, 2.77it/s, train/loss=21.40] Epoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=21.40] Epoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=27.50] Epoch 0: | | 346/? [02:04<00:00, 2.77it/s, train/loss=27.50] Epoch 0: | | 346/? [02:04<00:00, 2.77it/s, train/loss=26.90] Epoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=26.90] Epoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=9.160] Epoch 0: | | 348/? [02:05<00:00, 2.78it/s, train/loss=9.160] Epoch 0: | | 348/? [02:05<00:00, 2.78it/s, train/loss=16.30] Epoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=16.30] Epoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=18.30] Epoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=18.30] Epoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=27.30] Epoch 0: | | 351/? [02:06<00:00, 2.78it/s, train/loss=27.30] Epoch 0: | | 351/? [02:06<00:00, 2.78it/s, train/loss=20.10] Epoch 0: | | 352/? [02:06<00:00, 2.78it/s, train/loss=20.10] Epoch 0: | | 352/? [02:06<00:00, 2.78it/s, train/loss=10.80] Epoch 0: | | 353/? [02:07<00:00, 2.78it/s, train/loss=10.80] Epoch 0: | | 353/? [02:07<00:00, 2.78it/s, train/loss=39.30] Epoch 0: | | 354/? [02:07<00:00, 2.78it/s, train/loss=39.30] Epoch 0: | | 354/? [02:07<00:00, 2.78it/s, train/loss=38.70] Epoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=38.70] Epoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=32.30] Epoch 0: | | 356/? [02:08<00:00, 2.78it/s, train/loss=32.30] Epoch 0: | | 356/? [02:08<00:00, 2.78it/s, train/loss=16.10] Epoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=16.10] Epoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=33.00] Epoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=33.00] Epoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=28.10] Epoch 0: | | 359/? [02:08<00:00, 2.78it/s, train/loss=28.10] Epoch 0: | | 359/? [02:08<00:00, 2.78it/s, train/loss=9.550] Epoch 0: | | 360/? [02:09<00:00, 2.78it/s, train/loss=9.550] Epoch 0: | | 360/? [02:09<00:00, 2.78it/s, train/loss=16.10] Epoch 0: | | 361/? [02:09<00:00, 2.78it/s, train/loss=16.10] Epoch 0: | | 361/? [02:09<00:00, 2.78it/s, train/loss=33.40] Epoch 0: | | 362/? [02:09<00:00, 2.79it/s, train/loss=33.40] Epoch 0: | | 362/? [02:09<00:00, 2.79it/s, train/loss=12.90] Epoch 0: | | 363/? [02:10<00:00, 2.79it/s, train/loss=12.90] Epoch 0: | | 363/? [02:10<00:00, 2.79it/s, train/loss=7.820] Epoch 0: | | 364/? [02:10<00:00, 2.79it/s, train/loss=7.820] Epoch 0: | | 364/? [02:10<00:00, 2.79it/s, train/loss=31.80] Epoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=31.80] Epoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=23.70] Epoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=23.70] Epoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=30.10] Epoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=30.10] Epoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=60.60] Epoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=60.60] Epoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=17.70] Epoch 0: | | 369/? [02:12<00:00, 2.79it/s, train/loss=17.70] Epoch 0: | | 369/? [02:12<00:00, 2.79it/s, train/loss=22.10] Epoch 0: | | 370/? [02:12<00:00, 2.78it/s, train/loss=22.10] Epoch 0: | | 370/? [02:12<00:00, 2.78it/s, train/loss=32.60] Epoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=32.60] Epoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=19.20] Epoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=19.20] Epoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=21.30] Epoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=21.30] Epoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=56.40] Epoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=56.40] Epoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=7.560] Epoch 0: | | 375/? [02:14<00:00, 2.79it/s, train/loss=7.560] Epoch 0: | | 375/? [02:14<00:00, 2.79it/s, train/loss=25.50] Epoch 0: | | 376/? [02:14<00:00, 2.79it/s, train/loss=25.50] Epoch 0: | | 376/? [02:14<00:00, 2.79it/s, train/loss=12.80] Epoch 0: | | 377/? [02:15<00:00, 2.79it/s, train/loss=12.80] Epoch 0: | | 377/? [02:15<00:00, 2.79it/s, train/loss=71.40] Epoch 0: | | 378/? [02:15<00:00, 2.79it/s, train/loss=71.40] Epoch 0: | | 378/? [02:15<00:00, 2.79it/s, train/loss=49.30] Epoch 0: | | 379/? [02:15<00:00, 2.79it/s, train/loss=49.30] Epoch 0: | | 379/? [02:15<00:00, 2.79it/s, train/loss=35.50] Epoch 0: | | 380/? [02:16<00:00, 2.79it/s, train/loss=35.50] Epoch 0: | | 380/? [02:16<00:00, 2.79it/s, train/loss=8.540] Epoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=8.540] Epoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=16.60] Epoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=16.60] Epoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=19.50] Epoch 0: | | 383/? [02:17<00:00, 2.79it/s, train/loss=19.50] Epoch 0: | | 383/? [02:17<00:00, 2.79it/s, train/loss=10.60] Epoch 0: | | 384/? [02:17<00:00, 2.79it/s, train/loss=10.60] Epoch 0: | | 384/? [02:17<00:00, 2.79it/s, train/loss=25.00] Epoch 0: | | 385/? [02:17<00:00, 2.79it/s, train/loss=25.00] Epoch 0: | | 385/? [02:17<00:00, 2.79it/s, train/loss=31.50] Epoch 0: | | 386/? [02:18<00:00, 2.79it/s, train/loss=31.50] Epoch 0: | | 386/? [02:18<00:00, 2.79it/s, train/loss=34.80] Epoch 0: | | 387/? [02:18<00:00, 2.79it/s, train/loss=34.80] Epoch 0: | | 387/? [02:18<00:00, 2.79it/s, train/loss=9.860] Epoch 0: | | 388/? [02:18<00:00, 2.80it/s, train/loss=9.860] Epoch 0: | | 388/? [02:18<00:00, 2.80it/s, train/loss=19.40] Epoch 0: | | 389/? [02:19<00:00, 2.80it/s, train/loss=19.40] Epoch 0: | | 389/? [02:19<00:00, 2.80it/s, train/loss=23.50] Epoch 0: | | 390/? [02:19<00:00, 2.80it/s, train/loss=23.50] Epoch 0: | | 390/? [02:19<00:00, 2.80it/s, train/loss=10.40] Epoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=10.40] Epoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=13.90] Epoch 0: | | 392/? [02:20<00:00, 2.80it/s, train/loss=13.90] Epoch 0: | | 392/? [02:20<00:00, 2.80it/s, train/loss=13.50] Epoch 0: | | 393/? [02:20<00:00, 2.80it/s, train/loss=13.50] Epoch 0: | | 393/? [02:20<00:00, 2.80it/s, train/loss=27.80] Epoch 0: | | 394/? [02:20<00:00, 2.80it/s, train/loss=27.80] Epoch 0: | | 394/? [02:20<00:00, 2.80it/s, train/loss=15.40] Epoch 0: | | 395/? [02:21<00:00, 2.80it/s, train/loss=15.40] Epoch 0: | | 395/? [02:21<00:00, 2.80it/s, train/loss=36.60] Epoch 0: | | 396/? [02:21<00:00, 2.80it/s, train/loss=36.60] Epoch 0: | | 396/? [02:21<00:00, 2.80it/s, train/loss=37.40] Epoch 0: | | 397/? [02:21<00:00, 2.80it/s, train/loss=37.40] Epoch 0: | | 397/? [02:21<00:00, 2.80it/s, train/loss=25.60] Epoch 0: | | 398/? [02:22<00:00, 2.80it/s, train/loss=25.60] Epoch 0: | | 398/? [02:22<00:00, 2.80it/s, train/loss=30.60] Epoch 0: | | 399/? [02:22<00:00, 2.80it/s, train/loss=30.60] Epoch 0: | | 399/? [02:22<00:00, 2.80it/s, train/loss=33.70] Epoch 0: | | 400/? [02:22<00:00, 2.80it/s, train/loss=33.70] Epoch 0: | | 400/? [02:22<00:00, 2.80it/s, train/loss=13.20] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 11.05it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 10.99it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 10.82it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 10.85it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.03it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.14it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.13it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.05it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.07it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.11it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.18it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.28it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.35it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.39it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.06it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.03it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 11.08it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.13it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.17it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.22it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.26it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.30it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 11.33it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.36it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.39it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.41it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.45it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.48it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.48it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.49it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.52it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.54it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.56it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.58it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.57it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.58it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.48it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.36it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.31it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.32it/s] Epoch 0: | | 400/? [02:29<00:00, 2.67it/s, train/loss=13.20] Epoch 0: | | 401/? [02:30<00:00, 2.66it/s, train/loss=13.20] Epoch 0: | | 401/? [02:30<00:00, 2.66it/s, train/loss=30.60] Epoch 0: | | 402/? [02:31<00:00, 2.66it/s, train/loss=30.60] Epoch 0: | | 402/? [02:31<00:00, 2.66it/s, train/loss=26.40] Epoch 0: | | 403/? [02:31<00:00, 2.66it/s, train/loss=26.40] Epoch 0: | | 403/? [02:31<00:00, 2.66it/s, train/loss=13.50] Epoch 0: | | 404/? [02:31<00:00, 2.66it/s, train/loss=13.50] Epoch 0: | | 404/? [02:31<00:00, 2.66it/s, train/loss=16.60] Epoch 0: | | 405/? [02:32<00:00, 2.66it/s, train/loss=16.60] Epoch 0: | | 405/? [02:32<00:00, 2.66it/s, train/loss=27.20] Epoch 0: | | 406/? [02:32<00:00, 2.66it/s, train/loss=27.20] Epoch 0: | | 406/? [02:32<00:00, 2.66it/s, train/loss=18.70] Epoch 0: | | 407/? [02:32<00:00, 2.66it/s, train/loss=18.70] Epoch 0: | | 407/? [02:32<00:00, 2.66it/s, train/loss=27.70] Epoch 0: | | 408/? [02:33<00:00, 2.66it/s, train/loss=27.70] Epoch 0: | | 408/? [02:33<00:00, 2.66it/s, train/loss=30.20] Epoch 0: | | 409/? [02:33<00:00, 2.66it/s, train/loss=30.20] Epoch 0: | | 409/? [02:33<00:00, 2.66it/s, train/loss=51.20] Epoch 0: | | 410/? [02:33<00:00, 2.66it/s, train/loss=51.20] Epoch 0: | | 410/? [02:33<00:00, 2.66it/s, train/loss=16.80] Epoch 0: | | 411/? [02:34<00:00, 2.67it/s, train/loss=16.80] Epoch 0: | | 411/? [02:34<00:00, 2.67it/s, train/loss=18.90] Epoch 0: | | 412/? [02:34<00:00, 2.67it/s, train/loss=18.90] Epoch 0: | | 412/? [02:34<00:00, 2.67it/s, train/loss=58.30] Epoch 0: | | 413/? [02:34<00:00, 2.67it/s, train/loss=58.30] Epoch 0: | | 413/? [02:34<00:00, 2.67it/s, train/loss=42.70] Epoch 0: | | 414/? [02:35<00:00, 2.67it/s, train/loss=42.70] Epoch 0: | | 414/? [02:35<00:00, 2.67it/s, train/loss=64.70] Epoch 0: | | 415/? [02:35<00:00, 2.67it/s, train/loss=64.70] Epoch 0: | | 415/? [02:35<00:00, 2.67it/s, train/loss=19.50] Epoch 0: | | 416/? [02:35<00:00, 2.67it/s, train/loss=19.50] Epoch 0: | | 416/? [02:35<00:00, 2.67it/s, train/loss=24.70] Epoch 0: | | 417/? [02:36<00:00, 2.67it/s, train/loss=24.70] Epoch 0: | | 417/? [02:36<00:00, 2.67it/s, train/loss=18.20] Epoch 0: | | 418/? [02:36<00:00, 2.67it/s, train/loss=18.20] Epoch 0: | | 418/? [02:36<00:00, 2.67it/s, train/loss=17.60] Epoch 0: | | 419/? [02:36<00:00, 2.67it/s, train/loss=17.60] Epoch 0: | | 419/? [02:36<00:00, 2.67it/s, train/loss=17.90] Epoch 0: | | 420/? [02:37<00:00, 2.67it/s, train/loss=17.90] Epoch 0: | | 420/? [02:37<00:00, 2.67it/s, train/loss=18.60] Epoch 0: | | 421/? [02:37<00:00, 2.67it/s, train/loss=18.60] Epoch 0: | | 421/? [02:37<00:00, 2.67it/s, train/loss=24.80] Epoch 0: | | 422/? [02:37<00:00, 2.67it/s, train/loss=24.80] Epoch 0: | | 422/? [02:37<00:00, 2.67it/s, train/loss=16.30] Epoch 0: | | 423/? [02:38<00:00, 2.67it/s, train/loss=16.30] Epoch 0: | | 423/? [02:38<00:00, 2.67it/s, train/loss=30.70] Epoch 0: | | 424/? [02:38<00:00, 2.67it/s, train/loss=30.70] Epoch 0: | | 424/? [02:38<00:00, 2.67it/s, train/loss=20.60] Epoch 0: | | 425/? [02:38<00:00, 2.67it/s, train/loss=20.60] Epoch 0: | | 425/? [02:38<00:00, 2.67it/s, train/loss=52.60] Epoch 0: | | 426/? [02:39<00:00, 2.68it/s, train/loss=52.60] Epoch 0: | | 426/? [02:39<00:00, 2.68it/s, train/loss=13.80] Epoch 0: | | 427/? [02:39<00:00, 2.68it/s, train/loss=13.80] Epoch 0: | | 427/? [02:39<00:00, 2.68it/s, train/loss=21.80] Epoch 0: | | 428/? [02:39<00:00, 2.68it/s, train/loss=21.80] Epoch 0: | | 428/? [02:39<00:00, 2.68it/s, train/loss=15.70] Epoch 0: | | 429/? [02:40<00:00, 2.68it/s, train/loss=15.70] Epoch 0: | | 429/? [02:40<00:00, 2.68it/s, train/loss=33.00] Epoch 0: | | 430/? [02:40<00:00, 2.68it/s, train/loss=33.00] Epoch 0: | | 430/? [02:40<00:00, 2.68it/s, train/loss=13.50] Epoch 0: | | 431/? [02:40<00:00, 2.68it/s, train/loss=13.50] Epoch 0: | | 431/? [02:40<00:00, 2.68it/s, train/loss=12.40] Epoch 0: | | 432/? [02:41<00:00, 2.68it/s, train/loss=12.40] Epoch 0: | | 432/? [02:41<00:00, 2.68it/s, train/loss=30.90] Epoch 0: | | 433/? [02:41<00:00, 2.68it/s, train/loss=30.90] Epoch 0: | | 433/? [02:41<00:00, 2.68it/s, train/loss=26.90] Epoch 0: | | 434/? [02:41<00:00, 2.68it/s, train/loss=26.90] Epoch 0: | | 434/? [02:41<00:00, 2.68it/s, train/loss=17.60] Epoch 0: | | 435/? [02:42<00:00, 2.68it/s, train/loss=17.60] Epoch 0: | | 435/? [02:42<00:00, 2.68it/s, train/loss=16.60] Epoch 0: | | 436/? [02:42<00:00, 2.68it/s, train/loss=16.60] Epoch 0: | | 436/? [02:42<00:00, 2.68it/s, train/loss=14.60] Epoch 0: | | 437/? [02:42<00:00, 2.68it/s, train/loss=14.60] Epoch 0: | | 437/? [02:42<00:00, 2.68it/s, train/loss=25.70] Epoch 0: | | 438/? [02:43<00:00, 2.68it/s, train/loss=25.70] Epoch 0: | | 438/? [02:43<00:00, 2.68it/s, train/loss=9.540] Epoch 0: | | 439/? [02:43<00:00, 2.68it/s, train/loss=9.540] Epoch 0: | | 439/? [02:43<00:00, 2.68it/s, train/loss=8.600] Epoch 0: | | 440/? [02:43<00:00, 2.69it/s, train/loss=8.600] Epoch 0: | | 440/? [02:43<00:00, 2.69it/s, train/loss=35.50] Epoch 0: | | 441/? [02:44<00:00, 2.69it/s, train/loss=35.50] Epoch 0: | | 441/? [02:44<00:00, 2.69it/s, train/loss=35.10] Epoch 0: | | 442/? [02:44<00:00, 2.69it/s, train/loss=35.10] Epoch 0: | | 442/? [02:44<00:00, 2.69it/s, train/loss=17.60] Epoch 0: | | 443/? [02:44<00:00, 2.69it/s, train/loss=17.60] Epoch 0: | | 443/? [02:44<00:00, 2.69it/s, train/loss=23.50] Epoch 0: | | 444/? [02:45<00:00, 2.69it/s, train/loss=23.50] Epoch 0: | | 444/? [02:45<00:00, 2.69it/s, train/loss=7.570] Epoch 0: | | 445/? [02:45<00:00, 2.69it/s, train/loss=7.570] Epoch 0: | | 445/? [02:45<00:00, 2.69it/s, train/loss=40.90] Epoch 0: | | 446/? [02:45<00:00, 2.69it/s, train/loss=40.90] Epoch 0: | | 446/? [02:45<00:00, 2.69it/s, train/loss=12.80] Epoch 0: | | 447/? [02:46<00:00, 2.69it/s, train/loss=12.80] Epoch 0: | | 447/? [02:46<00:00, 2.69it/s, train/loss=17.70] Epoch 0: | | 448/? [02:46<00:00, 2.69it/s, train/loss=17.70] Epoch 0: | | 448/? [02:46<00:00, 2.69it/s, train/loss=6.630] Epoch 0: | | 449/? [02:46<00:00, 2.69it/s, train/loss=6.630] Epoch 0: | | 449/? [02:46<00:00, 2.69it/s, train/loss=36.00] Epoch 0: | | 450/? [02:47<00:00, 2.69it/s, train/loss=36.00] Epoch 0: | | 450/? [02:47<00:00, 2.69it/s, train/loss=18.80] Epoch 0: | | 451/? [02:47<00:00, 2.69it/s, train/loss=18.80] Epoch 0: | | 451/? [02:47<00:00, 2.69it/s, train/loss=14.00] Epoch 0: | | 452/? [02:47<00:00, 2.69it/s, train/loss=14.00] Epoch 0: | | 452/? [02:47<00:00, 2.69it/s, train/loss=83.80] Epoch 0: | | 453/? [02:48<00:00, 2.69it/s, train/loss=83.80] Epoch 0: | | 453/? [02:48<00:00, 2.69it/s, train/loss=43.40] Epoch 0: | | 454/? [02:48<00:00, 2.70it/s, train/loss=43.40] Epoch 0: | | 454/? [02:48<00:00, 2.70it/s, train/loss=20.80] Epoch 0: | | 455/? [02:48<00:00, 2.70it/s, train/loss=20.80] Epoch 0: | | 455/? [02:48<00:00, 2.70it/s, train/loss=9.980] Epoch 0: | | 456/? [02:49<00:00, 2.70it/s, train/loss=9.980] Epoch 0: | | 456/? [02:49<00:00, 2.70it/s, train/loss=17.70] Epoch 0: | | 457/? [02:49<00:00, 2.70it/s, train/loss=17.70] Epoch 0: | | 457/? [02:49<00:00, 2.70it/s, train/loss=30.30] Epoch 0: | | 458/? [02:49<00:00, 2.70it/s, train/loss=30.30] Epoch 0: | | 458/? [02:49<00:00, 2.70it/s, train/loss=46.60] Epoch 0: | | 459/? [02:50<00:00, 2.70it/s, train/loss=46.60] Epoch 0: | | 459/? [02:50<00:00, 2.70it/s, train/loss=34.10] Epoch 0: | | 460/? [02:50<00:00, 2.70it/s, train/loss=34.10] Epoch 0: | | 460/? [02:50<00:00, 2.70it/s, train/loss=17.40] Epoch 0: | | 461/? [02:50<00:00, 2.70it/s, train/loss=17.40] Epoch 0: | | 461/? [02:50<00:00, 2.70it/s, train/loss=47.60] Epoch 0: | | 462/? [02:51<00:00, 2.70it/s, train/loss=47.60] Epoch 0: | | 462/? [02:51<00:00, 2.70it/s, train/loss=28.80] Epoch 0: | | 463/? [02:51<00:00, 2.70it/s, train/loss=28.80] Epoch 0: | | 463/? [02:51<00:00, 2.70it/s, train/loss=17.10] Epoch 0: | | 464/? [02:51<00:00, 2.70it/s, train/loss=17.10] Epoch 0: | | 464/? [02:51<00:00, 2.70it/s, train/loss=9.830] Epoch 0: | | 465/? [02:52<00:00, 2.70it/s, train/loss=9.830] Epoch 0: | | 465/? [02:52<00:00, 2.70it/s, train/loss=44.80] Epoch 0: | | 466/? [02:52<00:00, 2.70it/s, train/loss=44.80] Epoch 0: | | 466/? [02:52<00:00, 2.70it/s, train/loss=7.480] Epoch 0: | | 467/? [02:52<00:00, 2.70it/s, train/loss=7.480] Epoch 0: | | 467/? [02:52<00:00, 2.70it/s, train/loss=9.460] Epoch 0: | | 468/? [02:53<00:00, 2.70it/s, train/loss=9.460] Epoch 0: | | 468/? [02:53<00:00, 2.70it/s, train/loss=12.20] Epoch 0: | | 469/? [02:53<00:00, 2.70it/s, train/loss=12.20] Epoch 0: | | 469/? [02:53<00:00, 2.70it/s, train/loss=51.10] Epoch 0: | | 470/? [02:53<00:00, 2.70it/s, train/loss=51.10] Epoch 0: | | 470/? [02:53<00:00, 2.70it/s, train/loss=27.10] Epoch 0: | | 471/? [02:54<00:00, 2.70it/s, train/loss=27.10] Epoch 0: | | 471/? [02:54<00:00, 2.70it/s, train/loss=44.90] Epoch 0: | | 472/? [02:54<00:00, 2.70it/s, train/loss=44.90] Epoch 0: | | 472/? [02:54<00:00, 2.70it/s, train/loss=16.30] Epoch 0: | | 473/? [02:54<00:00, 2.70it/s, train/loss=16.30] Epoch 0: | | 473/? [02:54<00:00, 2.70it/s, train/loss=41.40] Epoch 0: | | 474/? [02:55<00:00, 2.70it/s, train/loss=41.40] Epoch 0: | | 474/? [02:55<00:00, 2.70it/s, train/loss=14.00] Epoch 0: | | 475/? [02:55<00:00, 2.71it/s, train/loss=14.00] Epoch 0: | | 475/? [02:55<00:00, 2.71it/s, train/loss=8.040] Epoch 0: | | 476/? [02:55<00:00, 2.71it/s, train/loss=8.040] Epoch 0: | | 476/? [02:55<00:00, 2.71it/s, train/loss=29.40] Epoch 0: | | 477/? [02:56<00:00, 2.71it/s, train/loss=29.40] Epoch 0: | | 477/? [02:56<00:00, 2.71it/s, train/loss=49.00] Epoch 0: | | 478/? [02:56<00:00, 2.71it/s, train/loss=49.00] Epoch 0: | | 478/? [02:56<00:00, 2.71it/s, train/loss=18.30] Epoch 0: | | 479/? [02:56<00:00, 2.71it/s, train/loss=18.30] Epoch 0: | | 479/? [02:56<00:00, 2.71it/s, train/loss=10.50] Epoch 0: | | 480/? [02:57<00:00, 2.71it/s, train/loss=10.50] Epoch 0: | | 480/? [02:57<00:00, 2.71it/s, train/loss=29.50] Epoch 0: | | 481/? [02:57<00:00, 2.71it/s, train/loss=29.50] Epoch 0: | | 481/? [02:57<00:00, 2.71it/s, train/loss=14.10] Epoch 0: | | 482/? [02:57<00:00, 2.71it/s, train/loss=14.10] Epoch 0: | | 482/? [02:57<00:00, 2.71it/s, train/loss=24.80] Epoch 0: | | 483/? [02:58<00:00, 2.71it/s, train/loss=24.80] Epoch 0: | | 483/? [02:58<00:00, 2.71it/s, train/loss=8.920] Epoch 0: | | 484/? [02:58<00:00, 2.71it/s, train/loss=8.920] Epoch 0: | | 484/? [02:58<00:00, 2.71it/s, train/loss=26.50] Epoch 0: | | 485/? [02:58<00:00, 2.71it/s, train/loss=26.50] Epoch 0: | | 485/? [02:58<00:00, 2.71it/s, train/loss=29.00] Epoch 0: | | 486/? [02:59<00:00, 2.71it/s, train/loss=29.00] Epoch 0: | | 486/? [02:59<00:00, 2.71it/s, train/loss=27.30] Epoch 0: | | 487/? [02:59<00:00, 2.71it/s, train/loss=27.30] Epoch 0: | | 487/? [02:59<00:00, 2.71it/s, train/loss=14.50] Epoch 0: | | 488/? [02:59<00:00, 2.71it/s, train/loss=14.50] Epoch 0: | | 488/? [02:59<00:00, 2.71it/s, train/loss=15.10] Epoch 0: | | 489/? [03:00<00:00, 2.71it/s, train/loss=15.10] Epoch 0: | | 489/? [03:00<00:00, 2.71it/s, train/loss=42.50] Epoch 0: | | 490/? [03:00<00:00, 2.71it/s, train/loss=42.50] Epoch 0: | | 490/? [03:00<00:00, 2.71it/s, train/loss=16.70] Epoch 0: | | 491/? [03:00<00:00, 2.72it/s, train/loss=16.70] Epoch 0: | | 491/? [03:00<00:00, 2.72it/s, train/loss=15.50] Epoch 0: | | 492/? [03:01<00:00, 2.72it/s, train/loss=15.50] Epoch 0: | | 492/? [03:01<00:00, 2.72it/s, train/loss=14.40] Epoch 0: | | 493/? [03:01<00:00, 2.72it/s, train/loss=14.40] Epoch 0: | | 493/? [03:01<00:00, 2.72it/s, train/loss=44.80] Epoch 0: | | 494/? [03:01<00:00, 2.72it/s, train/loss=44.80] Epoch 0: | | 494/? [03:01<00:00, 2.72it/s, train/loss=22.20] Epoch 0: | | 495/? [03:02<00:00, 2.72it/s, train/loss=22.20] Epoch 0: | | 495/? [03:02<00:00, 2.72it/s, train/loss=17.40] Epoch 0: | | 496/? [03:02<00:00, 2.72it/s, train/loss=17.40] Epoch 0: | | 496/? [03:02<00:00, 2.72it/s, train/loss=25.70] Epoch 0: | | 497/? [03:02<00:00, 2.72it/s, train/loss=25.70] Epoch 0: | | 497/? [03:02<00:00, 2.72it/s, train/loss=29.50] Epoch 0: | | 498/? [03:03<00:00, 2.72it/s, train/loss=29.50] Epoch 0: | | 498/? [03:03<00:00, 2.72it/s, train/loss=37.70] Epoch 0: | | 499/? [03:03<00:00, 2.72it/s, train/loss=37.70] Epoch 0: | | 499/? [03:03<00:00, 2.72it/s, train/loss=7.640] Epoch 0: | | 500/? [03:03<00:00, 2.72it/s, train/loss=7.640] Epoch 0: | | 500/? [03:03<00:00, 2.72it/s, train/loss=14.00] Epoch 0: | | 501/? [03:04<00:00, 2.72it/s, train/loss=14.00] Epoch 0: | | 501/? [03:04<00:00, 2.72it/s, train/loss=40.30] Epoch 0: | | 502/? [03:04<00:00, 2.72it/s, train/loss=40.30] Epoch 0: | | 502/? [03:04<00:00, 2.72it/s, train/loss=32.80] Epoch 0: | | 503/? [03:04<00:00, 2.72it/s, train/loss=32.80] Epoch 0: | | 503/? [03:04<00:00, 2.72it/s, train/loss=20.80] Epoch 0: | | 504/? [03:05<00:00, 2.72it/s, train/loss=20.80] Epoch 0: | | 504/? [03:05<00:00, 2.72it/s, train/loss=39.40] Epoch 0: | | 505/? [03:05<00:00, 2.72it/s, train/loss=39.40] Epoch 0: | | 505/? [03:05<00:00, 2.72it/s, train/loss=22.80] Epoch 0: | | 506/? [03:05<00:00, 2.72it/s, train/loss=22.80] Epoch 0: | | 506/? [03:05<00:00, 2.72it/s, train/loss=22.80] Epoch 0: | | 507/? [03:06<00:00, 2.72it/s, train/loss=22.80] Epoch 0: | | 507/? [03:06<00:00, 2.72it/s, train/loss=21.10] Epoch 0: | | 508/? [03:06<00:00, 2.72it/s, train/loss=21.10] Epoch 0: | | 508/? [03:06<00:00, 2.72it/s, train/loss=8.100] Epoch 0: | | 509/? [03:06<00:00, 2.73it/s, train/loss=8.100] Epoch 0: | | 509/? [03:06<00:00, 2.73it/s, train/loss=21.00] Epoch 0: | | 510/? [03:07<00:00, 2.73it/s, train/loss=21.00] Epoch 0: | | 510/? [03:07<00:00, 2.73it/s, train/loss=10.50] Epoch 0: | | 511/? [03:07<00:00, 2.73it/s, train/loss=10.50] Epoch 0: | | 511/? [03:07<00:00, 2.73it/s, train/loss=32.80] Epoch 0: | | 512/? [03:07<00:00, 2.73it/s, train/loss=32.80] Epoch 0: | | 512/? [03:07<00:00, 2.73it/s, train/loss=10.10] Epoch 0: | | 513/? [03:08<00:00, 2.73it/s, train/loss=10.10] Epoch 0: | | 513/? [03:08<00:00, 2.73it/s, train/loss=34.70] Epoch 0: | | 514/? [03:08<00:00, 2.73it/s, train/loss=34.70] Epoch 0: | | 514/? [03:08<00:00, 2.73it/s, train/loss=12.70] Epoch 0: | | 515/? [03:08<00:00, 2.73it/s, train/loss=12.70] Epoch 0: | | 515/? [03:08<00:00, 2.73it/s, train/loss=8.430] Epoch 0: | | 516/? [03:09<00:00, 2.73it/s, train/loss=8.430] Epoch 0: | | 516/? [03:09<00:00, 2.73it/s, train/loss=16.00] Epoch 0: | | 517/? [03:09<00:00, 2.73it/s, train/loss=16.00] Epoch 0: | | 517/? [03:09<00:00, 2.73it/s, train/loss=25.90] Epoch 0: | | 518/? [03:09<00:00, 2.73it/s, train/loss=25.90] Epoch 0: | | 518/? [03:09<00:00, 2.73it/s, train/loss=13.20] Epoch 0: | | 519/? [03:10<00:00, 2.73it/s, train/loss=13.20] Epoch 0: | | 519/? [03:10<00:00, 2.73it/s, train/loss=30.10] Epoch 0: | | 520/? [03:10<00:00, 2.73it/s, train/loss=30.10] Epoch 0: | | 520/? [03:10<00:00, 2.73it/s, train/loss=26.40] Epoch 0: | | 521/? [03:10<00:00, 2.73it/s, train/loss=26.40] Epoch 0: | | 521/? [03:10<00:00, 2.73it/s, train/loss=28.50] Epoch 0: | | 522/? [03:11<00:00, 2.73it/s, train/loss=28.50] Epoch 0: | | 522/? [03:11<00:00, 2.73it/s, train/loss=29.50] Epoch 0: | | 523/? [03:11<00:00, 2.73it/s, train/loss=29.50] Epoch 0: | | 523/? [03:11<00:00, 2.73it/s, train/loss=23.70] Epoch 0: | | 524/? [03:11<00:00, 2.73it/s, train/loss=23.70] Epoch 0: | | 524/? [03:11<00:00, 2.73it/s, train/loss=14.50] Epoch 0: | | 525/? [03:12<00:00, 2.73it/s, train/loss=14.50] Epoch 0: | | 525/? [03:12<00:00, 2.73it/s, train/loss=25.00] Epoch 0: | | 526/? [03:12<00:00, 2.73it/s, train/loss=25.00] Epoch 0: | | 526/? [03:12<00:00, 2.73it/s, train/loss=35.40] Epoch 0: | | 527/? [03:12<00:00, 2.73it/s, train/loss=35.40] Epoch 0: | | 527/? [03:12<00:00, 2.73it/s, train/loss=29.80] Epoch 0: | | 528/? [03:13<00:00, 2.73it/s, train/loss=29.80] Epoch 0: | | 528/? [03:13<00:00, 2.73it/s, train/loss=24.20] Epoch 0: | | 529/? [03:13<00:00, 2.73it/s, train/loss=24.20] Epoch 0: | | 529/? [03:13<00:00, 2.73it/s, train/loss=28.20] Epoch 0: | | 530/? [03:13<00:00, 2.73it/s, train/loss=28.20] Epoch 0: | | 530/? [03:13<00:00, 2.73it/s, train/loss=19.10] Epoch 0: | | 531/? [03:14<00:00, 2.74it/s, train/loss=19.10] Epoch 0: | | 531/? [03:14<00:00, 2.74it/s, train/loss=20.40] Epoch 0: | | 532/? [03:14<00:00, 2.74it/s, train/loss=20.40] Epoch 0: | | 532/? [03:14<00:00, 2.74it/s, train/loss=30.20] Epoch 0: | | 533/? [03:14<00:00, 2.74it/s, train/loss=30.20] Epoch 0: | | 533/? [03:14<00:00, 2.74it/s, train/loss=19.40] Epoch 0: | | 534/? [03:15<00:00, 2.74it/s, train/loss=19.40] Epoch 0: | | 534/? [03:15<00:00, 2.74it/s, train/loss=21.10] Epoch 0: | | 535/? [03:15<00:00, 2.74it/s, train/loss=21.10] Epoch 0: | | 535/? [03:15<00:00, 2.74it/s, train/loss=15.40] Epoch 0: | | 536/? [03:15<00:00, 2.74it/s, train/loss=15.40] Epoch 0: | | 536/? [03:15<00:00, 2.74it/s, train/loss=27.50] Epoch 0: | | 537/? [03:16<00:00, 2.74it/s, train/loss=27.50] Epoch 0: | | 537/? [03:16<00:00, 2.74it/s, train/loss=20.20] Epoch 0: | | 538/? [03:16<00:00, 2.74it/s, train/loss=20.20] Epoch 0: | | 538/? [03:16<00:00, 2.74it/s, train/loss=9.040] Epoch 0: | | 539/? [03:16<00:00, 2.74it/s, train/loss=9.040] Epoch 0: | | 539/? [03:16<00:00, 2.74it/s, train/loss=19.20] Epoch 0: | | 540/? [03:17<00:00, 2.74it/s, train/loss=19.20] Epoch 0: | | 540/? [03:17<00:00, 2.74it/s, train/loss=23.50] Epoch 0: | | 541/? [03:17<00:00, 2.74it/s, train/loss=23.50] Epoch 0: | | 541/? [03:17<00:00, 2.74it/s, train/loss=18.80] Epoch 0: | | 542/? [03:17<00:00, 2.74it/s, train/loss=18.80] Epoch 0: | | 542/? [03:17<00:00, 2.74it/s, train/loss=12.30] Epoch 0: | | 543/? [03:18<00:00, 2.74it/s, train/loss=12.30] Epoch 0: | | 543/? [03:18<00:00, 2.74it/s, train/loss=31.00] Epoch 0: | | 544/? [03:18<00:00, 2.74it/s, train/loss=31.00] Epoch 0: | | 544/? [03:18<00:00, 2.74it/s, train/loss=12.90] Epoch 0: | | 545/? [03:18<00:00, 2.74it/s, train/loss=12.90] Epoch 0: | | 545/? [03:18<00:00, 2.74it/s, train/loss=16.30] Epoch 0: | | 546/? [03:19<00:00, 2.74it/s, train/loss=16.30] Epoch 0: | | 546/? [03:19<00:00, 2.74it/s, train/loss=18.80] Epoch 0: | | 547/? [03:19<00:00, 2.74it/s, train/loss=18.80] Epoch 0: | | 547/? [03:19<00:00, 2.74it/s, train/loss=19.40] Epoch 0: | | 548/? [03:19<00:00, 2.74it/s, train/loss=19.40] Epoch 0: | | 548/? [03:19<00:00, 2.74it/s, train/loss=21.10] Epoch 0: | | 549/? [03:19<00:00, 2.75it/s, train/loss=21.10] Epoch 0: | | 549/? [03:20<00:00, 2.74it/s, train/loss=28.20] Epoch 0: | | 550/? [03:20<00:00, 2.75it/s, train/loss=28.20] Epoch 0: | | 550/? [03:20<00:00, 2.75it/s, train/loss=28.10] Epoch 0: | | 551/? [03:20<00:00, 2.75it/s, train/loss=28.10] Epoch 0: | | 551/? [03:20<00:00, 2.75it/s, train/loss=48.30] Epoch 0: | | 552/? [03:20<00:00, 2.75it/s, train/loss=48.30] Epoch 0: | | 552/? [03:20<00:00, 2.75it/s, train/loss=24.20] Epoch 0: | | 553/? [03:21<00:00, 2.75it/s, train/loss=24.20] Epoch 0: | | 553/? [03:21<00:00, 2.75it/s, train/loss=31.10] Epoch 0: | | 554/? [03:21<00:00, 2.75it/s, train/loss=31.10] Epoch 0: | | 554/? [03:21<00:00, 2.75it/s, train/loss=24.40] Epoch 0: | | 555/? [03:21<00:00, 2.75it/s, train/loss=24.40] Epoch 0: | | 555/? [03:21<00:00, 2.75it/s, train/loss=19.50] Epoch 0: | | 556/? [03:22<00:00, 2.75it/s, train/loss=19.50] Epoch 0: | | 556/? [03:22<00:00, 2.75it/s, train/loss=25.60] Epoch 0: | | 557/? [03:22<00:00, 2.75it/s, train/loss=25.60] Epoch 0: | | 557/? [03:22<00:00, 2.75it/s, train/loss=23.50] Epoch 0: | | 558/? [03:22<00:00, 2.75it/s, train/loss=23.50] Epoch 0: | | 558/? [03:22<00:00, 2.75it/s, train/loss=19.50] Epoch 0: | | 559/? [03:23<00:00, 2.75it/s, train/loss=19.50] Epoch 0: | | 559/? [03:23<00:00, 2.75it/s, train/loss=19.30] Epoch 0: | | 560/? [03:23<00:00, 2.75it/s, train/loss=19.30] Epoch 0: | | 560/? [03:23<00:00, 2.75it/s, train/loss=10.50] Epoch 0: | | 561/? [03:23<00:00, 2.75it/s, train/loss=10.50] Epoch 0: | | 561/? [03:23<00:00, 2.75it/s, train/loss=27.50] Epoch 0: | | 562/? [03:24<00:00, 2.75it/s, train/loss=27.50] Epoch 0: | | 562/? [03:24<00:00, 2.75it/s, train/loss=27.70] Epoch 0: | | 563/? [03:24<00:00, 2.75it/s, train/loss=27.70] Epoch 0: | | 563/? [03:24<00:00, 2.75it/s, train/loss=17.00] Epoch 0: | | 564/? [03:24<00:00, 2.75it/s, train/loss=17.00] Epoch 0: | | 564/? [03:24<00:00, 2.75it/s, train/loss=13.70] Epoch 0: | | 565/? [03:25<00:00, 2.75it/s, train/loss=13.70] Epoch 0: | | 565/? [03:25<00:00, 2.75it/s, train/loss=25.20] Epoch 0: | | 566/? [03:25<00:00, 2.75it/s, train/loss=25.20] Epoch 0: | | 566/? [03:25<00:00, 2.75it/s, train/loss=20.40] Epoch 0: | | 567/? [03:25<00:00, 2.75it/s, train/loss=20.40] Epoch 0: | | 567/? [03:25<00:00, 2.75it/s, train/loss=22.20] Epoch 0: | | 568/? [03:26<00:00, 2.75it/s, train/loss=22.20] Epoch 0: | | 568/? [03:26<00:00, 2.75it/s, train/loss=22.10] Epoch 0: | | 569/? [03:26<00:00, 2.75it/s, train/loss=22.10] Epoch 0: | | 569/? [03:26<00:00, 2.75it/s, train/loss=18.20] Epoch 0: | | 570/? [03:26<00:00, 2.75it/s, train/loss=18.20] Epoch 0: | | 570/? [03:26<00:00, 2.75it/s, train/loss=28.90] Epoch 0: | | 571/? [03:27<00:00, 2.76it/s, train/loss=28.90] Epoch 0: | | 571/? [03:27<00:00, 2.75it/s, train/loss=35.40] Epoch 0: | | 572/? [03:27<00:00, 2.76it/s, train/loss=35.40] Epoch 0: | | 572/? [03:27<00:00, 2.76it/s, train/loss=10.30] Epoch 0: | | 573/? [03:27<00:00, 2.76it/s, train/loss=10.30] Epoch 0: | | 573/? [03:27<00:00, 2.76it/s, train/loss=21.20] Epoch 0: | | 574/? [03:28<00:00, 2.76it/s, train/loss=21.20] Epoch 0: | | 574/? [03:28<00:00, 2.76it/s, train/loss=38.30] Epoch 0: | | 575/? [03:28<00:00, 2.76it/s, train/loss=38.30] Epoch 0: | | 575/? [03:28<00:00, 2.76it/s, train/loss=6.780] Epoch 0: | | 576/? [03:28<00:00, 2.76it/s, train/loss=6.780] Epoch 0: | | 576/? [03:28<00:00, 2.76it/s, train/loss=9.820] Epoch 0: | | 577/? [03:29<00:00, 2.76it/s, train/loss=9.820] Epoch 0: | | 577/? [03:29<00:00, 2.76it/s, train/loss=19.20] Epoch 0: | | 578/? [03:29<00:00, 2.76it/s, train/loss=19.20] Epoch 0: | | 578/? [03:29<00:00, 2.76it/s, train/loss=18.50] Epoch 0: | | 579/? [03:29<00:00, 2.76it/s, train/loss=18.50] Epoch 0: | | 579/? [03:29<00:00, 2.76it/s, train/loss=16.60] Epoch 0: | | 580/? [03:30<00:00, 2.76it/s, train/loss=16.60] Epoch 0: | | 580/? [03:30<00:00, 2.76it/s, train/loss=41.70] Epoch 0: | | 581/? [03:30<00:00, 2.76it/s, train/loss=41.70] Epoch 0: | | 581/? [03:30<00:00, 2.76it/s, train/loss=16.80] Epoch 0: | | 582/? [03:30<00:00, 2.76it/s, train/loss=16.80] Epoch 0: | | 582/? [03:30<00:00, 2.76it/s, train/loss=13.50] Epoch 0: | | 583/? [03:31<00:00, 2.76it/s, train/loss=13.50] Epoch 0: | | 583/? [03:31<00:00, 2.76it/s, train/loss=12.60] Epoch 0: | | 584/? [03:31<00:00, 2.76it/s, train/loss=12.60] Epoch 0: | | 584/? [03:31<00:00, 2.76it/s, train/loss=8.210] Epoch 0: | | 585/? [03:31<00:00, 2.76it/s, train/loss=8.210] Epoch 0: | | 585/? [03:31<00:00, 2.76it/s, train/loss=25.00] Epoch 0: | | 586/? [03:32<00:00, 2.76it/s, train/loss=25.00] Epoch 0: | | 586/? [03:32<00:00, 2.76it/s, train/loss=21.70] Epoch 0: | | 587/? [03:32<00:00, 2.76it/s, train/loss=21.70] Epoch 0: | | 587/? [03:32<00:00, 2.76it/s, train/loss=22.60] Epoch 0: | | 588/? [03:32<00:00, 2.76it/s, train/loss=22.60] Epoch 0: | | 588/? [03:32<00:00, 2.76it/s, train/loss=33.70] Epoch 0: | | 589/? [03:33<00:00, 2.76it/s, train/loss=33.70] Epoch 0: | | 589/? [03:33<00:00, 2.76it/s, train/loss=23.50] Epoch 0: | | 590/? [03:33<00:00, 2.76it/s, train/loss=23.50] Epoch 0: | | 590/? [03:33<00:00, 2.76it/s, train/loss=24.20] Epoch 0: | | 591/? [03:33<00:00, 2.76it/s, train/loss=24.20] Epoch 0: | | 591/? [03:33<00:00, 2.76it/s, train/loss=16.40] Epoch 0: | | 592/? [03:34<00:00, 2.76it/s, train/loss=16.40] Epoch 0: | | 592/? [03:34<00:00, 2.76it/s, train/loss=30.10] Epoch 0: | | 593/? [03:34<00:00, 2.76it/s, train/loss=30.10] Epoch 0: | | 593/? [03:34<00:00, 2.76it/s, train/loss=15.80] Epoch 0: | | 594/? [03:34<00:00, 2.76it/s, train/loss=15.80] Epoch 0: | | 594/? [03:34<00:00, 2.76it/s, train/loss=28.50] Epoch 0: | | 595/? [03:35<00:00, 2.76it/s, train/loss=28.50] Epoch 0: | | 595/? [03:35<00:00, 2.76it/s, train/loss=42.00] Epoch 0: | | 596/? [03:35<00:00, 2.76it/s, train/loss=42.00] Epoch 0: | | 596/? [03:35<00:00, 2.76it/s, train/loss=25.40] Epoch 0: | | 597/? [03:35<00:00, 2.77it/s, train/loss=25.40] Epoch 0: | | 597/? [03:35<00:00, 2.77it/s, train/loss=51.90] Epoch 0: | | 598/? [03:36<00:00, 2.77it/s, train/loss=51.90] Epoch 0: | | 598/? [03:36<00:00, 2.77it/s, train/loss=34.00] Epoch 0: | | 599/? [03:36<00:00, 2.77it/s, train/loss=34.00] Epoch 0: | | 599/? [03:36<00:00, 2.77it/s, train/loss=31.20] Epoch 0: | | 600/? [03:36<00:00, 2.77it/s, train/loss=31.20] Epoch 0: | | 600/? [03:36<00:00, 2.77it/s, train/loss=20.80] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 11.29it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 11.44it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 11.46it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.58it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.58it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:02, 11.64it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.63it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.72it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.78it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.79it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.83it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.78it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.81it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.83it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.86it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 11.87it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:01, 11.83it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.85it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.87it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.88it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.90it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.86it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:01<00:01, 11.88it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.88it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.85it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.85it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.88it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.90it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.92it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.94it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.94it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.75it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.73it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.70it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:02<00:00, 11.71it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.70it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.70it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.71it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.72it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.73it/s] Epoch 0: | | 600/? [03:43<00:00, 2.68it/s, train/loss=20.80] Epoch 0: | | 601/? [03:44<00:00, 2.67it/s, train/loss=20.80] Epoch 0: | | 601/? [03:44<00:00, 2.67it/s, train/loss=45.20] Epoch 0: | | 602/? [03:45<00:00, 2.67it/s, train/loss=45.20] Epoch 0: | | 602/? [03:45<00:00, 2.67it/s, train/loss=19.60] Epoch 0: | | 603/? [03:45<00:00, 2.67it/s, train/loss=19.60] Epoch 0: | | 603/? [03:45<00:00, 2.67it/s, train/loss=43.40] Epoch 0: | | 604/? [03:45<00:00, 2.68it/s, train/loss=43.40] Epoch 0: | | 604/? [03:45<00:00, 2.68it/s, train/loss=9.500] Epoch 0: | | 605/? [03:46<00:00, 2.68it/s, train/loss=9.500] Epoch 0: | | 605/? [03:46<00:00, 2.68it/s, train/loss=18.10] Epoch 0: | | 606/? [03:46<00:00, 2.68it/s, train/loss=18.10] Epoch 0: | | 606/? [03:46<00:00, 2.68it/s, train/loss=21.10] Epoch 0: | | 607/? [03:46<00:00, 2.68it/s, train/loss=21.10] Epoch 0: | | 607/? [03:46<00:00, 2.68it/s, train/loss=22.80] Epoch 0: | | 608/? [03:47<00:00, 2.68it/s, train/loss=22.80] Epoch 0: | | 608/? [03:47<00:00, 2.68it/s, train/loss=30.10] Epoch 0: | | 609/? [03:47<00:00, 2.68it/s, train/loss=30.10] Epoch 0: | | 609/? [03:47<00:00, 2.68it/s, train/loss=24.90] Epoch 0: | | 610/? [03:47<00:00, 2.68it/s, train/loss=24.90] Epoch 0: | | 610/? [03:47<00:00, 2.68it/s, train/loss=11.10] Epoch 0: | | 611/? [03:48<00:00, 2.68it/s, train/loss=11.10] Epoch 0: | | 611/? [03:48<00:00, 2.68it/s, train/loss=26.60] Epoch 0: | | 612/? [03:48<00:00, 2.68it/s, train/loss=26.60] Epoch 0: | | 612/? [03:48<00:00, 2.68it/s, train/loss=26.10] Epoch 0: | | 613/? [03:48<00:00, 2.68it/s, train/loss=26.10] Epoch 0: | | 613/? [03:48<00:00, 2.68it/s, train/loss=27.20] Epoch 0: | | 614/? [03:49<00:00, 2.68it/s, train/loss=27.20] Epoch 0: | | 614/? [03:49<00:00, 2.68it/s, train/loss=23.90] Epoch 0: | | 615/? [03:49<00:00, 2.68it/s, train/loss=23.90] Epoch 0: | | 615/? [03:49<00:00, 2.68it/s, train/loss=50.80] Epoch 0: | | 616/? [03:49<00:00, 2.68it/s, train/loss=50.80] Epoch 0: | | 616/? [03:49<00:00, 2.68it/s, train/loss=8.490] Epoch 0: | | 617/? [03:50<00:00, 2.68it/s, train/loss=8.490] Epoch 0: | | 617/? [03:50<00:00, 2.68it/s, train/loss=18.10] Epoch 0: | | 618/? [03:50<00:00, 2.68it/s, train/loss=18.10] Epoch 0: | | 618/? [03:50<00:00, 2.68it/s, train/loss=8.960] Epoch 0: | | 619/? [03:50<00:00, 2.68it/s, train/loss=8.960] Epoch 0: | | 619/? [03:50<00:00, 2.68it/s, train/loss=20.80] Epoch 0: | | 620/? [03:51<00:00, 2.68it/s, train/loss=20.80] Epoch 0: | | 620/? [03:51<00:00, 2.68it/s, train/loss=7.220] Epoch 0: | | 621/? [03:51<00:00, 2.68it/s, train/loss=7.220] Epoch 0: | | 621/? [03:51<00:00, 2.68it/s, train/loss=32.80] Epoch 0: | | 622/? [03:51<00:00, 2.68it/s, train/loss=32.80] Epoch 0: | | 622/? [03:51<00:00, 2.68it/s, train/loss=20.60] Epoch 0: | | 623/? [03:51<00:00, 2.69it/s, train/loss=20.60] Epoch 0: | | 623/? [03:51<00:00, 2.69it/s, train/loss=41.70] Epoch 0: | | 624/? [03:52<00:00, 2.69it/s, train/loss=41.70] Epoch 0: | | 624/? [03:52<00:00, 2.69it/s, train/loss=22.60] Epoch 0: | | 625/? [03:52<00:00, 2.69it/s, train/loss=22.60] Epoch 0: | | 625/? [03:52<00:00, 2.69it/s, train/loss=18.70] Epoch 0: | | 626/? [03:52<00:00, 2.69it/s, train/loss=18.70] Epoch 0: | | 626/? [03:52<00:00, 2.69it/s, train/loss=14.00] Epoch 0: | | 627/? [03:53<00:00, 2.69it/s, train/loss=14.00] Epoch 0: | | 627/? [03:53<00:00, 2.69it/s, train/loss=24.30] Epoch 0: | | 628/? [03:53<00:00, 2.69it/s, train/loss=24.30] Epoch 0: | | 628/? [03:53<00:00, 2.69it/s, train/loss=20.40] Epoch 0: | | 629/? [03:53<00:00, 2.69it/s, train/loss=20.40] Epoch 0: | | 629/? [03:53<00:00, 2.69it/s, train/loss=34.40] Epoch 0: | | 630/? [03:54<00:00, 2.69it/s, train/loss=34.40] Epoch 0: | | 630/? [03:54<00:00, 2.69it/s, train/loss=27.80] Epoch 0: | | 631/? [03:54<00:00, 2.69it/s, train/loss=27.80] Epoch 0: | | 631/? [03:54<00:00, 2.69it/s, train/loss=13.00] Epoch 0: | | 632/? [03:54<00:00, 2.69it/s, train/loss=13.00] Epoch 0: | | 632/? [03:54<00:00, 2.69it/s, train/loss=16.80] Epoch 0: | | 633/? [03:55<00:00, 2.69it/s, train/loss=16.80] Epoch 0: | | 633/? [03:55<00:00, 2.69it/s, train/loss=47.30] Epoch 0: | | 634/? [03:55<00:00, 2.69it/s, train/loss=47.30] Epoch 0: | | 634/? [03:55<00:00, 2.69it/s, train/loss=24.20] Epoch 0: | | 635/? [03:55<00:00, 2.69it/s, train/loss=24.20] Epoch 0: | | 635/? [03:55<00:00, 2.69it/s, train/loss=7.330] Epoch 0: | | 636/? [03:56<00:00, 2.69it/s, train/loss=7.330] Epoch 0: | | 636/? [03:56<00:00, 2.69it/s, train/loss=14.50] Epoch 0: | | 637/? [03:56<00:00, 2.69it/s, train/loss=14.50] Epoch 0: | | 637/? [03:56<00:00, 2.69it/s, train/loss=28.80] Epoch 0: | | 638/? [03:56<00:00, 2.69it/s, train/loss=28.80] Epoch 0: | | 638/? [03:56<00:00, 2.69it/s, train/loss=24.00] Epoch 0: | | 639/? [03:57<00:00, 2.69it/s, train/loss=24.00] Epoch 0: | | 639/? [03:57<00:00, 2.69it/s, train/loss=7.980] Epoch 0: | | 640/? [03:57<00:00, 2.69it/s, train/loss=7.980] Epoch 0: | | 640/? [03:57<00:00, 2.69it/s, train/loss=46.90] Epoch 0: | | 641/? [03:57<00:00, 2.69it/s, train/loss=46.90] Epoch 0: | | 641/? [03:57<00:00, 2.69it/s, train/loss=21.50] Epoch 0: | | 642/? [03:58<00:00, 2.70it/s, train/loss=21.50] Epoch 0: | | 642/? [03:58<00:00, 2.70it/s, train/loss=40.10] Epoch 0: | | 643/? [03:58<00:00, 2.70it/s, train/loss=40.10] Epoch 0: | | 643/? [03:58<00:00, 2.70it/s, train/loss=41.30] Epoch 0: | | 644/? [03:58<00:00, 2.70it/s, train/loss=41.30] Epoch 0: | | 644/? [03:58<00:00, 2.70it/s, train/loss=48.10] Epoch 0: | | 645/? [03:59<00:00, 2.70it/s, train/loss=48.10] Epoch 0: | | 645/? [03:59<00:00, 2.70it/s, train/loss=21.50] Epoch 0: | | 646/? [03:59<00:00, 2.70it/s, train/loss=21.50] Epoch 0: | | 646/? [03:59<00:00, 2.70it/s, train/loss=24.60] Epoch 0: | | 647/? [03:59<00:00, 2.70it/s, train/loss=24.60] Epoch 0: | | 647/? [03:59<00:00, 2.70it/s, train/loss=63.90] Epoch 0: | | 648/? [04:00<00:00, 2.70it/s, train/loss=63.90] Epoch 0: | | 648/? [04:00<00:00, 2.70it/s, train/loss=20.90] Epoch 0: | | 649/? [04:00<00:00, 2.70it/s, train/loss=20.90] Epoch 0: | | 649/? [04:00<00:00, 2.70it/s, train/loss=55.00] Epoch 0: | | 650/? [04:00<00:00, 2.70it/s, train/loss=55.00] Epoch 0: | | 650/? [04:00<00:00, 2.70it/s, train/loss=25.60] Epoch 0: | | 651/? [04:01<00:00, 2.70it/s, train/loss=25.60] Epoch 0: | | 651/? [04:01<00:00, 2.70it/s, train/loss=17.00] Epoch 0: | | 652/? [04:01<00:00, 2.70it/s, train/loss=17.00] Epoch 0: | | 652/? [04:01<00:00, 2.70it/s, train/loss=19.20] Epoch 0: | | 653/? [04:01<00:00, 2.70it/s, train/loss=19.20] Epoch 0: | | 653/? [04:01<00:00, 2.70it/s, train/loss=20.70] Epoch 0: | | 654/? [04:02<00:00, 2.70it/s, train/loss=20.70] Epoch 0: | | 654/? [04:02<00:00, 2.70it/s, train/loss=31.90] Epoch 0: | | 655/? [04:02<00:00, 2.70it/s, train/loss=31.90] Epoch 0: | | 655/? [04:02<00:00, 2.70it/s, train/loss=13.60] Epoch 0: | | 656/? [04:03<00:00, 2.70it/s, train/loss=13.60] Epoch 0: | | 656/? [04:03<00:00, 2.70it/s, train/loss=25.40] Epoch 0: | | 657/? [04:03<00:00, 2.70it/s, train/loss=25.40] Epoch 0: | | 657/? [04:03<00:00, 2.70it/s, train/loss=42.40] Epoch 0: | | 658/? [04:03<00:00, 2.70it/s, train/loss=42.40] Epoch 0: | | 658/? [04:03<00:00, 2.70it/s, train/loss=12.40] Epoch 0: | | 659/? [04:04<00:00, 2.70it/s, train/loss=12.40] Epoch 0: | | 659/? [04:04<00:00, 2.70it/s, train/loss=29.20] Epoch 0: | | 660/? [04:04<00:00, 2.70it/s, train/loss=29.20] Epoch 0: | | 660/? [04:04<00:00, 2.70it/s, train/loss=8.920] Epoch 0: | | 661/? [04:04<00:00, 2.70it/s, train/loss=8.920] Epoch 0: | | 661/? [04:04<00:00, 2.70it/s, train/loss=23.50] Epoch 0: | | 662/? [04:05<00:00, 2.70it/s, train/loss=23.50] Epoch 0: | | 662/? [04:05<00:00, 2.70it/s, train/loss=24.90] Epoch 0: | | 663/? [04:05<00:00, 2.70it/s, train/loss=24.90] Epoch 0: | | 663/? [04:05<00:00, 2.70it/s, train/loss=33.00] Epoch 0: | | 664/? [04:05<00:00, 2.70it/s, train/loss=33.00] Epoch 0: | | 664/? [04:05<00:00, 2.70it/s, train/loss=19.80] Epoch 0: | | 665/? [04:05<00:00, 2.70it/s, train/loss=19.80] Epoch 0: | | 665/? [04:05<00:00, 2.70it/s, train/loss=25.70] Epoch 0: | | 666/? [04:06<00:00, 2.70it/s, train/loss=25.70] Epoch 0: | | 666/? [04:06<00:00, 2.70it/s, train/loss=27.60] Epoch 0: | | 667/? [04:06<00:00, 2.70it/s, train/loss=27.60] Epoch 0: | | 667/? [04:06<00:00, 2.70it/s, train/loss=36.80] Epoch 0: | | 668/? [04:06<00:00, 2.70it/s, train/loss=36.80] Epoch 0: | | 668/? [04:06<00:00, 2.70it/s, train/loss=18.20] Epoch 0: | | 669/? [04:07<00:00, 2.71it/s, train/loss=18.20] Epoch 0: | | 669/? [04:07<00:00, 2.71it/s, train/loss=29.60] Epoch 0: | | 670/? [04:07<00:00, 2.71it/s, train/loss=29.60] Epoch 0: | | 670/? [04:07<00:00, 2.71it/s, train/loss=52.50] Epoch 0: | | 671/? [04:07<00:00, 2.71it/s, train/loss=52.50] Epoch 0: | | 671/? [04:07<00:00, 2.71it/s, train/loss=11.80] Epoch 0: | | 672/? [04:08<00:00, 2.71it/s, train/loss=11.80] Epoch 0: | | 672/? [04:08<00:00, 2.71it/s, train/loss=19.90] Epoch 0: | | 673/? [04:08<00:00, 2.71it/s, train/loss=19.90] Epoch 0: | | 673/? [04:08<00:00, 2.71it/s, train/loss=17.60] Epoch 0: | | 674/? [04:08<00:00, 2.71it/s, train/loss=17.60] Epoch 0: | | 674/? [04:08<00:00, 2.71it/s, train/loss=31.90] Epoch 0: | | 675/? [04:09<00:00, 2.71it/s, train/loss=31.90] Epoch 0: | | 675/? [04:09<00:00, 2.71it/s, train/loss=24.00] Epoch 0: | | 676/? [04:09<00:00, 2.71it/s, train/loss=24.00] Epoch 0: | | 676/? [04:09<00:00, 2.71it/s, train/loss=9.220] Epoch 0: | | 677/? [04:09<00:00, 2.71it/s, train/loss=9.220] Epoch 0: | | 677/? [04:09<00:00, 2.71it/s, train/loss=29.80] Epoch 0: | | 678/? [04:10<00:00, 2.71it/s, train/loss=29.80] Epoch 0: | | 678/? [04:10<00:00, 2.71it/s, train/loss=9.360] Epoch 0: | | 679/? [04:10<00:00, 2.71it/s, train/loss=9.360] Epoch 0: | | 679/? [04:10<00:00, 2.71it/s, train/loss=26.90] Epoch 0: | | 680/? [04:10<00:00, 2.71it/s, train/loss=26.90] Epoch 0: | | 680/? [04:10<00:00, 2.71it/s, train/loss=23.60] Epoch 0: | | 681/? [04:11<00:00, 2.71it/s, train/loss=23.60] Epoch 0: | | 681/? [04:11<00:00, 2.71it/s, train/loss=24.20] Epoch 0: | | 682/? [04:11<00:00, 2.71it/s, train/loss=24.20] Epoch 0: | | 682/? [04:11<00:00, 2.71it/s, train/loss=29.20] Epoch 0: | | 683/? [04:11<00:00, 2.71it/s, train/loss=29.20] Epoch 0: | | 683/? [04:11<00:00, 2.71it/s, train/loss=23.70] Epoch 0: | | 684/? [04:12<00:00, 2.71it/s, train/loss=23.70] Epoch 0: | | 684/? [04:12<00:00, 2.71it/s, train/loss=8.900] Epoch 0: | | 685/? [04:12<00:00, 2.71it/s, train/loss=8.900] Epoch 0: | | 685/? [04:12<00:00, 2.71it/s, train/loss=29.60] Epoch 0: | | 686/? [04:12<00:00, 2.71it/s, train/loss=29.60] Epoch 0: | | 686/? [04:12<00:00, 2.71it/s, train/loss=44.80] Epoch 0: | | 687/? [04:13<00:00, 2.71it/s, train/loss=44.80] Epoch 0: | | 687/? [04:13<00:00, 2.71it/s, train/loss=65.00] Epoch 0: | | 688/? [04:13<00:00, 2.71it/s, train/loss=65.00] Epoch 0: | | 688/? [04:13<00:00, 2.71it/s, train/loss=17.10] Epoch 0: | | 689/? [04:13<00:00, 2.71it/s, train/loss=17.10] Epoch 0: | | 689/? [04:13<00:00, 2.71it/s, train/loss=28.30] Epoch 0: | | 690/? [04:14<00:00, 2.71it/s, train/loss=28.30] Epoch 0: | | 690/? [04:14<00:00, 2.71it/s, train/loss=38.20] Epoch 0: | | 691/? [04:14<00:00, 2.72it/s, train/loss=38.20] Epoch 0: | | 691/? [04:14<00:00, 2.72it/s, train/loss=9.110] Epoch 0: | | 692/? [04:14<00:00, 2.72it/s, train/loss=9.110] Epoch 0: | | 692/? [04:14<00:00, 2.72it/s, train/loss=29.20] Epoch 0: | | 693/? [04:15<00:00, 2.72it/s, train/loss=29.20] Epoch 0: | | 693/? [04:15<00:00, 2.72it/s, train/loss=16.60] Epoch 0: | | 694/? [04:15<00:00, 2.72it/s, train/loss=16.60] Epoch 0: | | 694/? [04:15<00:00, 2.72it/s, train/loss=31.70] Epoch 0: | | 695/? [04:15<00:00, 2.72it/s, train/loss=31.70] Epoch 0: | | 695/? [04:15<00:00, 2.72it/s, train/loss=11.80] Epoch 0: | | 696/? [04:16<00:00, 2.72it/s, train/loss=11.80] Epoch 0: | | 696/? [04:16<00:00, 2.72it/s, train/loss=29.40] Epoch 0: | | 697/? [04:16<00:00, 2.72it/s, train/loss=29.40] Epoch 0: | | 697/? [04:16<00:00, 2.72it/s, train/loss=35.70] Epoch 0: | | 698/? [04:16<00:00, 2.72it/s, train/loss=35.70] Epoch 0: | | 698/? [04:16<00:00, 2.72it/s, train/loss=14.40] Epoch 0: | | 699/? [04:17<00:00, 2.72it/s, train/loss=14.40] Epoch 0: | | 699/? [04:17<00:00, 2.72it/s, train/loss=34.40] Epoch 0: | | 700/? [04:17<00:00, 2.72it/s, train/loss=34.40] Epoch 0: | | 700/? [04:17<00:00, 2.72it/s, train/loss=12.10] Epoch 0: | | 701/? [04:17<00:00, 2.72it/s, train/loss=12.10] Epoch 0: | | 701/? [04:17<00:00, 2.72it/s, train/loss=15.30] Epoch 0: | | 702/? [04:18<00:00, 2.72it/s, train/loss=15.30] Epoch 0: | | 702/? [04:18<00:00, 2.72it/s, train/loss=22.70] Epoch 0: | | 703/? [04:18<00:00, 2.72it/s, train/loss=22.70] Epoch 0: | | 703/? [04:18<00:00, 2.72it/s, train/loss=20.80] Epoch 0: | | 704/? [04:18<00:00, 2.72it/s, train/loss=20.80] Epoch 0: | | 704/? [04:18<00:00, 2.72it/s, train/loss=7.570] Epoch 0: | | 705/? [04:19<00:00, 2.72it/s, train/loss=7.570] Epoch 0: | | 705/? [04:19<00:00, 2.72it/s, train/loss=21.90] Epoch 0: | | 706/? [04:19<00:00, 2.72it/s, train/loss=21.90] Epoch 0: | | 706/? [04:19<00:00, 2.72it/s, train/loss=19.50] Epoch 0: | | 707/? [04:19<00:00, 2.72it/s, train/loss=19.50] Epoch 0: | | 707/? [04:19<00:00, 2.72it/s, train/loss=11.60] Epoch 0: | | 708/? [04:20<00:00, 2.72it/s, train/loss=11.60] Epoch 0: | | 708/? [04:20<00:00, 2.72it/s, train/loss=13.30] Epoch 0: | | 709/? [04:20<00:00, 2.72it/s, train/loss=13.30] Epoch 0: | | 709/? [04:20<00:00, 2.72it/s, train/loss=17.80] Epoch 0: | | 710/? [04:20<00:00, 2.72it/s, train/loss=17.80] Epoch 0: | | 710/? [04:20<00:00, 2.72it/s, train/loss=19.00] Epoch 0: | | 711/? [04:21<00:00, 2.72it/s, train/loss=19.00] Epoch 0: | | 711/? [04:21<00:00, 2.72it/s, train/loss=21.70] Epoch 0: | | 712/? [04:21<00:00, 2.72it/s, train/loss=21.70] Epoch 0: | | 712/? [04:21<00:00, 2.72it/s, train/loss=35.30] Epoch 0: | | 713/? [04:21<00:00, 2.72it/s, train/loss=35.30] Epoch 0: | | 713/? [04:21<00:00, 2.72it/s, train/loss=21.40] Epoch 0: | | 714/? [04:22<00:00, 2.72it/s, train/loss=21.40] Epoch 0: | | 714/? [04:22<00:00, 2.72it/s, train/loss=34.50] Epoch 0: | | 715/? [04:22<00:00, 2.72it/s, train/loss=34.50] Epoch 0: | | 715/? [04:22<00:00, 2.72it/s, train/loss=26.30] Epoch 0: | | 716/? [04:22<00:00, 2.73it/s, train/loss=26.30] Epoch 0: | | 716/? [04:22<00:00, 2.73it/s, train/loss=17.80] Epoch 0: | | 717/? [04:23<00:00, 2.73it/s, train/loss=17.80] Epoch 0: | | 717/? [04:23<00:00, 2.73it/s, train/loss=70.40] Epoch 0: | | 718/? [04:23<00:00, 2.73it/s, train/loss=70.40] Epoch 0: | | 718/? [04:23<00:00, 2.73it/s, train/loss=27.50] Epoch 0: | | 719/? [04:23<00:00, 2.73it/s, train/loss=27.50] Epoch 0: | | 719/? [04:23<00:00, 2.73it/s, train/loss=17.10] Epoch 0: | | 720/? [04:24<00:00, 2.73it/s, train/loss=17.10] Epoch 0: | | 720/? [04:24<00:00, 2.73it/s, train/loss=13.80] Epoch 0: | | 721/? [04:24<00:00, 2.73it/s, train/loss=13.80] Epoch 0: | | 721/? [04:24<00:00, 2.73it/s, train/loss=39.50] Epoch 0: | | 722/? [04:24<00:00, 2.73it/s, train/loss=39.50] Epoch 0: | | 722/? [04:24<00:00, 2.73it/s, train/loss=23.60] Epoch 0: | | 723/? [04:25<00:00, 2.73it/s, train/loss=23.60] Epoch 0: | | 723/? [04:25<00:00, 2.73it/s, train/loss=37.80] Epoch 0: | | 724/? [04:25<00:00, 2.73it/s, train/loss=37.80] Epoch 0: | | 724/? [04:25<00:00, 2.73it/s, train/loss=18.90] Epoch 0: | | 725/? [04:25<00:00, 2.73it/s, train/loss=18.90] Epoch 0: | | 725/? [04:25<00:00, 2.73it/s, train/loss=31.20] Epoch 0: | | 726/? [04:25<00:00, 2.73it/s, train/loss=31.20] Epoch 0: | | 726/? [04:25<00:00, 2.73it/s, train/loss=23.20] Epoch 0: | | 727/? [04:26<00:00, 2.73it/s, train/loss=23.20] Epoch 0: | | 727/? [04:26<00:00, 2.73it/s, train/loss=20.90] Epoch 0: | | 728/? [04:26<00:00, 2.73it/s, train/loss=20.90] Epoch 0: | | 728/? [04:26<00:00, 2.73it/s, train/loss=24.60] Epoch 0: | | 729/? [04:26<00:00, 2.73it/s, train/loss=24.60] Epoch 0: | | 729/? [04:26<00:00, 2.73it/s, train/loss=16.90] Epoch 0: | | 730/? [04:27<00:00, 2.73it/s, train/loss=16.90] Epoch 0: | | 730/? [04:27<00:00, 2.73it/s, train/loss=14.70] Epoch 0: | | 731/? [04:27<00:00, 2.73it/s, train/loss=14.70] Epoch 0: | | 731/? [04:27<00:00, 2.73it/s, train/loss=7.040] Epoch 0: | | 732/? [04:27<00:00, 2.73it/s, train/loss=7.040] Epoch 0: | | 732/? [04:27<00:00, 2.73it/s, train/loss=16.10] Epoch 0: | | 733/? [04:28<00:00, 2.73it/s, train/loss=16.10] Epoch 0: | | 733/? [04:28<00:00, 2.73it/s, train/loss=39.30] Epoch 0: | | 734/? [04:28<00:00, 2.73it/s, train/loss=39.30] Epoch 0: | | 734/? [04:28<00:00, 2.73it/s, train/loss=26.50] Epoch 0: | | 735/? [04:28<00:00, 2.73it/s, train/loss=26.50] Epoch 0: | | 735/? [04:28<00:00, 2.73it/s, train/loss=14.00] Epoch 0: | | 736/? [04:29<00:00, 2.73it/s, train/loss=14.00] Epoch 0: | | 736/? [04:29<00:00, 2.73it/s, train/loss=18.90] Epoch 0: | | 737/? [04:29<00:00, 2.73it/s, train/loss=18.90] Epoch 0: | | 737/? [04:29<00:00, 2.73it/s, train/loss=32.80] Epoch 0: | | 738/? [04:29<00:00, 2.73it/s, train/loss=32.80] Epoch 0: | | 738/? [04:29<00:00, 2.73it/s, train/loss=22.50] Epoch 0: | | 739/? [04:30<00:00, 2.73it/s, train/loss=22.50] Epoch 0: | | 739/? [04:30<00:00, 2.73it/s, train/loss=19.90] Epoch 0: | | 740/? [04:30<00:00, 2.74it/s, train/loss=19.90] Epoch 0: | | 740/? [04:30<00:00, 2.74it/s, train/loss=13.80] Epoch 0: | | 741/? [04:30<00:00, 2.74it/s, train/loss=13.80] Epoch 0: | | 741/? [04:30<00:00, 2.74it/s, train/loss=46.20] Epoch 0: | | 742/? [04:31<00:00, 2.74it/s, train/loss=46.20] Epoch 0: | | 742/? [04:31<00:00, 2.74it/s, train/loss=23.10] Epoch 0: | | 743/? [04:31<00:00, 2.74it/s, train/loss=23.10] Epoch 0: | | 743/? [04:31<00:00, 2.74it/s, train/loss=35.30] Epoch 0: | | 744/? [04:31<00:00, 2.74it/s, train/loss=35.30] Epoch 0: | | 744/? [04:31<00:00, 2.74it/s, train/loss=17.30] Epoch 0: | | 745/? [04:32<00:00, 2.74it/s, train/loss=17.30] Epoch 0: | | 745/? [04:32<00:00, 2.74it/s, train/loss=35.60] Epoch 0: | | 746/? [04:32<00:00, 2.74it/s, train/loss=35.60] Epoch 0: | | 746/? [04:32<00:00, 2.74it/s, train/loss=30.30] Epoch 0: | | 747/? [04:32<00:00, 2.74it/s, train/loss=30.30] Epoch 0: | | 747/? [04:32<00:00, 2.74it/s, train/loss=9.280] Epoch 0: | | 748/? [04:33<00:00, 2.74it/s, train/loss=9.280] Epoch 0: | | 748/? [04:33<00:00, 2.74it/s, train/loss=35.70] Epoch 0: | | 749/? [04:33<00:00, 2.74it/s, train/loss=35.70] Epoch 0: | | 749/? [04:33<00:00, 2.74it/s, train/loss=30.50] Epoch 0: | | 750/? [04:33<00:00, 2.74it/s, train/loss=30.50] Epoch 0: | | 750/? [04:33<00:00, 2.74it/s, train/loss=28.80] Epoch 0: | | 751/? [04:34<00:00, 2.74it/s, train/loss=28.80] Epoch 0: | | 751/? [04:34<00:00, 2.74it/s, train/loss=23.70] Epoch 0: | | 752/? [04:34<00:00, 2.74it/s, train/loss=23.70] Epoch 0: | | 752/? [04:34<00:00, 2.74it/s, train/loss=22.00] Epoch 0: | | 753/? [04:34<00:00, 2.74it/s, train/loss=22.00] Epoch 0: | | 753/? [04:34<00:00, 2.74it/s, train/loss=16.70] Epoch 0: | | 754/? [04:35<00:00, 2.74it/s, train/loss=16.70] Epoch 0: | | 754/? [04:35<00:00, 2.74it/s, train/loss=8.490] Epoch 0: | | 755/? [04:35<00:00, 2.74it/s, train/loss=8.490] Epoch 0: | | 755/? [04:35<00:00, 2.74it/s, train/loss=12.40] Epoch 0: | | 756/? [04:35<00:00, 2.74it/s, train/loss=12.40] Epoch 0: | | 756/? [04:35<00:00, 2.74it/s, train/loss=11.90] Epoch 0: | | 757/? [04:36<00:00, 2.74it/s, train/loss=11.90] Epoch 0: | | 757/? [04:36<00:00, 2.74it/s, train/loss=15.30] Epoch 0: | | 758/? [04:36<00:00, 2.74it/s, train/loss=15.30] Epoch 0: | | 758/? [04:36<00:00, 2.74it/s, train/loss=18.30] Epoch 0: | | 759/? [04:36<00:00, 2.74it/s, train/loss=18.30] Epoch 0: | | 759/? [04:36<00:00, 2.74it/s, train/loss=15.90] Epoch 0: | | 760/? [04:37<00:00, 2.74it/s, train/loss=15.90] Epoch 0: | | 760/? [04:37<00:00, 2.74it/s, train/loss=30.70] Epoch 0: | | 761/? [04:37<00:00, 2.74it/s, train/loss=30.70] Epoch 0: | | 761/? [04:37<00:00, 2.74it/s, train/loss=37.50] Epoch 0: | | 762/? [04:37<00:00, 2.74it/s, train/loss=37.50] Epoch 0: | | 762/? [04:37<00:00, 2.74it/s, train/loss=24.00] Epoch 0: | | 763/? [04:38<00:00, 2.74it/s, train/loss=24.00] Epoch 0: | | 763/? [04:38<00:00, 2.74it/s, train/loss=23.80] Epoch 0: | | 764/? [04:38<00:00, 2.74it/s, train/loss=23.80] Epoch 0: | | 764/? [04:38<00:00, 2.74it/s, train/loss=13.40] Epoch 0: | | 765/? [04:38<00:00, 2.74it/s, train/loss=13.40] Epoch 0: | | 765/? [04:38<00:00, 2.74it/s, train/loss=41.50] Epoch 0: | | 766/? [04:39<00:00, 2.75it/s, train/loss=41.50] Epoch 0: | | 766/? [04:39<00:00, 2.75it/s, train/loss=29.70] Epoch 0: | | 767/? [04:39<00:00, 2.75it/s, train/loss=29.70] Epoch 0: | | 767/? [04:39<00:00, 2.75it/s, train/loss=16.90] Epoch 0: | | 768/? [04:39<00:00, 2.75it/s, train/loss=16.90] Epoch 0: | | 768/? [04:39<00:00, 2.75it/s, train/loss=31.50] Epoch 0: | | 769/? [04:40<00:00, 2.75it/s, train/loss=31.50] Epoch 0: | | 769/? [04:40<00:00, 2.75it/s, train/loss=29.30] Epoch 0: | | 770/? [04:40<00:00, 2.75it/s, train/loss=29.30] Epoch 0: | | 770/? [04:40<00:00, 2.75it/s, train/loss=23.60] Epoch 0: | | 771/? [04:40<00:00, 2.75it/s, train/loss=23.60] Epoch 0: | | 771/? [04:40<00:00, 2.75it/s, train/loss=17.80] Epoch 0: | | 772/? [04:40<00:00, 2.75it/s, train/loss=17.80] Epoch 0: | | 772/? [04:40<00:00, 2.75it/s, train/loss=11.00] Epoch 0: | | 773/? [04:41<00:00, 2.75it/s, train/loss=11.00] Epoch 0: | | 773/? [04:41<00:00, 2.75it/s, train/loss=34.10] Epoch 0: | | 774/? [04:41<00:00, 2.75it/s, train/loss=34.10] Epoch 0: | | 774/? [04:41<00:00, 2.75it/s, train/loss=15.80] Epoch 0: | | 775/? [04:41<00:00, 2.75it/s, train/loss=15.80] Epoch 0: | | 775/? [04:41<00:00, 2.75it/s, train/loss=8.520] Epoch 0: | | 776/? [04:42<00:00, 2.75it/s, train/loss=8.520] Epoch 0: | | 776/? [04:42<00:00, 2.75it/s, train/loss=6.730] Epoch 0: | | 777/? [04:42<00:00, 2.75it/s, train/loss=6.730] Epoch 0: | | 777/? [04:42<00:00, 2.75it/s, train/loss=16.90] Epoch 0: | | 778/? [04:42<00:00, 2.75it/s, train/loss=16.90] Epoch 0: | | 778/? [04:42<00:00, 2.75it/s, train/loss=19.80] Epoch 0: | | 779/? [04:43<00:00, 2.75it/s, train/loss=19.80] Epoch 0: | | 779/? [04:43<00:00, 2.75it/s, train/loss=53.00] Epoch 0: | | 780/? [04:43<00:00, 2.75it/s, train/loss=53.00] Epoch 0: | | 780/? [04:43<00:00, 2.75it/s, train/loss=22.80] Epoch 0: | | 781/? [04:44<00:00, 2.75it/s, train/loss=22.80] Epoch 0: | | 781/? [04:44<00:00, 2.75it/s, train/loss=22.60] Epoch 0: | | 782/? [04:44<00:00, 2.75it/s, train/loss=22.60] Epoch 0: | | 782/? [04:44<00:00, 2.75it/s, train/loss=12.40] Epoch 0: | | 783/? [04:44<00:00, 2.75it/s, train/loss=12.40] Epoch 0: | | 783/? [04:44<00:00, 2.75it/s, train/loss=27.50] Epoch 0: | | 784/? [04:45<00:00, 2.75it/s, train/loss=27.50] Epoch 0: | | 784/? [04:45<00:00, 2.75it/s, train/loss=32.30] Epoch 0: | | 785/? [04:45<00:00, 2.75it/s, train/loss=32.30] Epoch 0: | | 785/? [04:45<00:00, 2.75it/s, train/loss=36.80] Epoch 0: | | 786/? [04:45<00:00, 2.75it/s, train/loss=36.80] Epoch 0: | | 786/? [04:45<00:00, 2.75it/s, train/loss=21.70] Epoch 0: | | 787/? [04:46<00:00, 2.75it/s, train/loss=21.70] Epoch 0: | | 787/? [04:46<00:00, 2.75it/s, train/loss=38.40] Epoch 0: | | 788/? [04:46<00:00, 2.75it/s, train/loss=38.40] Epoch 0: | | 788/? [04:46<00:00, 2.75it/s, train/loss=37.90] Epoch 0: | | 789/? [04:46<00:00, 2.75it/s, train/loss=37.90] Epoch 0: | | 789/? [04:46<00:00, 2.75it/s, train/loss=36.00] Epoch 0: | | 790/? [04:47<00:00, 2.75it/s, train/loss=36.00] Epoch 0: | | 790/? [04:47<00:00, 2.75it/s, train/loss=20.20] Epoch 0: | | 791/? [04:47<00:00, 2.75it/s, train/loss=20.20] Epoch 0: | | 791/? [04:47<00:00, 2.75it/s, train/loss=21.00] Epoch 0: | | 792/? [04:47<00:00, 2.75it/s, train/loss=21.00] Epoch 0: | | 792/? [04:47<00:00, 2.75it/s, train/loss=18.70] Epoch 0: | | 793/? [04:48<00:00, 2.75it/s, train/loss=18.70] Epoch 0: | | 793/? [04:48<00:00, 2.75it/s, train/loss=48.10] Epoch 0: | | 794/? [04:48<00:00, 2.75it/s, train/loss=48.10] Epoch 0: | | 794/? [04:48<00:00, 2.75it/s, train/loss=8.580] Epoch 0: | | 795/? [04:48<00:00, 2.75it/s, train/loss=8.580] Epoch 0: | | 795/? [04:48<00:00, 2.75it/s, train/loss=20.30] Epoch 0: | | 796/? [04:49<00:00, 2.75it/s, train/loss=20.30] Epoch 0: | | 796/? [04:49<00:00, 2.75it/s, train/loss=17.20] Epoch 0: | | 797/? [04:49<00:00, 2.75it/s, train/loss=17.20] Epoch 0: | | 797/? [04:49<00:00, 2.75it/s, train/loss=21.70] Epoch 0: | | 798/? [04:49<00:00, 2.75it/s, train/loss=21.70] Epoch 0: | | 798/? [04:49<00:00, 2.75it/s, train/loss=30.10] Epoch 0: | | 799/? [04:50<00:00, 2.76it/s, train/loss=30.10] Epoch 0: | | 799/? [04:50<00:00, 2.76it/s, train/loss=13.00] Epoch 0: | | 800/? [04:50<00:00, 2.76it/s, train/loss=13.00] Epoch 0: | | 800/? [04:50<00:00, 2.76it/s, train/loss=6.670] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:03, 10.50it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:03, 11.18it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:03, 11.06it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:03, 11.04it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 11.05it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 11.10it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:02, 11.15it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:02, 11.26it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:02, 11.39it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:00<00:02, 11.49it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:00<00:02, 11.50it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:02, 11.49it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 11.51it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 11.50it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 11.17it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 10.94it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 10.99it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:01, 11.04it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:01<00:01, 11.08it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:01<00:01, 11.10it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:01<00:01, 11.11it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:01<00:01, 11.16it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 11.18it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 11.23it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 11.25it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 11.27it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 11.14it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:02<00:01, 11.16it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:02<00:00, 11.20it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:02<00:00, 11.25it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:02<00:00, 11.29it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:02<00:00, 11.33it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:02<00:00, 11.35it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:02<00:00, 11.36it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 11.38it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 11.38it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 11.38it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:03<00:00, 11.34it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:03<00:00, 11.34it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:03<00:00, 11.35it/s] Epoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670] `Trainer.fit` stopped: `max_steps=800` reached. Epoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670] Epoch 0: | | 800/? [04:58<00:00, 2.68it/s, train/loss=6.670] [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'test_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Testing: | | 0/? [00:00<?, ?it/s] Testing: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 1%| | 1/120 [00:00<00:10, 11.05it/s] Testing DataLoader 0: 2%|▏ | 2/120 [00:00<00:10, 11.31it/s] Testing DataLoader 0: 2%|▎ | 3/120 [00:00<00:10, 11.59it/s] Testing DataLoader 0: 3%|▎ | 4/120 [00:00<00:09, 11.62it/s] Testing DataLoader 0: 4%|▍ | 5/120 [00:00<00:09, 11.56it/s] Testing DataLoader 0: 5%|▌ | 6/120 [00:00<00:09, 11.51it/s] Testing DataLoader 0: 6%|▌ | 7/120 [00:00<00:09, 11.41it/s] Testing DataLoader 0: 7%|▋ | 8/120 [00:00<00:09, 11.42it/s] Testing DataLoader 0: 8%|▊ | 9/120 [00:00<00:09, 11.42it/s] Testing DataLoader 0: 8%|▊ | 10/120 [00:00<00:09, 11.45it/s] Testing DataLoader 0: 9%|▉ | 11/120 [00:00<00:09, 11.50it/s] Testing DataLoader 0: 10%|█ | 12/120 [00:01<00:09, 11.55it/s] Testing DataLoader 0: 11%|█ | 13/120 [00:01<00:09, 11.56it/s] Testing DataLoader 0: 12%|█▏ | 14/120 [00:01<00:09, 11.60it/s] Testing DataLoader 0: 12%|█▎ | 15/120 [00:01<00:09, 11.64it/s] Testing DataLoader 0: 13%|█▎ | 16/120 [00:01<00:08, 11.63it/s] Testing DataLoader 0: 14%|█▍ | 17/120 [00:01<00:08, 11.67it/s] Testing DataLoader 0: 15%|█▌ | 18/120 [00:01<00:08, 11.70it/s] Testing DataLoader 0: 16%|█▌ | 19/120 [00:01<00:08, 11.70it/s] Testing DataLoader 0: 17%|█▋ | 20/120 [00:01<00:08, 11.67it/s] Testing DataLoader 0: 18%|█▊ | 21/120 [00:01<00:08, 11.70it/s] Testing DataLoader 0: 18%|█▊ | 22/120 [00:01<00:08, 11.72it/s] Testing DataLoader 0: 19%|█▉ | 23/120 [00:01<00:08, 11.51it/s] Testing DataLoader 0: 20%|██ | 24/120 [00:02<00:08, 11.34it/s] Testing DataLoader 0: 21%|██ | 25/120 [00:02<00:08, 11.19it/s] Testing DataLoader 0: 22%|██▏ | 26/120 [00:02<00:08, 11.21it/s] Testing DataLoader 0: 22%|██▎ | 27/120 [00:02<00:08, 11.23it/s] Testing DataLoader 0: 23%|██▎ | 28/120 [00:02<00:08, 11.23it/s] Testing DataLoader 0: 24%|██▍ | 29/120 [00:02<00:08, 11.26it/s] Testing DataLoader 0: 25%|██▌ | 30/120 [00:02<00:07, 11.29it/s] Testing DataLoader 0: 26%|██▌ | 31/120 [00:02<00:07, 11.30it/s] Testing DataLoader 0: 27%|██▋ | 32/120 [00:02<00:07, 11.32it/s] Testing DataLoader 0: 28%|██▊ | 33/120 [00:02<00:07, 11.33it/s] Testing DataLoader 0: 28%|██▊ | 34/120 [00:02<00:07, 11.36it/s] Testing DataLoader 0: 29%|██▉ | 35/120 [00:03<00:07, 11.37it/s] Testing DataLoader 0: 30%|███ | 36/120 [00:03<00:07, 11.38it/s] Testing DataLoader 0: 31%|███ | 37/120 [00:03<00:07, 11.41it/s] Testing DataLoader 0: 32%|███▏ | 38/120 [00:03<00:07, 11.43it/s] Testing DataLoader 0: 32%|███▎ | 39/120 [00:03<00:07, 11.45it/s] Testing DataLoader 0: 33%|███▎ | 40/120 [00:03<00:06, 11.46it/s] Testing DataLoader 0: 34%|███▍ | 41/120 [00:03<00:06, 11.47it/s] Testing DataLoader 0: 35%|███▌ | 42/120 [00:03<00:06, 11.49it/s] Testing DataLoader 0: 36%|███▌ | 43/120 [00:03<00:06, 11.51it/s] Testing DataLoader 0: 37%|███▋ | 44/120 [00:03<00:06, 11.52it/s] Testing DataLoader 0: 38%|███▊ | 45/120 [00:03<00:06, 11.50it/s] Testing DataLoader 0: 38%|███▊ | 46/120 [00:04<00:06, 11.50it/s] Testing DataLoader 0: 39%|███▉ | 47/120 [00:04<00:06, 11.50it/s] Testing DataLoader 0: 40%|████ | 48/120 [00:04<00:06, 11.51it/s] Testing DataLoader 0: 41%|████ | 49/120 [00:04<00:06, 11.51it/s] Testing DataLoader 0: 42%|████▏ | 50/120 [00:04<00:06, 11.51it/s] Testing DataLoader 0: 42%|████▎ | 51/120 [00:04<00:05, 11.52it/s] Testing DataLoader 0: 43%|████▎ | 52/120 [00:04<00:05, 11.43it/s] Testing DataLoader 0: 44%|████▍ | 53/120 [00:04<00:05, 11.40it/s] Testing DataLoader 0: 45%|████▌ | 54/120 [00:04<00:05, 11.41it/s] Testing DataLoader 0: 46%|████▌ | 55/120 [00:04<00:05, 11.42it/s] Testing DataLoader 0: 47%|████▋ | 56/120 [00:04<00:05, 11.44it/s] Testing DataLoader 0: 48%|████▊ | 57/120 [00:04<00:05, 11.44it/s] Testing DataLoader 0: 48%|████▊ | 58/120 [00:05<00:05, 11.44it/s] Testing DataLoader 0: 49%|████▉ | 59/120 [00:05<00:05, 11.44it/s] Testing DataLoader 0: 50%|█████ | 60/120 [00:05<00:05, 11.44it/s] Testing DataLoader 0: 51%|█████ | 61/120 [00:05<00:05, 11.45it/s] Testing DataLoader 0: 52%|█████▏ | 62/120 [00:05<00:05, 11.46it/s] Testing DataLoader 0: 52%|█████▎ | 63/120 [00:05<00:04, 11.47it/s] Testing DataLoader 0: 53%|█████▎ | 64/120 [00:05<00:04, 11.48it/s] Testing DataLoader 0: 54%|█████▍ | 65/120 [00:05<00:04, 11.49it/s] Testing DataLoader 0: 55%|█████▌ | 66/120 [00:05<00:04, 11.49it/s] Testing DataLoader 0: 56%|█████▌ | 67/120 [00:05<00:04, 11.49it/s] Testing DataLoader 0: 57%|█████▋ | 68/120 [00:05<00:04, 11.49it/s] Testing DataLoader 0: 57%|█████▊ | 69/120 [00:06<00:04, 11.46it/s] Testing DataLoader 0: 58%|█████▊ | 70/120 [00:06<00:04, 11.46it/s] Testing DataLoader 0: 59%|█████▉ | 71/120 [00:06<00:04, 11.47it/s] Testing DataLoader 0: 60%|██████ | 72/120 [00:06<00:04, 11.47it/s] Testing DataLoader 0: 61%|██████ | 73/120 [00:06<00:04, 11.48it/s] Testing DataLoader 0: 62%|██████▏ | 74/120 [00:06<00:04, 11.48it/s] Testing DataLoader 0: 62%|██████▎ | 75/120 [00:06<00:03, 11.49it/s] Testing DataLoader 0: 63%|██████▎ | 76/120 [00:06<00:03, 11.50it/s] Testing DataLoader 0: 64%|██████▍ | 77/120 [00:06<00:03, 11.50it/s] Testing DataLoader 0: 65%|██████▌ | 78/120 [00:06<00:03, 11.50it/s] Testing DataLoader 0: 66%|██████▌ | 79/120 [00:06<00:03, 11.50it/s] Testing DataLoader 0: 67%|██████▋ | 80/120 [00:06<00:03, 11.51it/s] Testing DataLoader 0: 68%|██████▊ | 81/120 [00:07<00:03, 11.51it/s] Testing DataLoader 0: 68%|██████▊ | 82/120 [00:07<00:03, 11.52it/s] Testing DataLoader 0: 69%|██████▉ | 83/120 [00:07<00:03, 11.53it/s] Testing DataLoader 0: 70%|███████ | 84/120 [00:07<00:03, 11.53it/s] Testing DataLoader 0: 71%|███████ | 85/120 [00:07<00:03, 11.54it/s] Testing DataLoader 0: 72%|███████▏ | 86/120 [00:07<00:02, 11.54it/s] Testing DataLoader 0: 72%|███████▎ | 87/120 [00:07<00:02, 11.54it/s] Testing DataLoader 0: 73%|███████▎ | 88/120 [00:07<00:02, 11.55it/s] Testing DataLoader 0: 74%|███████▍ | 89/120 [00:07<00:02, 11.56it/s] Testing DataLoader 0: 75%|███████▌ | 90/120 [00:07<00:02, 11.56it/s] Testing DataLoader 0: 76%|███████▌ | 91/120 [00:07<00:02, 11.57it/s] Testing DataLoader 0: 77%|███████▋ | 92/120 [00:07<00:02, 11.58it/s] Testing DataLoader 0: 78%|███████▊ | 93/120 [00:08<00:02, 11.59it/s] Testing DataLoader 0: 78%|███████▊ | 94/120 [00:08<00:02, 11.60it/s] Testing DataLoader 0: 79%|███████▉ | 95/120 [00:08<00:02, 11.61it/s] Testing DataLoader 0: 80%|████████ | 96/120 [00:08<00:02, 11.61it/s] Testing DataLoader 0: 81%|████████ | 97/120 [00:08<00:01, 11.61it/s] Testing DataLoader 0: 82%|████████▏ | 98/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 82%|████████▎ | 99/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 83%|████████▎ | 100/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 84%|████████▍ | 101/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 85%|████████▌ | 102/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 86%|████████▌ | 103/120 [00:08<00:01, 11.61it/s] Testing DataLoader 0: 87%|████████▋ | 104/120 [00:08<00:01, 11.62it/s] Testing DataLoader 0: 88%|████████▊ | 105/120 [00:09<00:01, 11.62it/s] Testing DataLoader 0: 88%|████████▊ | 106/120 [00:09<00:01, 11.61it/s] Testing DataLoader 0: 89%|████████▉ | 107/120 [00:09<00:01, 11.61it/s] Testing DataLoader 0: 90%|█████████ | 108/120 [00:09<00:01, 11.61it/s] Testing DataLoader 0: 91%|█████████ | 109/120 [00:09<00:00, 11.61it/s] Testing DataLoader 0: 92%|█████████▏| 110/120 [00:09<00:00, 11.59it/s] Testing DataLoader 0: 92%|█████████▎| 111/120 [00:09<00:00, 11.59it/s] Testing DataLoader 0: 93%|█████████▎| 112/120 [00:09<00:00, 11.59it/s] Testing DataLoader 0: 94%|█████████▍| 113/120 [00:09<00:00, 11.57it/s] Testing DataLoader 0: 95%|█████████▌| 114/120 [00:09<00:00, 11.57it/s] Testing DataLoader 0: 96%|█████████▌| 115/120 [00:09<00:00, 11.58it/s] Testing DataLoader 0: 97%|█████████▋| 116/120 [00:10<00:00, 11.58it/s] Testing DataLoader 0: 98%|█████████▊| 117/120 [00:10<00:00, 11.58it/s] Testing DataLoader 0: 98%|█████████▊| 118/120 [00:10<00:00, 11.58it/s] Testing DataLoader 0: 99%|█████████▉| 119/120 [00:10<00:00, 11.58it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:10<00:00, 11.59it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:18<00:00, 6.56it/s] Test results saved to outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/save Running step 4: texture refinement {'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}, 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'data_type': 'dreamcraft3d-single-image-datamodule', 'description': '', 'exp_dir': 'outputs/dreamcraft3d-texture', 'exp_root_dir': 'outputs', 'n_gpus': 1, 'name': 'dreamcraft3d-texture', 'resume': None, 'seed': 0, 'system': {'stage': 'texture', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True, 'isosurface_remove_outliers': True, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378}, 'fix_geometry': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'dreamcraft3d-mask-nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'stable-diffusion-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'prompt': 'A green leafy plant in a striped terracotta pot', 'front_threshold': 30.0, 'back_threshold': 30.0}, 'guidance_type': 'dreamcraft3d-stable-diffusion-bsd-lora-guidance', 'guidance': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'pretrained_model_name_or_path_lora': 'stabilityai/stable-diffusion-2-1-base', 'guidance_scale': 5.0, 'min_step_percent': 0.05, 'max_step_percent': 0.3, 'only_pretrain_step': 10, 'per_update_pretrain_step': 10}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': -1, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_vsd': 0.1, 'lambda_lora': 0.1, 'lambda_pretrain': 0.1, 'lambda_3d_sds': 0.01, 'lambda_rgb': 1000.0, 'lambda_mask': 0.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_z_variance': 0.0, 'lambda_reg': 0.0}, 'optimizer': {'name': 'AdamW', 'args': {'betas': [0.9, 0.99], 'eps': 0.0001}, 'params': {'geometry.encoding': {'lr': 0.005}, 'geometry.feature_network': {'lr': 0.001}, 'guidance': {'lr': 0.0001}}}, 'geometry_convert_from': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/ckpts/last.ckpt'}, 'system_type': 'dreamcraft3d-system', 'tag': 'replicate_user', 'timestamp': '@20240222-135357', 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32, 'gradient_clip_val': 1.0}, 'trial_dir': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357', 'trial_name': 'replicate_user@20240222-135357', 'use_timestamp': True} Initializing geometry from a given checkpoint ... Loading Stable Diffusion ... Loading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s] Loading pipeline components...: 25%|██▌ | 1/4 [00:00<00:01, 1.81it/s] Loading pipeline components...: 50%|█████ | 2/4 [00:00<00:00, 3.48it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:03<00:00, 1.11it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:03<00:00, 1.26it/s] Loading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s] Loading pipeline components...: 25%|██▌ | 1/4 [00:00<00:01, 1.83it/s] Loading pipeline components...: 50%|█████ | 2/4 [00:00<00:00, 3.52it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 4.19it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 3.73it/s] Loaded Stable Diffusion! Loading Stable Zero123 ... get obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion LatentDiffusion: Running in eps-prediction mode DiffusionWrapper has 859.53 M params. Keeping EMAs of 688. making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels Loaded Stable Zero123! Using prompt [A green leafy plant in a striped terracotta pot] and negative prompt [] Using view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_5m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_5m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_11m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_11m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_224 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_224. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_384 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_384. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/controlnet_aux/segment_anything/modeling/tiny_vit_sam.py:654: UserWarning: Overwriting tiny_vit_21m_512 in registry with controlnet_aux.segment_anything.modeling.tiny_vit_sam.tiny_vit_21m_512. This is because the name being registered conflicts with an existing name. Please check if this is not expected. return register_model(fn_wrapper) tokenizer/tokenizer_config.json: 0%| | 0.00/807 [00:00<?, ?B/s] tokenizer/tokenizer_config.json: 100%|██████████| 807/807 [00:00<00:00, 5.66MB/s] tokenizer/vocab.json: 0%| | 0.00/1.06M [00:00<?, ?B/s] tokenizer/vocab.json: 100%|██████████| 1.06M/1.06M [00:00<00:00, 3.06MB/s] tokenizer/vocab.json: 100%|██████████| 1.06M/1.06M [00:00<00:00, 3.06MB/s] tokenizer/merges.txt: 0%| | 0.00/525k [00:00<?, ?B/s] tokenizer/merges.txt: 100%|██████████| 525k/525k [00:00<00:00, 21.7MB/s] tokenizer/special_tokens_map.json: 0%| | 0.00/460 [00:00<?, ?B/s] tokenizer/special_tokens_map.json: 100%|██████████| 460/460 [00:00<00:00, 2.77MB/s] loaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params ---------------------------------------------------------- 0 | geometry | TetrahedraSDFGrid | 12.6 M 1 | material | NoMaterial | 0 2 | background | SolidColorBackground | 0 3 | renderer | NVDiffRasterizer | 0 4 | guidance | StableDiffusionBSDGuidance | 870 M ---------------------------------------------------------- 882 M Trainable params 0 Non-trainable params 882 M Total params 3,530.663 Total estimated model params size (MB) Validation results will be saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save Training: | | 0/? [00:00<?, ?it/s] Training: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 0/? [00:00<?, ?it/s] Epoch 0: | | 1/? [00:01<00:00, 0.61it/s] Epoch 0: | | 1/? [00:01<00:00, 0.60it/s, train/loss=1.330] Epoch 0: | | 2/? [00:01<00:00, 1.03it/s, train/loss=1.330] Epoch 0: | | 2/? [00:02<00:00, 1.00it/s, train/loss=1.800] Epoch 0: | | 3/? [00:02<00:00, 1.46it/s, train/loss=1.800] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/diffusers/models/attention_processor.py:1746: FutureWarning: `LoRAAttnProcessor` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights` deprecate( Epoch 0: | | 3/? [00:02<00:00, 1.46it/s, train/loss=20.90] Epoch 0: | | 4/? [00:02<00:00, 1.62it/s, train/loss=20.90] Epoch 0: | | 4/? [00:02<00:00, 1.62it/s, train/loss=2.410] Epoch 0: | | 5/? [00:02<00:00, 1.97it/s, train/loss=2.410] Epoch 0: | | 5/? [00:02<00:00, 1.97it/s, train/loss=20.40] Epoch 0: | | 6/? [00:02<00:00, 2.06it/s, train/loss=20.40] Epoch 0: | | 6/? [00:02<00:00, 2.05it/s, train/loss=3.250] Epoch 0: | | 7/? [00:02<00:00, 2.35it/s, train/loss=3.250] Epoch 0: | | 7/? [00:02<00:00, 2.35it/s, train/loss=19.90] Epoch 0: | | 8/? [00:03<00:00, 2.38it/s, train/loss=19.90] Epoch 0: | | 8/? [00:03<00:00, 2.38it/s, train/loss=2.610] Epoch 0: | | 9/? [00:03<00:00, 2.63it/s, train/loss=2.610] Epoch 0: | | 9/? [00:03<00:00, 2.63it/s, train/loss=19.50] Epoch 0: | | 10/? [00:03<00:00, 2.63it/s, train/loss=19.50] Epoch 0: | | 10/? [00:03<00:00, 2.63it/s, train/loss=0.927] Epoch 0: | | 11/? [00:04<00:00, 2.34it/s, train/loss=0.927] Epoch 0: | | 11/? [00:04<00:00, 2.31it/s, train/loss=3.080] Epoch 0: | | 12/? [00:05<00:00, 2.38it/s, train/loss=3.080] Epoch 0: | | 12/? [00:05<00:00, 2.36it/s, train/loss=3.780] Epoch 0: | | 13/? [00:05<00:00, 2.52it/s, train/loss=3.780] Epoch 0: | | 13/? [00:05<00:00, 2.52it/s, train/loss=18.80] Epoch 0: | | 14/? [00:05<00:00, 2.53it/s, train/loss=18.80] Epoch 0: | | 14/? [00:05<00:00, 2.53it/s, train/loss=1.730] Epoch 0: | | 15/? [00:05<00:00, 2.68it/s, train/loss=1.730] Epoch 0: | | 15/? [00:05<00:00, 2.68it/s, train/loss=18.60] Epoch 0: | | 16/? [00:05<00:00, 2.68it/s, train/loss=18.60] Epoch 0: | | 16/? [00:05<00:00, 2.68it/s, train/loss=1.910] Epoch 0: | | 17/? [00:06<00:00, 2.82it/s, train/loss=1.910] Epoch 0: | | 17/? [00:06<00:00, 2.82it/s, train/loss=18.30] Epoch 0: | | 18/? [00:06<00:00, 2.80it/s, train/loss=18.30] Epoch 0: | | 18/? [00:06<00:00, 2.80it/s, train/loss=0.785] Epoch 0: | | 19/? [00:06<00:00, 2.93it/s, train/loss=0.785] Epoch 0: | | 19/? [00:06<00:00, 2.93it/s, train/loss=18.00] Epoch 0: | | 20/? [00:06<00:00, 2.91it/s, train/loss=18.00] Epoch 0: | | 20/? [00:06<00:00, 2.91it/s, train/loss=1.770] Epoch 0: | | 21/? [00:07<00:00, 2.71it/s, train/loss=1.770] Epoch 0: | | 21/? [00:07<00:00, 2.69it/s, train/loss=1.730] Epoch 0: | | 22/? [00:08<00:00, 2.72it/s, train/loss=1.730] Epoch 0: | | 22/? [00:08<00:00, 2.70it/s, train/loss=3.860] Epoch 0: | | 23/? [00:08<00:00, 2.80it/s, train/loss=3.860] Epoch 0: | | 23/? [00:08<00:00, 2.80it/s, train/loss=17.50] Epoch 0: | | 24/? [00:08<00:00, 2.79it/s, train/loss=17.50] Epoch 0: | | 24/? [00:08<00:00, 2.79it/s, train/loss=2.070] Epoch 0: | | 25/? [00:08<00:00, 2.89it/s, train/loss=2.070] Epoch 0: | | 25/? [00:08<00:00, 2.89it/s, train/loss=17.30] Epoch 0: | | 26/? [00:09<00:00, 2.88it/s, train/loss=17.30] Epoch 0: | | 26/? [00:09<00:00, 2.88it/s, train/loss=1.730] Epoch 0: | | 27/? [00:09<00:00, 2.97it/s, train/loss=1.730] Epoch 0: | | 27/? [00:09<00:00, 2.97it/s, train/loss=17.00] Epoch 0: | | 28/? [00:09<00:00, 2.96it/s, train/loss=17.00] Epoch 0: | | 28/? [00:09<00:00, 2.96it/s, train/loss=2.510] Epoch 0: | | 29/? [00:09<00:00, 3.05it/s, train/loss=2.510] Epoch 0: | | 29/? [00:09<00:00, 3.05it/s, train/loss=16.80] Epoch 0: | | 30/? [00:09<00:00, 3.03it/s, train/loss=16.80] Epoch 0: | | 30/? [00:09<00:00, 3.03it/s, train/loss=3.290] Epoch 0: | | 31/? [00:10<00:00, 2.87it/s, train/loss=3.290] Epoch 0: | | 31/? [00:10<00:00, 2.86it/s, train/loss=2.080] Epoch 0: | | 32/? [00:11<00:00, 2.88it/s, train/loss=2.080] Epoch 0: | | 32/? [00:11<00:00, 2.86it/s, train/loss=0.979] Epoch 0: | | 33/? [00:11<00:00, 2.94it/s, train/loss=0.979] Epoch 0: | | 33/? [00:11<00:00, 2.94it/s, train/loss=16.30] Epoch 0: | | 34/? [00:11<00:00, 2.93it/s, train/loss=16.30] Epoch 0: | | 34/? [00:11<00:00, 2.93it/s, train/loss=1.400] Epoch 0: | | 35/? [00:11<00:00, 3.00it/s, train/loss=1.400] Epoch 0: | | 35/? [00:11<00:00, 3.00it/s, train/loss=16.10] Epoch 0: | | 36/? [00:12<00:00, 2.99it/s, train/loss=16.10] Epoch 0: | | 36/? [00:12<00:00, 2.99it/s, train/loss=2.130] Epoch 0: | | 37/? [00:12<00:00, 3.06it/s, train/loss=2.130] Epoch 0: | | 37/? [00:12<00:00, 3.05it/s, train/loss=15.80] Epoch 0: | | 38/? [00:12<00:00, 3.04it/s, train/loss=15.80] Epoch 0: | | 38/? [00:12<00:00, 3.04it/s, train/loss=2.690] Epoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=2.690] Epoch 0: | | 39/? [00:12<00:00, 3.11it/s, train/loss=15.60] Epoch 0: | | 40/? [00:12<00:00, 3.09it/s, train/loss=15.60] Epoch 0: | | 40/? [00:12<00:00, 3.09it/s, train/loss=0.976] Epoch 0: | | 41/? [00:13<00:00, 2.97it/s, train/loss=0.976] Epoch 0: | | 41/? [00:13<00:00, 2.95it/s, train/loss=1.850] Epoch 0: | | 42/? [00:14<00:00, 2.97it/s, train/loss=1.850] Epoch 0: | | 42/? [00:14<00:00, 2.95it/s, train/loss=0.784] Epoch 0: | | 43/? [00:14<00:00, 3.01it/s, train/loss=0.784] Epoch 0: | | 43/? [00:14<00:00, 3.01it/s, train/loss=15.20] Epoch 0: | | 44/? [00:14<00:00, 3.00it/s, train/loss=15.20] Epoch 0: | | 44/? [00:14<00:00, 3.00it/s, train/loss=1.540] Epoch 0: | | 45/? [00:14<00:00, 3.06it/s, train/loss=1.540] Epoch 0: | | 45/? [00:14<00:00, 3.06it/s, train/loss=15.00] Epoch 0: | | 46/? [00:15<00:00, 3.04it/s, train/loss=15.00] Epoch 0: | | 46/? [00:15<00:00, 3.04it/s, train/loss=1.380] Epoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=1.380] Epoch 0: | | 47/? [00:15<00:00, 3.10it/s, train/loss=14.80] Epoch 0: | | 48/? [00:15<00:00, 3.09it/s, train/loss=14.80] Epoch 0: | | 48/? [00:15<00:00, 3.09it/s, train/loss=2.230] Epoch 0: | | 49/? [00:15<00:00, 3.14it/s, train/loss=2.230] Epoch 0: | | 49/? [00:15<00:00, 3.14it/s, train/loss=14.50] Epoch 0: | | 50/? [00:15<00:00, 3.13it/s, train/loss=14.50] Epoch 0: | | 50/? [00:15<00:00, 3.13it/s, train/loss=3.040] Epoch 0: | | 51/? [00:16<00:00, 3.02it/s, train/loss=3.040] Epoch 0: | | 51/? [00:16<00:00, 3.01it/s, train/loss=0.739] Epoch 0: | | 52/? [00:17<00:00, 3.02it/s, train/loss=0.739] Epoch 0: | | 52/? [00:17<00:00, 3.01it/s, train/loss=3.670] Epoch 0: | | 53/? [00:17<00:00, 3.06it/s, train/loss=3.670] Epoch 0: | | 53/? [00:17<00:00, 3.06it/s, train/loss=14.20] Epoch 0: | | 54/? [00:17<00:00, 3.05it/s, train/loss=14.20] Epoch 0: | | 54/? [00:17<00:00, 3.05it/s, train/loss=1.620] Epoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=1.620] Epoch 0: | | 55/? [00:17<00:00, 3.10it/s, train/loss=14.00] Epoch 0: | | 56/? [00:18<00:00, 3.08it/s, train/loss=14.00] Epoch 0: | | 56/? [00:18<00:00, 3.08it/s, train/loss=2.510] Epoch 0: | | 57/? [00:18<00:00, 3.13it/s, train/loss=2.510] Epoch 0: | | 57/? [00:18<00:00, 3.13it/s, train/loss=13.80] Epoch 0: | | 58/? [00:18<00:00, 3.12it/s, train/loss=13.80] Epoch 0: | | 58/? [00:18<00:00, 3.12it/s, train/loss=3.540] Epoch 0: | | 59/? [00:18<00:00, 3.16it/s, train/loss=3.540] Epoch 0: | | 59/? [00:18<00:00, 3.16it/s, train/loss=13.60] Epoch 0: | | 60/? [00:19<00:00, 3.15it/s, train/loss=13.60] Epoch 0: | | 60/? [00:19<00:00, 3.15it/s, train/loss=3.700] Epoch 0: | | 61/? [00:19<00:00, 3.06it/s, train/loss=3.700] Epoch 0: | | 61/? [00:19<00:00, 3.05it/s, train/loss=0.619] Epoch 0: | | 62/? [00:20<00:00, 3.06it/s, train/loss=0.619] Epoch 0: | | 62/? [00:20<00:00, 3.05it/s, train/loss=2.010] Epoch 0: | | 63/? [00:20<00:00, 3.09it/s, train/loss=2.010] Epoch 0: | | 63/? [00:20<00:00, 3.09it/s, train/loss=13.30] Epoch 0: | | 64/? [00:20<00:00, 3.08it/s, train/loss=13.30] Epoch 0: | | 64/? [00:20<00:00, 3.08it/s, train/loss=1.010] Epoch 0: | | 65/? [00:20<00:00, 3.12it/s, train/loss=1.010] Epoch 0: | | 65/? [00:20<00:00, 3.12it/s, train/loss=13.10] Epoch 0: | | 66/? [00:21<00:00, 3.11it/s, train/loss=13.10] Epoch 0: | | 66/? [00:21<00:00, 3.11it/s, train/loss=3.870] Epoch 0: | | 67/? [00:21<00:00, 3.15it/s, train/loss=3.870] Epoch 0: | | 67/? [00:21<00:00, 3.15it/s, train/loss=12.90] Epoch 0: | | 68/? [00:21<00:00, 3.14it/s, train/loss=12.90] Epoch 0: | | 68/? [00:21<00:00, 3.14it/s, train/loss=2.660] Epoch 0: | | 69/? [00:21<00:00, 3.17it/s, train/loss=2.660] Epoch 0: | | 69/? [00:21<00:00, 3.17it/s, train/loss=12.70] Epoch 0: | | 70/? [00:22<00:00, 3.16it/s, train/loss=12.70] Epoch 0: | | 70/? [00:22<00:00, 3.16it/s, train/loss=3.440] Epoch 0: | | 71/? [00:23<00:00, 3.09it/s, train/loss=3.440] Epoch 0: | | 71/? [00:23<00:00, 3.08it/s, train/loss=0.751] Epoch 0: | | 72/? [00:23<00:00, 3.09it/s, train/loss=0.751] Epoch 0: | | 72/? [00:23<00:00, 3.08it/s, train/loss=2.930] Epoch 0: | | 73/? [00:23<00:00, 3.11it/s, train/loss=2.930] Epoch 0: | | 73/? [00:23<00:00, 3.11it/s, train/loss=12.40] Epoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=12.40] Epoch 0: | | 74/? [00:23<00:00, 3.10it/s, train/loss=2.180] Epoch 0: | | 75/? [00:23<00:00, 3.14it/s, train/loss=2.180] Epoch 0: | | 75/? [00:23<00:00, 3.14it/s, train/loss=12.20] Epoch 0: | | 76/? [00:24<00:00, 3.13it/s, train/loss=12.20] Epoch 0: | | 76/? [00:24<00:00, 3.13it/s, train/loss=2.370] Epoch 0: | | 77/? [00:24<00:00, 3.17it/s, train/loss=2.370] Epoch 0: | | 77/? [00:24<00:00, 3.17it/s, train/loss=12.00] Epoch 0: | | 78/? [00:24<00:00, 3.16it/s, train/loss=12.00] Epoch 0: | | 78/? [00:24<00:00, 3.16it/s, train/loss=2.250] Epoch 0: | | 79/? [00:24<00:00, 3.19it/s, train/loss=2.250] Epoch 0: | | 79/? [00:24<00:00, 3.19it/s, train/loss=11.80] Epoch 0: | | 80/? [00:25<00:00, 3.18it/s, train/loss=11.80] Epoch 0: | | 80/? [00:25<00:00, 3.18it/s, train/loss=2.530] Epoch 0: | | 81/? [00:26<00:00, 3.11it/s, train/loss=2.530] Epoch 0: | | 81/? [00:26<00:00, 3.10it/s, train/loss=2.030] Epoch 0: | | 82/? [00:26<00:00, 3.11it/s, train/loss=2.030] Epoch 0: | | 82/? [00:26<00:00, 3.10it/s, train/loss=0.990] Epoch 0: | | 83/? [00:26<00:00, 3.14it/s, train/loss=0.990] Epoch 0: | | 83/? [00:26<00:00, 3.13it/s, train/loss=11.50] Epoch 0: | | 84/? [00:26<00:00, 3.13it/s, train/loss=11.50] Epoch 0: | | 84/? [00:26<00:00, 3.13it/s, train/loss=2.540] Epoch 0: | | 85/? [00:26<00:00, 3.16it/s, train/loss=2.540] Epoch 0: | | 85/? [00:26<00:00, 3.16it/s, train/loss=11.40] Epoch 0: | | 86/? [00:27<00:00, 3.15it/s, train/loss=11.40] Epoch 0: | | 86/? [00:27<00:00, 3.15it/s, train/loss=2.830] Epoch 0: | | 87/? [00:27<00:00, 3.18it/s, train/loss=2.830] Epoch 0: | | 87/? [00:27<00:00, 3.18it/s, train/loss=11.20] Epoch 0: | | 88/? [00:27<00:00, 3.17it/s, train/loss=11.20] Epoch 0: | | 88/? [00:27<00:00, 3.17it/s, train/loss=1.430] Epoch 0: | | 89/? [00:27<00:00, 3.20it/s, train/loss=1.430] Epoch 0: | | 89/? [00:27<00:00, 3.20it/s, train/loss=11.10] Epoch 0: | | 90/? [00:28<00:00, 3.19it/s, train/loss=11.10] Epoch 0: | | 90/? [00:28<00:00, 3.19it/s, train/loss=1.880] Epoch 0: | | 91/? [00:29<00:00, 3.13it/s, train/loss=1.880] Epoch 0: | | 91/? [00:29<00:00, 3.12it/s, train/loss=1.450] Epoch 0: | | 92/? [00:29<00:00, 3.13it/s, train/loss=1.450] Epoch 0: | | 92/? [00:29<00:00, 3.12it/s, train/loss=1.310] Epoch 0: | | 93/? [00:29<00:00, 3.15it/s, train/loss=1.310] Epoch 0: | | 93/? [00:29<00:00, 3.15it/s, train/loss=10.80] Epoch 0: | | 94/? [00:29<00:00, 3.14it/s, train/loss=10.80] Epoch 0: | | 94/? [00:29<00:00, 3.14it/s, train/loss=0.665] Epoch 0: | | 95/? [00:29<00:00, 3.17it/s, train/loss=0.665] Epoch 0: | | 95/? [00:29<00:00, 3.17it/s, train/loss=10.70] Epoch 0: | | 96/? [00:30<00:00, 3.16it/s, train/loss=10.70] Epoch 0: | | 96/? [00:30<00:00, 3.16it/s, train/loss=2.050] Epoch 0: | | 97/? [00:30<00:00, 3.19it/s, train/loss=2.050] Epoch 0: | | 97/? [00:30<00:00, 3.19it/s, train/loss=10.50] Epoch 0: | | 98/? [00:30<00:00, 3.18it/s, train/loss=10.50] Epoch 0: | | 98/? [00:30<00:00, 3.18it/s, train/loss=2.290] Epoch 0: | | 99/? [00:30<00:00, 3.21it/s, train/loss=2.290] Epoch 0: | | 99/? [00:30<00:00, 3.21it/s, train/loss=10.40] Epoch 0: | | 100/? [00:31<00:00, 3.20it/s, train/loss=10.40] Epoch 0: | | 100/? [00:31<00:00, 3.20it/s, train/loss=1.910] Epoch 0: | | 101/? [00:32<00:00, 3.15it/s, train/loss=1.910] Epoch 0: | | 101/? [00:32<00:00, 3.14it/s, train/loss=1.090] Epoch 0: | | 102/? [00:32<00:00, 3.15it/s, train/loss=1.090] Epoch 0: | | 102/? [00:32<00:00, 3.14it/s, train/loss=2.970] Epoch 0: | | 103/? [00:32<00:00, 3.17it/s, train/loss=2.970] Epoch 0: | | 103/? [00:32<00:00, 3.17it/s, train/loss=10.10] Epoch 0: | | 104/? [00:32<00:00, 3.16it/s, train/loss=10.10] Epoch 0: | | 104/? [00:32<00:00, 3.16it/s, train/loss=2.400] Epoch 0: | | 105/? [00:32<00:00, 3.18it/s, train/loss=2.400] Epoch 0: | | 105/? [00:32<00:00, 3.18it/s, train/loss=10.00] Epoch 0: | | 106/? [00:33<00:00, 3.18it/s, train/loss=10.00] Epoch 0: | | 106/? [00:33<00:00, 3.18it/s, train/loss=2.730] Epoch 0: | | 107/? [00:33<00:00, 3.20it/s, train/loss=2.730] Epoch 0: | | 107/? [00:33<00:00, 3.20it/s, train/loss=9.900] Epoch 0: | | 108/? [00:33<00:00, 3.20it/s, train/loss=9.900] Epoch 0: | | 108/? [00:33<00:00, 3.20it/s, train/loss=2.430] Epoch 0: | | 109/? [00:33<00:00, 3.22it/s, train/loss=2.430] Epoch 0: | | 109/? [00:33<00:00, 3.22it/s, train/loss=9.770] Epoch 0: | | 110/? [00:34<00:00, 3.21it/s, train/loss=9.770] Epoch 0: | | 110/? [00:34<00:00, 3.21it/s, train/loss=1.070] Epoch 0: | | 111/? [00:35<00:00, 3.16it/s, train/loss=1.070] Epoch 0: | | 111/? [00:35<00:00, 3.15it/s, train/loss=2.210] Epoch 0: | | 112/? [00:35<00:00, 3.16it/s, train/loss=2.210] Epoch 0: | | 112/? [00:35<00:00, 3.15it/s, train/loss=0.631] Epoch 0: | | 113/? [00:35<00:00, 3.18it/s, train/loss=0.631] Epoch 0: | | 113/? [00:35<00:00, 3.18it/s, train/loss=9.550] Epoch 0: | | 114/? [00:35<00:00, 3.17it/s, train/loss=9.550] Epoch 0: | | 114/? [00:35<00:00, 3.17it/s, train/loss=1.270] Epoch 0: | | 115/? [00:36<00:00, 3.19it/s, train/loss=1.270] Epoch 0: | | 115/? [00:36<00:00, 3.19it/s, train/loss=9.450] Epoch 0: | | 116/? [00:36<00:00, 3.19it/s, train/loss=9.450] Epoch 0: | | 116/? [00:36<00:00, 3.19it/s, train/loss=1.790] Epoch 0: | | 117/? [00:36<00:00, 3.21it/s, train/loss=1.790] Epoch 0: | | 117/? [00:36<00:00, 3.21it/s, train/loss=9.340] Epoch 0: | | 118/? [00:36<00:00, 3.20it/s, train/loss=9.340] Epoch 0: | | 118/? [00:36<00:00, 3.20it/s, train/loss=2.310] Epoch 0: | | 119/? [00:36<00:00, 3.23it/s, train/loss=2.310] Epoch 0: | | 119/? [00:36<00:00, 3.23it/s, train/loss=9.220] Epoch 0: | | 120/? [00:37<00:00, 3.22it/s, train/loss=9.220] Epoch 0: | | 120/? [00:37<00:00, 3.22it/s, train/loss=2.210] Epoch 0: | | 121/? [00:38<00:00, 3.17it/s, train/loss=2.210] Epoch 0: | | 121/? [00:38<00:00, 3.17it/s, train/loss=6.350] Epoch 0: | | 122/? [00:38<00:00, 3.17it/s, train/loss=6.350] Epoch 0: | | 122/? [00:38<00:00, 3.16it/s, train/loss=2.140] Epoch 0: | | 123/? [00:38<00:00, 3.19it/s, train/loss=2.140] Epoch 0: | | 123/? [00:38<00:00, 3.19it/s, train/loss=9.020] Epoch 0: | | 124/? [00:38<00:00, 3.18it/s, train/loss=9.020] Epoch 0: | | 124/? [00:38<00:00, 3.18it/s, train/loss=2.490] Epoch 0: | | 125/? [00:39<00:00, 3.20it/s, train/loss=2.490] Epoch 0: | | 125/? [00:39<00:00, 3.20it/s, train/loss=8.930] Epoch 0: | | 126/? [00:39<00:00, 3.20it/s, train/loss=8.930] Epoch 0: | | 126/? [00:39<00:00, 3.20it/s, train/loss=0.836] Epoch 0: | | 127/? [00:39<00:00, 3.22it/s, train/loss=0.836] Epoch 0: | | 127/? [00:39<00:00, 3.22it/s, train/loss=8.830] Epoch 0: | | 128/? [00:39<00:00, 3.21it/s, train/loss=8.830] Epoch 0: | | 128/? [00:39<00:00, 3.21it/s, train/loss=1.060] Epoch 0: | | 129/? [00:39<00:00, 3.23it/s, train/loss=1.060] Epoch 0: | | 129/? [00:39<00:00, 3.23it/s, train/loss=8.730] Epoch 0: | | 130/? [00:40<00:00, 3.23it/s, train/loss=8.730] Epoch 0: | | 130/? [00:40<00:00, 3.23it/s, train/loss=2.120] Epoch 0: | | 131/? [00:41<00:00, 3.18it/s, train/loss=2.120] Epoch 0: | | 131/? [00:41<00:00, 3.18it/s, train/loss=4.420] Epoch 0: | | 132/? [00:41<00:00, 3.18it/s, train/loss=4.420] Epoch 0: | | 132/? [00:41<00:00, 3.17it/s, train/loss=2.920] Epoch 0: | | 133/? [00:41<00:00, 3.19it/s, train/loss=2.920] Epoch 0: | | 133/? [00:41<00:00, 3.19it/s, train/loss=8.560] Epoch 0: | | 134/? [00:42<00:00, 3.19it/s, train/loss=8.560] Epoch 0: | | 134/? [00:42<00:00, 3.19it/s, train/loss=1.740] Epoch 0: | | 135/? [00:42<00:00, 3.21it/s, train/loss=1.740] Epoch 0: | | 135/? [00:42<00:00, 3.21it/s, train/loss=8.480] Epoch 0: | | 136/? [00:42<00:00, 3.20it/s, train/loss=8.480] Epoch 0: | | 136/? [00:42<00:00, 3.20it/s, train/loss=5.630] Epoch 0: | | 137/? [00:42<00:00, 3.22it/s, train/loss=5.630] Epoch 0: | | 137/? [00:42<00:00, 3.22it/s, train/loss=8.390] Epoch 0: | | 138/? [00:42<00:00, 3.22it/s, train/loss=8.390] Epoch 0: | | 138/? [00:42<00:00, 3.22it/s, train/loss=2.640] Epoch 0: | | 139/? [00:42<00:00, 3.24it/s, train/loss=2.640] Epoch 0: | | 139/? [00:42<00:00, 3.24it/s, train/loss=8.310] Epoch 0: | | 140/? [00:43<00:00, 3.23it/s, train/loss=8.310] Epoch 0: | | 140/? [00:43<00:00, 3.23it/s, train/loss=1.650] Epoch 0: | | 141/? [00:44<00:00, 3.19it/s, train/loss=1.650] Epoch 0: | | 141/? [00:44<00:00, 3.18it/s, train/loss=1.890] Epoch 0: | | 142/? [00:44<00:00, 3.19it/s, train/loss=1.890] Epoch 0: | | 142/? [00:44<00:00, 3.18it/s, train/loss=1.700] Epoch 0: | | 143/? [00:44<00:00, 3.20it/s, train/loss=1.700] Epoch 0: | | 143/? [00:44<00:00, 3.20it/s, train/loss=8.180] Epoch 0: | | 144/? [00:45<00:00, 3.20it/s, train/loss=8.180] Epoch 0: | | 144/? [00:45<00:00, 3.20it/s, train/loss=2.450] Epoch 0: | | 145/? [00:45<00:00, 3.21it/s, train/loss=2.450] Epoch 0: | | 145/? [00:45<00:00, 3.21it/s, train/loss=8.110] Epoch 0: | | 146/? [00:45<00:00, 3.21it/s, train/loss=8.110] Epoch 0: | | 146/? [00:45<00:00, 3.21it/s, train/loss=1.610] Epoch 0: | | 147/? [00:45<00:00, 3.22it/s, train/loss=1.610] Epoch 0: | | 147/? [00:45<00:00, 3.22it/s, train/loss=8.040] Epoch 0: | | 148/? [00:45<00:00, 3.22it/s, train/loss=8.040] Epoch 0: | | 148/? [00:45<00:00, 3.22it/s, train/loss=2.790] Epoch 0: | | 149/? [00:46<00:00, 3.24it/s, train/loss=2.790] Epoch 0: | | 149/? [00:46<00:00, 3.23it/s, train/loss=7.960] Epoch 0: | | 150/? [00:46<00:00, 3.23it/s, train/loss=7.960] Epoch 0: | | 150/? [00:46<00:00, 3.23it/s, train/loss=2.020] Epoch 0: | | 151/? [00:47<00:00, 3.19it/s, train/loss=2.020] Epoch 0: | | 151/? [00:47<00:00, 3.19it/s, train/loss=1.330] Epoch 0: | | 152/? [00:47<00:00, 3.18it/s, train/loss=1.330] Epoch 0: | | 152/? [00:47<00:00, 3.18it/s, train/loss=2.790] Epoch 0: | | 153/? [00:47<00:00, 3.20it/s, train/loss=2.790] Epoch 0: | | 153/? [00:47<00:00, 3.20it/s, train/loss=7.830] Epoch 0: | | 154/? [00:48<00:00, 3.19it/s, train/loss=7.830] Epoch 0: | | 154/? [00:48<00:00, 3.19it/s, train/loss=3.220] Epoch 0: | | 155/? [00:48<00:00, 3.21it/s, train/loss=3.220] Epoch 0: | | 155/? [00:48<00:00, 3.21it/s, train/loss=7.760] Epoch 0: | | 156/? [00:48<00:00, 3.20it/s, train/loss=7.760] Epoch 0: | | 156/? [00:48<00:00, 3.20it/s, train/loss=2.120] Epoch 0: | | 157/? [00:48<00:00, 3.22it/s, train/loss=2.120] Epoch 0: | | 157/? [00:48<00:00, 3.22it/s, train/loss=7.700] Epoch 0: | | 158/? [00:49<00:00, 3.20it/s, train/loss=7.700] Epoch 0: | | 158/? [00:49<00:00, 3.20it/s, train/loss=1.940] Epoch 0: | | 159/? [00:49<00:00, 3.21it/s, train/loss=1.940] Epoch 0: | | 159/? [00:49<00:00, 3.21it/s, train/loss=7.640] Epoch 0: | | 160/? [00:49<00:00, 3.20it/s, train/loss=7.640] Epoch 0: | | 160/? [00:49<00:00, 3.20it/s, train/loss=1.960] Epoch 0: | | 161/? [00:51<00:00, 3.15it/s, train/loss=1.960] Epoch 0: | | 161/? [00:51<00:00, 3.15it/s, train/loss=0.607] Epoch 0: | | 162/? [00:51<00:00, 3.14it/s, train/loss=0.607] Epoch 0: | | 162/? [00:51<00:00, 3.14it/s, train/loss=0.631] Epoch 0: | | 163/? [00:51<00:00, 3.15it/s, train/loss=0.631] Epoch 0: | | 163/? [00:51<00:00, 3.15it/s, train/loss=7.540] Epoch 0: | | 164/? [00:52<00:00, 3.14it/s, train/loss=7.540] Epoch 0: | | 164/? [00:52<00:00, 3.14it/s, train/loss=2.620] Epoch 0: | | 165/? [00:52<00:00, 3.15it/s, train/loss=2.620] Epoch 0: | | 165/? [00:52<00:00, 3.15it/s, train/loss=7.500] Epoch 0: | | 166/? [00:52<00:00, 3.15it/s, train/loss=7.500] Epoch 0: | | 166/? [00:52<00:00, 3.15it/s, train/loss=2.730] Epoch 0: | | 167/? [00:52<00:00, 3.16it/s, train/loss=2.730] Epoch 0: | | 167/? [00:52<00:00, 3.16it/s, train/loss=7.450] Epoch 0: | | 168/? [00:53<00:00, 3.16it/s, train/loss=7.450] Epoch 0: | | 168/? [00:53<00:00, 3.16it/s, train/loss=1.880] Epoch 0: | | 169/? [00:53<00:00, 3.17it/s, train/loss=1.880] Epoch 0: | | 169/? [00:53<00:00, 3.17it/s, train/loss=7.390] Epoch 0: | | 170/? [00:53<00:00, 3.17it/s, train/loss=7.390] Epoch 0: | | 170/? [00:53<00:00, 3.17it/s, train/loss=1.330] Epoch 0: | | 171/? [00:54<00:00, 3.13it/s, train/loss=1.330] Epoch 0: | | 171/? [00:54<00:00, 3.13it/s, train/loss=1.980] Epoch 0: | | 172/? [00:54<00:00, 3.13it/s, train/loss=1.980] Epoch 0: | | 172/? [00:54<00:00, 3.13it/s, train/loss=0.843] Epoch 0: | | 173/? [00:55<00:00, 3.14it/s, train/loss=0.843] Epoch 0: | | 173/? [00:55<00:00, 3.14it/s, train/loss=7.300] Epoch 0: | | 174/? [00:55<00:00, 3.14it/s, train/loss=7.300] Epoch 0: | | 174/? [00:55<00:00, 3.14it/s, train/loss=3.970] Epoch 0: | | 175/? [00:55<00:00, 3.15it/s, train/loss=3.970] Epoch 0: | | 175/? [00:55<00:00, 3.15it/s, train/loss=7.240] Epoch 0: | | 176/? [00:55<00:00, 3.15it/s, train/loss=7.240] Epoch 0: | | 176/? [00:55<00:00, 3.15it/s, train/loss=1.490] Epoch 0: | | 177/? [00:55<00:00, 3.16it/s, train/loss=1.490] Epoch 0: | | 177/? [00:55<00:00, 3.16it/s, train/loss=7.180] Epoch 0: | | 178/? [00:56<00:00, 3.16it/s, train/loss=7.180] Epoch 0: | | 178/? [00:56<00:00, 3.16it/s, train/loss=2.410] Epoch 0: | | 179/? [00:56<00:00, 3.18it/s, train/loss=2.410] Epoch 0: | | 179/? [00:56<00:00, 3.18it/s, train/loss=7.130] Epoch 0: | | 180/? [00:56<00:00, 3.17it/s, train/loss=7.130] Epoch 0: | | 180/? [00:56<00:00, 3.17it/s, train/loss=4.450] Epoch 0: | | 181/? [00:57<00:00, 3.14it/s, train/loss=4.450] Epoch 0: | | 181/? [00:57<00:00, 3.13it/s, train/loss=2.640] Epoch 0: | | 182/? [00:58<00:00, 3.13it/s, train/loss=2.640] Epoch 0: | | 182/? [00:58<00:00, 3.12it/s, train/loss=1.290] Epoch 0: | | 183/? [00:58<00:00, 3.13it/s, train/loss=1.290] Epoch 0: | | 183/? [00:58<00:00, 3.13it/s, train/loss=7.040] Epoch 0: | | 184/? [00:58<00:00, 3.12it/s, train/loss=7.040] Epoch 0: | | 184/? [00:58<00:00, 3.12it/s, train/loss=1.280] Epoch 0: | | 185/? [00:58<00:00, 3.14it/s, train/loss=1.280] Epoch 0: | | 185/? [00:58<00:00, 3.14it/s, train/loss=6.990] Epoch 0: | | 186/? [00:59<00:00, 3.14it/s, train/loss=6.990] Epoch 0: | | 186/? [00:59<00:00, 3.14it/s, train/loss=1.760] Epoch 0: | | 187/? [00:59<00:00, 3.15it/s, train/loss=1.760] Epoch 0: | | 187/? [00:59<00:00, 3.15it/s, train/loss=6.940] Epoch 0: | | 188/? [00:59<00:00, 3.15it/s, train/loss=6.940] Epoch 0: | | 188/? [00:59<00:00, 3.15it/s, train/loss=1.270] Epoch 0: | | 189/? [00:59<00:00, 3.16it/s, train/loss=1.270] Epoch 0: | | 189/? [00:59<00:00, 3.16it/s, train/loss=6.890] Epoch 0: | | 190/? [01:00<00:00, 3.16it/s, train/loss=6.890] Epoch 0: | | 190/? [01:00<00:00, 3.16it/s, train/loss=0.835] Epoch 0: | | 191/? [01:01<00:00, 3.12it/s, train/loss=0.835] Epoch 0: | | 191/? [01:01<00:00, 3.12it/s, train/loss=1.100] Epoch 0: | | 192/? [01:01<00:00, 3.12it/s, train/loss=1.100] Epoch 0: | | 192/? [01:01<00:00, 3.12it/s, train/loss=1.180] Epoch 0: | | 193/? [01:01<00:00, 3.13it/s, train/loss=1.180] Epoch 0: | | 193/? [01:01<00:00, 3.13it/s, train/loss=6.810] Epoch 0: | | 194/? [01:01<00:00, 3.13it/s, train/loss=6.810] Epoch 0: | | 194/? [01:01<00:00, 3.13it/s, train/loss=3.430] Epoch 0: | | 195/? [01:02<00:00, 3.14it/s, train/loss=3.430] Epoch 0: | | 195/? [01:02<00:00, 3.14it/s, train/loss=6.770] Epoch 0: | | 196/? [01:02<00:00, 3.14it/s, train/loss=6.770] Epoch 0: | | 196/? [01:02<00:00, 3.14it/s, train/loss=2.480] Epoch 0: | | 197/? [01:02<00:00, 3.15it/s, train/loss=2.480] Epoch 0: | | 197/? [01:02<00:00, 3.15it/s, train/loss=6.720] Epoch 0: | | 198/? [01:02<00:00, 3.15it/s, train/loss=6.720] Epoch 0: | | 198/? [01:02<00:00, 3.15it/s, train/loss=1.160] Epoch 0: | | 199/? [01:02<00:00, 3.16it/s, train/loss=1.160] Epoch 0: | | 199/? [01:02<00:00, 3.16it/s, train/loss=6.670] Epoch 0: | | 200/? [01:03<00:00, 3.16it/s, train/loss=6.670] Epoch 0: | | 200/? [01:03<00:00, 3.16it/s, train/loss=2.950] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 9.34it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.52it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.71it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.76it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 8.88it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.96it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 9.00it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 9.05it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:03, 9.06it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 9.09it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 9.10it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 9.12it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 9.15it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 9.18it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 9.17it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 9.17it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 9.16it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:02, 9.18it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 9.19it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 9.21it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 9.23it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:01, 9.23it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 9.25it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 9.26it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 9.26it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 9.27it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.28it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.30it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 9.33it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 9.33it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:00, 9.35it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 9.35it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 9.37it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 9.37it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 9.38it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 9.38it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:03<00:00, 9.36it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 9.35it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 9.35it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 9.35it/s] Epoch 0: | | 200/? [01:12<00:00, 2.76it/s, train/loss=2.950] Epoch 0: | | 201/? [01:20<00:00, 2.51it/s, train/loss=2.950] Epoch 0: | | 201/? [01:20<00:00, 2.51it/s, train/loss=1.330] Epoch 0: | | 202/? [01:20<00:00, 2.51it/s, train/loss=1.330] Epoch 0: | | 202/? [01:20<00:00, 2.51it/s, train/loss=0.757] Epoch 0: | | 203/? [01:20<00:00, 2.52it/s, train/loss=0.757] Epoch 0: | | 203/? [01:20<00:00, 2.52it/s, train/loss=6.590] Epoch 0: | | 204/? [01:20<00:00, 2.52it/s, train/loss=6.590] Epoch 0: | | 204/? [01:20<00:00, 2.52it/s, train/loss=1.360] Epoch 0: | | 205/? [01:20<00:00, 2.53it/s, train/loss=1.360] Epoch 0: | | 205/? [01:20<00:00, 2.53it/s, train/loss=6.550] Epoch 0: | | 206/? [01:21<00:00, 2.53it/s, train/loss=6.550] Epoch 0: | | 206/? [01:21<00:00, 2.53it/s, train/loss=3.090] Epoch 0: | | 207/? [01:21<00:00, 2.55it/s, train/loss=3.090] Epoch 0: | | 207/? [01:21<00:00, 2.55it/s, train/loss=6.500] Epoch 0: | | 208/? [01:21<00:00, 2.55it/s, train/loss=6.500] Epoch 0: | | 208/? [01:21<00:00, 2.55it/s, train/loss=3.700] Epoch 0: | | 209/? [01:21<00:00, 2.56it/s, train/loss=3.700] Epoch 0: | | 209/? [01:21<00:00, 2.56it/s, train/loss=6.450] Epoch 0: | | 210/? [01:22<00:00, 2.56it/s, train/loss=6.450] Epoch 0: | | 210/? [01:22<00:00, 2.56it/s, train/loss=2.180] Epoch 0: | | 211/? [01:23<00:00, 2.54it/s, train/loss=2.180] Epoch 0: | | 211/? [01:23<00:00, 2.54it/s, train/loss=2.080] Epoch 0: | | 212/? [01:23<00:00, 2.54it/s, train/loss=2.080] Epoch 0: | | 212/? [01:23<00:00, 2.54it/s, train/loss=1.330] Epoch 0: | | 213/? [01:23<00:00, 2.55it/s, train/loss=1.330] Epoch 0: | | 213/? [01:23<00:00, 2.55it/s, train/loss=6.370] Epoch 0: | | 214/? [01:23<00:00, 2.55it/s, train/loss=6.370] Epoch 0: | | 214/? [01:23<00:00, 2.55it/s, train/loss=6.390] Epoch 0: | | 215/? [01:23<00:00, 2.56it/s, train/loss=6.390] Epoch 0: | | 215/? [01:23<00:00, 2.56it/s, train/loss=6.320] Epoch 0: | | 216/? [01:24<00:00, 2.56it/s, train/loss=6.320] Epoch 0: | | 216/? [01:24<00:00, 2.56it/s, train/loss=2.420] Epoch 0: | | 217/? [01:24<00:00, 2.57it/s, train/loss=2.420] Epoch 0: | | 217/? [01:24<00:00, 2.57it/s, train/loss=6.280] Epoch 0: | | 218/? [01:24<00:00, 2.57it/s, train/loss=6.280] Epoch 0: | | 218/? [01:24<00:00, 2.57it/s, train/loss=0.810] Epoch 0: | | 219/? [01:24<00:00, 2.58it/s, train/loss=0.810] Epoch 0: | | 219/? [01:24<00:00, 2.58it/s, train/loss=6.250] Epoch 0: | | 220/? [01:25<00:00, 2.58it/s, train/loss=6.250] Epoch 0: | | 220/? [01:25<00:00, 2.58it/s, train/loss=2.580] Epoch 0: | | 221/? [01:26<00:00, 2.57it/s, train/loss=2.580] Epoch 0: | | 221/? [01:26<00:00, 2.56it/s, train/loss=1.950] Epoch 0: | | 222/? [01:26<00:00, 2.57it/s, train/loss=1.950] Epoch 0: | | 222/? [01:26<00:00, 2.57it/s, train/loss=2.630] Epoch 0: | | 223/? [01:26<00:00, 2.58it/s, train/loss=2.630] Epoch 0: | | 223/? [01:26<00:00, 2.58it/s, train/loss=6.190] Epoch 0: | | 224/? [01:26<00:00, 2.58it/s, train/loss=6.190] Epoch 0: | | 224/? [01:26<00:00, 2.58it/s, train/loss=1.390] Epoch 0: | | 225/? [01:27<00:00, 2.59it/s, train/loss=1.390] Epoch 0: | | 225/? [01:27<00:00, 2.59it/s, train/loss=6.140] Epoch 0: | | 226/? [01:27<00:00, 2.59it/s, train/loss=6.140] Epoch 0: | | 226/? [01:27<00:00, 2.59it/s, train/loss=1.380] Epoch 0: | | 227/? [01:27<00:00, 2.60it/s, train/loss=1.380] Epoch 0: | | 227/? [01:27<00:00, 2.60it/s, train/loss=6.100] Epoch 0: | | 228/? [01:27<00:00, 2.60it/s, train/loss=6.100] Epoch 0: | | 228/? [01:27<00:00, 2.60it/s, train/loss=3.490] Epoch 0: | | 229/? [01:27<00:00, 2.61it/s, train/loss=3.490] Epoch 0: | | 229/? [01:27<00:00, 2.61it/s, train/loss=6.060] Epoch 0: | | 230/? [01:28<00:00, 2.61it/s, train/loss=6.060] Epoch 0: | | 230/? [01:28<00:00, 2.61it/s, train/loss=1.660] Epoch 0: | | 231/? [01:29<00:00, 2.59it/s, train/loss=1.660] Epoch 0: | | 231/? [01:29<00:00, 2.59it/s, train/loss=1.780] Epoch 0: | | 232/? [01:29<00:00, 2.59it/s, train/loss=1.780] Epoch 0: | | 232/? [01:29<00:00, 2.59it/s, train/loss=1.100] Epoch 0: | | 233/? [01:29<00:00, 2.60it/s, train/loss=1.100] Epoch 0: | | 233/? [01:29<00:00, 2.60it/s, train/loss=6.010] Epoch 0: | | 234/? [01:30<00:00, 2.60it/s, train/loss=6.010] Epoch 0: | | 234/? [01:30<00:00, 2.60it/s, train/loss=2.180] Epoch 0: | | 235/? [01:30<00:00, 2.61it/s, train/loss=2.180] Epoch 0: | | 235/? [01:30<00:00, 2.61it/s, train/loss=5.970] Epoch 0: | | 236/? [01:30<00:00, 2.61it/s, train/loss=5.970] Epoch 0: | | 236/? [01:30<00:00, 2.61it/s, train/loss=2.190] Epoch 0: | | 237/? [01:30<00:00, 2.62it/s, train/loss=2.190] Epoch 0: | | 237/? [01:30<00:00, 2.62it/s, train/loss=5.920] Epoch 0: | | 238/? [01:30<00:00, 2.62it/s, train/loss=5.920] Epoch 0: | | 238/? [01:30<00:00, 2.62it/s, train/loss=2.410] Epoch 0: | | 239/? [01:30<00:00, 2.63it/s, train/loss=2.410] Epoch 0: | | 239/? [01:30<00:00, 2.63it/s, train/loss=5.900] Epoch 0: | | 240/? [01:31<00:00, 2.63it/s, train/loss=5.900] Epoch 0: | | 240/? [01:31<00:00, 2.63it/s, train/loss=3.740] Epoch 0: | | 241/? [01:32<00:00, 2.61it/s, train/loss=3.740] Epoch 0: | | 241/? [01:32<00:00, 2.61it/s, train/loss=0.724] Epoch 0: | | 242/? [01:32<00:00, 2.61it/s, train/loss=0.724] Epoch 0: | | 242/? [01:32<00:00, 2.61it/s, train/loss=2.850] Epoch 0: | | 243/? [01:32<00:00, 2.62it/s, train/loss=2.850] Epoch 0: | | 243/? [01:32<00:00, 2.62it/s, train/loss=5.900] Epoch 0: | | 244/? [01:33<00:00, 2.62it/s, train/loss=5.900] Epoch 0: | | 244/? [01:33<00:00, 2.62it/s, train/loss=2.430] Epoch 0: | | 245/? [01:33<00:00, 2.62it/s, train/loss=2.430] Epoch 0: | | 245/? [01:33<00:00, 2.62it/s, train/loss=5.900] Epoch 0: | | 246/? [01:33<00:00, 2.62it/s, train/loss=5.900] Epoch 0: | | 246/? [01:33<00:00, 2.62it/s, train/loss=1.230] Epoch 0: | | 247/? [01:34<00:00, 2.63it/s, train/loss=1.230] Epoch 0: | | 247/? [01:34<00:00, 2.63it/s, train/loss=5.870] Epoch 0: | | 248/? [01:34<00:00, 2.63it/s, train/loss=5.870] Epoch 0: | | 248/? [01:34<00:00, 2.63it/s, train/loss=2.390] Epoch 0: | | 249/? [01:34<00:00, 2.63it/s, train/loss=2.390] Epoch 0: | | 249/? [01:34<00:00, 2.63it/s, train/loss=5.860] Epoch 0: | | 250/? [01:34<00:00, 2.63it/s, train/loss=5.860] Epoch 0: | | 250/? [01:34<00:00, 2.63it/s, train/loss=1.140] Epoch 0: | | 251/? [01:35<00:00, 2.62it/s, train/loss=1.140] Epoch 0: | | 251/? [01:35<00:00, 2.62it/s, train/loss=2.820] Epoch 0: | | 252/? [01:36<00:00, 2.62it/s, train/loss=2.820] Epoch 0: | | 252/? [01:36<00:00, 2.62it/s, train/loss=1.120] Epoch 0: | | 253/? [01:36<00:00, 2.63it/s, train/loss=1.120] Epoch 0: | | 253/? [01:36<00:00, 2.63it/s, train/loss=5.850] Epoch 0: | | 254/? [01:36<00:00, 2.63it/s, train/loss=5.850] Epoch 0: | | 254/? [01:36<00:00, 2.63it/s, train/loss=1.020] Epoch 0: | | 255/? [01:36<00:00, 2.64it/s, train/loss=1.020] Epoch 0: | | 255/? [01:36<00:00, 2.64it/s, train/loss=5.830] Epoch 0: | | 256/? [01:37<00:00, 2.64it/s, train/loss=5.830] Epoch 0: | | 256/? [01:37<00:00, 2.64it/s, train/loss=1.290] Epoch 0: | | 257/? [01:37<00:00, 2.65it/s, train/loss=1.290] Epoch 0: | | 257/? [01:37<00:00, 2.65it/s, train/loss=5.800] Epoch 0: | | 258/? [01:37<00:00, 2.65it/s, train/loss=5.800] Epoch 0: | | 258/? [01:37<00:00, 2.65it/s, train/loss=1.870] Epoch 0: | | 259/? [01:37<00:00, 2.65it/s, train/loss=1.870] Epoch 0: | | 259/? [01:37<00:00, 2.65it/s, train/loss=5.770] Epoch 0: | | 260/? [01:37<00:00, 2.65it/s, train/loss=5.770] Epoch 0: | | 260/? [01:37<00:00, 2.65it/s, train/loss=1.200] Epoch 0: | | 261/? [01:38<00:00, 2.64it/s, train/loss=1.200] Epoch 0: | | 261/? [01:38<00:00, 2.64it/s, train/loss=2.530] Epoch 0: | | 262/? [01:39<00:00, 2.64it/s, train/loss=2.530] Epoch 0: | | 262/? [01:39<00:00, 2.64it/s, train/loss=3.570] Epoch 0: | | 263/? [01:39<00:00, 2.65it/s, train/loss=3.570] Epoch 0: | | 263/? [01:39<00:00, 2.65it/s, train/loss=5.770] Epoch 0: | | 264/? [01:39<00:00, 2.65it/s, train/loss=5.770] Epoch 0: | | 264/? [01:39<00:00, 2.65it/s, train/loss=0.946] Epoch 0: | | 265/? [01:39<00:00, 2.66it/s, train/loss=0.946] Epoch 0: | | 265/? [01:39<00:00, 2.66it/s, train/loss=5.760] Epoch 0: | | 266/? [01:40<00:00, 2.65it/s, train/loss=5.760] Epoch 0: | | 266/? [01:40<00:00, 2.65it/s, train/loss=1.480] Epoch 0: | | 267/? [01:40<00:00, 2.66it/s, train/loss=1.480] Epoch 0: | | 267/? [01:40<00:00, 2.66it/s, train/loss=5.740] Epoch 0: | | 268/? [01:40<00:00, 2.65it/s, train/loss=5.740] Epoch 0: | | 268/? [01:40<00:00, 2.65it/s, train/loss=3.570] Epoch 0: | | 269/? [01:41<00:00, 2.66it/s, train/loss=3.570] Epoch 0: | | 269/? [01:41<00:00, 2.66it/s, train/loss=5.720] Epoch 0: | | 270/? [01:41<00:00, 2.66it/s, train/loss=5.720] Epoch 0: | | 270/? [01:41<00:00, 2.66it/s, train/loss=2.580] Epoch 0: | | 271/? [01:42<00:00, 2.65it/s, train/loss=2.580] Epoch 0: | | 271/? [01:42<00:00, 2.65it/s, train/loss=2.380] Epoch 0: | | 272/? [01:42<00:00, 2.65it/s, train/loss=2.380] Epoch 0: | | 272/? [01:42<00:00, 2.65it/s, train/loss=0.554] Epoch 0: | | 273/? [01:42<00:00, 2.66it/s, train/loss=0.554] Epoch 0: | | 273/? [01:42<00:00, 2.66it/s, train/loss=5.690] Epoch 0: | | 274/? [01:43<00:00, 2.66it/s, train/loss=5.690] Epoch 0: | | 274/? [01:43<00:00, 2.66it/s, train/loss=1.810] Epoch 0: | | 275/? [01:43<00:00, 2.67it/s, train/loss=1.810] Epoch 0: | | 275/? [01:43<00:00, 2.67it/s, train/loss=5.660] Epoch 0: | | 276/? [01:43<00:00, 2.66it/s, train/loss=5.660] Epoch 0: | | 276/? [01:43<00:00, 2.66it/s, train/loss=3.710] Epoch 0: | | 277/? [01:43<00:00, 2.67it/s, train/loss=3.710] Epoch 0: | | 277/? [01:43<00:00, 2.67it/s, train/loss=5.640] Epoch 0: | | 278/? [01:44<00:00, 2.67it/s, train/loss=5.640] Epoch 0: | | 278/? [01:44<00:00, 2.67it/s, train/loss=2.730] Epoch 0: | | 279/? [01:44<00:00, 2.68it/s, train/loss=2.730] Epoch 0: | | 279/? [01:44<00:00, 2.68it/s, train/loss=5.610] Epoch 0: | | 280/? [01:44<00:00, 2.68it/s, train/loss=5.610] Epoch 0: | | 280/? [01:44<00:00, 2.68it/s, train/loss=1.710] Epoch 0: | | 281/? [01:45<00:00, 2.67it/s, train/loss=1.710] Epoch 0: | | 281/? [01:45<00:00, 2.67it/s, train/loss=2.830] Epoch 0: | | 282/? [01:45<00:00, 2.67it/s, train/loss=2.830] Epoch 0: | | 282/? [01:45<00:00, 2.67it/s, train/loss=4.200] Epoch 0: | | 283/? [01:45<00:00, 2.67it/s, train/loss=4.200] Epoch 0: | | 283/? [01:45<00:00, 2.67it/s, train/loss=5.560] Epoch 0: | | 284/? [01:46<00:00, 2.67it/s, train/loss=5.560] Epoch 0: | | 284/? [01:46<00:00, 2.67it/s, train/loss=2.860] Epoch 0: | | 285/? [01:46<00:00, 2.68it/s, train/loss=2.860] Epoch 0: | | 285/? [01:46<00:00, 2.68it/s, train/loss=5.520] Epoch 0: | | 286/? [01:46<00:00, 2.68it/s, train/loss=5.520] Epoch 0: | | 286/? [01:46<00:00, 2.68it/s, train/loss=3.260] Epoch 0: | | 287/? [01:46<00:00, 2.69it/s, train/loss=3.260] Epoch 0: | | 287/? [01:46<00:00, 2.69it/s, train/loss=5.480] Epoch 0: | | 288/? [01:47<00:00, 2.69it/s, train/loss=5.480] Epoch 0: | | 288/? [01:47<00:00, 2.69it/s, train/loss=2.080] Epoch 0: | | 289/? [01:47<00:00, 2.70it/s, train/loss=2.080] Epoch 0: | | 289/? [01:47<00:00, 2.70it/s, train/loss=5.440] Epoch 0: | | 290/? [01:47<00:00, 2.70it/s, train/loss=5.440] Epoch 0: | | 290/? [01:47<00:00, 2.70it/s, train/loss=2.980] Epoch 0: | | 291/? [01:48<00:00, 2.68it/s, train/loss=2.980] Epoch 0: | | 291/? [01:48<00:00, 2.68it/s, train/loss=1.650] Epoch 0: | | 292/? [01:48<00:00, 2.69it/s, train/loss=1.650] Epoch 0: | | 292/? [01:48<00:00, 2.68it/s, train/loss=1.700] Epoch 0: | | 293/? [01:48<00:00, 2.69it/s, train/loss=1.700] Epoch 0: | | 293/? [01:48<00:00, 2.69it/s, train/loss=5.400] Epoch 0: | | 294/? [01:49<00:00, 2.69it/s, train/loss=5.400] Epoch 0: | | 294/? [01:49<00:00, 2.69it/s, train/loss=3.030] Epoch 0: | | 295/? [01:49<00:00, 2.70it/s, train/loss=3.030] Epoch 0: | | 295/? [01:49<00:00, 2.70it/s, train/loss=5.380] Epoch 0: | | 296/? [01:49<00:00, 2.70it/s, train/loss=5.380] Epoch 0: | | 296/? [01:49<00:00, 2.70it/s, train/loss=2.820] Epoch 0: | | 297/? [01:49<00:00, 2.71it/s, train/loss=2.820] Epoch 0: | | 297/? [01:49<00:00, 2.71it/s, train/loss=5.350] Epoch 0: | | 298/? [01:50<00:00, 2.71it/s, train/loss=5.350] Epoch 0: | | 298/? [01:50<00:00, 2.71it/s, train/loss=1.420] Epoch 0: | | 299/? [01:50<00:00, 2.71it/s, train/loss=1.420] Epoch 0: | | 299/? [01:50<00:00, 2.71it/s, train/loss=5.320] Epoch 0: | | 300/? [01:50<00:00, 2.71it/s, train/loss=5.320] Epoch 0: | | 300/? [01:50<00:00, 2.71it/s, train/loss=1.020] Epoch 0: | | 301/? [01:51<00:00, 2.70it/s, train/loss=1.020] Epoch 0: | | 301/? [01:51<00:00, 2.70it/s, train/loss=0.883] Epoch 0: | | 302/? [01:51<00:00, 2.70it/s, train/loss=0.883] Epoch 0: | | 302/? [01:51<00:00, 2.70it/s, train/loss=3.050] Epoch 0: | | 303/? [01:51<00:00, 2.71it/s, train/loss=3.050] Epoch 0: | | 303/? [01:51<00:00, 2.71it/s, train/loss=5.280] Epoch 0: | | 304/? [01:52<00:00, 2.71it/s, train/loss=5.280] Epoch 0: | | 304/? [01:52<00:00, 2.71it/s, train/loss=2.640] Epoch 0: | | 305/? [01:52<00:00, 2.72it/s, train/loss=2.640] Epoch 0: | | 305/? [01:52<00:00, 2.72it/s, train/loss=5.260] Epoch 0: | | 306/? [01:52<00:00, 2.71it/s, train/loss=5.260] Epoch 0: | | 306/? [01:52<00:00, 2.71it/s, train/loss=1.430] Epoch 0: | | 307/? [01:52<00:00, 2.72it/s, train/loss=1.430] Epoch 0: | | 307/? [01:52<00:00, 2.72it/s, train/loss=5.230] Epoch 0: | | 308/? [01:53<00:00, 2.72it/s, train/loss=5.230] Epoch 0: | | 308/? [01:53<00:00, 2.72it/s, train/loss=2.380] Epoch 0: | | 309/? [01:53<00:00, 2.73it/s, train/loss=2.380] Epoch 0: | | 309/? [01:53<00:00, 2.73it/s, train/loss=5.200] Epoch 0: | | 310/? [01:53<00:00, 2.73it/s, train/loss=5.200] Epoch 0: | | 310/? [01:53<00:00, 2.73it/s, train/loss=1.700] Epoch 0: | | 311/? [01:54<00:00, 2.72it/s, train/loss=1.700] Epoch 0: | | 311/? [01:54<00:00, 2.71it/s, train/loss=2.040] Epoch 0: | | 312/? [01:54<00:00, 2.72it/s, train/loss=2.040] Epoch 0: | | 312/? [01:54<00:00, 2.71it/s, train/loss=0.999] Epoch 0: | | 313/? [01:54<00:00, 2.72it/s, train/loss=0.999] Epoch 0: | | 313/? [01:54<00:00, 2.72it/s, train/loss=5.190] Epoch 0: | | 314/? [01:55<00:00, 2.72it/s, train/loss=5.190] Epoch 0: | | 314/? [01:55<00:00, 2.72it/s, train/loss=1.130] Epoch 0: | | 315/? [01:55<00:00, 2.73it/s, train/loss=1.130] Epoch 0: | | 315/? [01:55<00:00, 2.73it/s, train/loss=5.190] Epoch 0: | | 316/? [01:55<00:00, 2.73it/s, train/loss=5.190] Epoch 0: | | 316/? [01:55<00:00, 2.73it/s, train/loss=3.310] Epoch 0: | | 317/? [01:55<00:00, 2.74it/s, train/loss=3.310] Epoch 0: | | 317/? [01:55<00:00, 2.74it/s, train/loss=5.170] Epoch 0: | | 318/? [01:56<00:00, 2.73it/s, train/loss=5.170] Epoch 0: | | 318/? [01:56<00:00, 2.73it/s, train/loss=1.810] Epoch 0: | | 319/? [01:56<00:00, 2.74it/s, train/loss=1.810] Epoch 0: | | 319/? [01:56<00:00, 2.74it/s, train/loss=5.160] Epoch 0: | | 320/? [01:56<00:00, 2.74it/s, train/loss=5.160] Epoch 0: | | 320/? [01:56<00:00, 2.74it/s, train/loss=2.270] Epoch 0: | | 321/? [01:57<00:00, 2.73it/s, train/loss=2.270] Epoch 0: | | 321/? [01:57<00:00, 2.73it/s, train/loss=1.920] Epoch 0: | | 322/? [01:57<00:00, 2.73it/s, train/loss=1.920] Epoch 0: | | 322/? [01:58<00:00, 2.73it/s, train/loss=1.600] Epoch 0: | | 323/? [01:58<00:00, 2.73it/s, train/loss=1.600] Epoch 0: | | 323/? [01:58<00:00, 2.73it/s, train/loss=5.150] Epoch 0: | | 324/? [01:58<00:00, 2.73it/s, train/loss=5.150] Epoch 0: | | 324/? [01:58<00:00, 2.73it/s, train/loss=3.730] Epoch 0: | | 325/? [01:58<00:00, 2.74it/s, train/loss=3.730] Epoch 0: | | 325/? [01:58<00:00, 2.74it/s, train/loss=5.150] Epoch 0: | | 326/? [01:58<00:00, 2.74it/s, train/loss=5.150] Epoch 0: | | 326/? [01:58<00:00, 2.74it/s, train/loss=2.220] Epoch 0: | | 327/? [01:59<00:00, 2.75it/s, train/loss=2.220] Epoch 0: | | 327/? [01:59<00:00, 2.75it/s, train/loss=5.130] Epoch 0: | | 328/? [01:59<00:00, 2.75it/s, train/loss=5.130] Epoch 0: | | 328/? [01:59<00:00, 2.75it/s, train/loss=1.950] Epoch 0: | | 329/? [01:59<00:00, 2.75it/s, train/loss=1.950] Epoch 0: | | 329/? [01:59<00:00, 2.75it/s, train/loss=5.100] Epoch 0: | | 330/? [01:59<00:00, 2.75it/s, train/loss=5.100] Epoch 0: | | 330/? [01:59<00:00, 2.75it/s, train/loss=5.410] Epoch 0: | | 331/? [02:00<00:00, 2.74it/s, train/loss=5.410] Epoch 0: | | 331/? [02:00<00:00, 2.74it/s, train/loss=2.210] Epoch 0: | | 332/? [02:01<00:00, 2.74it/s, train/loss=2.210] Epoch 0: | | 332/? [02:01<00:00, 2.74it/s, train/loss=1.130] Epoch 0: | | 333/? [02:01<00:00, 2.75it/s, train/loss=1.130] Epoch 0: | | 333/? [02:01<00:00, 2.75it/s, train/loss=5.080] Epoch 0: | | 334/? [02:01<00:00, 2.75it/s, train/loss=5.080] Epoch 0: | | 334/? [02:01<00:00, 2.75it/s, train/loss=2.390] Epoch 0: | | 335/? [02:01<00:00, 2.75it/s, train/loss=2.390] Epoch 0: | | 335/? [02:01<00:00, 2.75it/s, train/loss=5.060] Epoch 0: | | 336/? [02:02<00:00, 2.75it/s, train/loss=5.060] Epoch 0: | | 336/? [02:02<00:00, 2.75it/s, train/loss=3.190] Epoch 0: | | 337/? [02:02<00:00, 2.76it/s, train/loss=3.190] Epoch 0: | | 337/? [02:02<00:00, 2.76it/s, train/loss=5.040] Epoch 0: | | 338/? [02:02<00:00, 2.76it/s, train/loss=5.040] Epoch 0: | | 338/? [02:02<00:00, 2.76it/s, train/loss=0.746] Epoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=0.746] Epoch 0: | | 339/? [02:02<00:00, 2.77it/s, train/loss=5.020] Epoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=5.020] Epoch 0: | | 340/? [02:02<00:00, 2.77it/s, train/loss=1.340] Epoch 0: | | 341/? [02:03<00:00, 2.75it/s, train/loss=1.340] Epoch 0: | | 341/? [02:03<00:00, 2.75it/s, train/loss=1.570] Epoch 0: | | 342/? [02:04<00:00, 2.75it/s, train/loss=1.570] Epoch 0: | | 342/? [02:04<00:00, 2.75it/s, train/loss=2.380] Epoch 0: | | 343/? [02:04<00:00, 2.76it/s, train/loss=2.380] Epoch 0: | | 343/? [02:04<00:00, 2.76it/s, train/loss=5.000] Epoch 0: | | 344/? [02:04<00:00, 2.76it/s, train/loss=5.000] Epoch 0: | | 344/? [02:04<00:00, 2.76it/s, train/loss=4.760] Epoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=4.760] Epoch 0: | | 345/? [02:04<00:00, 2.77it/s, train/loss=4.980] Epoch 0: | | 346/? [02:05<00:00, 2.77it/s, train/loss=4.980] Epoch 0: | | 346/? [02:05<00:00, 2.77it/s, train/loss=3.570] Epoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=3.570] Epoch 0: | | 347/? [02:05<00:00, 2.77it/s, train/loss=4.940] Epoch 0: | | 348/? [02:05<00:00, 2.77it/s, train/loss=4.940] Epoch 0: | | 348/? [02:05<00:00, 2.77it/s, train/loss=2.680] Epoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=2.680] Epoch 0: | | 349/? [02:05<00:00, 2.78it/s, train/loss=4.940] Epoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=4.940] Epoch 0: | | 350/? [02:06<00:00, 2.78it/s, train/loss=1.490] Epoch 0: | | 351/? [02:06<00:00, 2.77it/s, train/loss=1.490] Epoch 0: | | 351/? [02:06<00:00, 2.76it/s, train/loss=2.270] Epoch 0: | | 352/? [02:07<00:00, 2.77it/s, train/loss=2.270] Epoch 0: | | 352/? [02:07<00:00, 2.77it/s, train/loss=1.580] Epoch 0: | | 353/? [02:07<00:00, 2.77it/s, train/loss=1.580] Epoch 0: | | 353/? [02:07<00:00, 2.77it/s, train/loss=4.990] Epoch 0: | | 354/? [02:07<00:00, 2.77it/s, train/loss=4.990] Epoch 0: | | 354/? [02:07<00:00, 2.77it/s, train/loss=0.693] Epoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=0.693] Epoch 0: | | 355/? [02:07<00:00, 2.78it/s, train/loss=4.980] Epoch 0: | | 356/? [02:08<00:00, 2.77it/s, train/loss=4.980] Epoch 0: | | 356/? [02:08<00:00, 2.77it/s, train/loss=2.220] Epoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=2.220] Epoch 0: | | 357/? [02:08<00:00, 2.78it/s, train/loss=4.950] Epoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=4.950] Epoch 0: | | 358/? [02:08<00:00, 2.78it/s, train/loss=0.770] Epoch 0: | | 359/? [02:08<00:00, 2.79it/s, train/loss=0.770] Epoch 0: | | 359/? [02:08<00:00, 2.79it/s, train/loss=4.930] Epoch 0: | | 360/? [02:09<00:00, 2.79it/s, train/loss=4.930] Epoch 0: | | 360/? [02:09<00:00, 2.79it/s, train/loss=3.010] Epoch 0: | | 361/? [02:10<00:00, 2.77it/s, train/loss=3.010] Epoch 0: | | 361/? [02:10<00:00, 2.77it/s, train/loss=0.704] Epoch 0: | | 362/? [02:10<00:00, 2.78it/s, train/loss=0.704] Epoch 0: | | 362/? [02:10<00:00, 2.77it/s, train/loss=2.000] Epoch 0: | | 363/? [02:10<00:00, 2.78it/s, train/loss=2.000] Epoch 0: | | 363/? [02:10<00:00, 2.78it/s, train/loss=4.930] Epoch 0: | | 364/? [02:10<00:00, 2.78it/s, train/loss=4.930] Epoch 0: | | 364/? [02:10<00:00, 2.78it/s, train/loss=2.770] Epoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=2.770] Epoch 0: | | 365/? [02:10<00:00, 2.79it/s, train/loss=4.920] Epoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=4.920] Epoch 0: | | 366/? [02:11<00:00, 2.79it/s, train/loss=1.270] Epoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=1.270] Epoch 0: | | 367/? [02:11<00:00, 2.79it/s, train/loss=4.900] Epoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=4.900] Epoch 0: | | 368/? [02:11<00:00, 2.79it/s, train/loss=2.370] Epoch 0: | | 369/? [02:11<00:00, 2.80it/s, train/loss=2.370] Epoch 0: | | 369/? [02:11<00:00, 2.80it/s, train/loss=4.890] Epoch 0: | | 370/? [02:12<00:00, 2.80it/s, train/loss=4.890] Epoch 0: | | 370/? [02:12<00:00, 2.80it/s, train/loss=1.150] Epoch 0: | | 371/? [02:13<00:00, 2.79it/s, train/loss=1.150] Epoch 0: | | 371/? [02:13<00:00, 2.78it/s, train/loss=2.940] Epoch 0: | | 372/? [02:13<00:00, 2.79it/s, train/loss=2.940] Epoch 0: | | 372/? [02:13<00:00, 2.78it/s, train/loss=1.090] Epoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=1.090] Epoch 0: | | 373/? [02:13<00:00, 2.79it/s, train/loss=4.880] Epoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=4.880] Epoch 0: | | 374/? [02:14<00:00, 2.79it/s, train/loss=3.940] Epoch 0: | | 375/? [02:14<00:00, 2.80it/s, train/loss=3.940] Epoch 0: | | 375/? [02:14<00:00, 2.80it/s, train/loss=4.870] Epoch 0: | | 376/? [02:14<00:00, 2.80it/s, train/loss=4.870] Epoch 0: | | 376/? [02:14<00:00, 2.80it/s, train/loss=2.950] Epoch 0: | | 377/? [02:14<00:00, 2.80it/s, train/loss=2.950] Epoch 0: | | 377/? [02:14<00:00, 2.80it/s, train/loss=4.840] Epoch 0: | | 378/? [02:14<00:00, 2.80it/s, train/loss=4.840] Epoch 0: | | 378/? [02:14<00:00, 2.80it/s, train/loss=2.900] Epoch 0: | | 379/? [02:14<00:00, 2.81it/s, train/loss=2.900] Epoch 0: | | 379/? [02:14<00:00, 2.81it/s, train/loss=4.820] Epoch 0: | | 380/? [02:15<00:00, 2.81it/s, train/loss=4.820] Epoch 0: | | 380/? [02:15<00:00, 2.81it/s, train/loss=2.240] Epoch 0: | | 381/? [02:16<00:00, 2.80it/s, train/loss=2.240] Epoch 0: | | 381/? [02:16<00:00, 2.79it/s, train/loss=0.726] Epoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=0.726] Epoch 0: | | 382/? [02:16<00:00, 2.79it/s, train/loss=1.090] Epoch 0: | | 383/? [02:16<00:00, 2.80it/s, train/loss=1.090] Epoch 0: | | 383/? [02:16<00:00, 2.80it/s, train/loss=4.800] Epoch 0: | | 384/? [02:17<00:00, 2.80it/s, train/loss=4.800] Epoch 0: | | 384/? [02:17<00:00, 2.80it/s, train/loss=3.060] Epoch 0: | | 385/? [02:17<00:00, 2.81it/s, train/loss=3.060] Epoch 0: | | 385/? [02:17<00:00, 2.81it/s, train/loss=4.780] Epoch 0: | | 386/? [02:17<00:00, 2.80it/s, train/loss=4.780] Epoch 0: | | 386/? [02:17<00:00, 2.80it/s, train/loss=2.630] Epoch 0: | | 387/? [02:17<00:00, 2.81it/s, train/loss=2.630] Epoch 0: | | 387/? [02:17<00:00, 2.81it/s, train/loss=4.750] Epoch 0: | | 388/? [02:18<00:00, 2.81it/s, train/loss=4.750] Epoch 0: | | 388/? [02:18<00:00, 2.81it/s, train/loss=0.970] Epoch 0: | | 389/? [02:18<00:00, 2.82it/s, train/loss=0.970] Epoch 0: | | 389/? [02:18<00:00, 2.82it/s, train/loss=4.730] Epoch 0: | | 390/? [02:18<00:00, 2.81it/s, train/loss=4.730] Epoch 0: | | 390/? [02:18<00:00, 2.81it/s, train/loss=3.590] Epoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=3.590] Epoch 0: | | 391/? [02:19<00:00, 2.80it/s, train/loss=1.050] Epoch 0: | | 392/? [02:19<00:00, 2.80it/s, train/loss=1.050] Epoch 0: | | 392/? [02:19<00:00, 2.80it/s, train/loss=0.961] Epoch 0: | | 393/? [02:19<00:00, 2.81it/s, train/loss=0.961] Epoch 0: | | 393/? [02:19<00:00, 2.81it/s, train/loss=4.700] Epoch 0: | | 394/? [02:20<00:00, 2.81it/s, train/loss=4.700] Epoch 0: | | 394/? [02:20<00:00, 2.81it/s, train/loss=2.750] Epoch 0: | | 395/? [02:20<00:00, 2.81it/s, train/loss=2.750] Epoch 0: | | 395/? [02:20<00:00, 2.81it/s, train/loss=4.690] Epoch 0: | | 396/? [02:20<00:00, 2.81it/s, train/loss=4.690] Epoch 0: | | 396/? [02:20<00:00, 2.81it/s, train/loss=4.030] Epoch 0: | | 397/? [02:20<00:00, 2.82it/s, train/loss=4.030] Epoch 0: | | 397/? [02:20<00:00, 2.82it/s, train/loss=4.670] Epoch 0: | | 398/? [02:21<00:00, 2.82it/s, train/loss=4.670] Epoch 0: | | 398/? [02:21<00:00, 2.82it/s, train/loss=2.210] Epoch 0: | | 399/? [02:21<00:00, 2.82it/s, train/loss=2.210] Epoch 0: | | 399/? [02:21<00:00, 2.82it/s, train/loss=4.660] Epoch 0: | | 400/? [02:21<00:00, 2.82it/s, train/loss=4.660] Epoch 0: | | 400/? [02:21<00:00, 2.82it/s, train/loss=2.450] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.57it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.84it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.95it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.76it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:03, 8.82it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.82it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.89it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.95it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:00<00:03, 9.01it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 9.01it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 9.03it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 9.07it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:02, 9.10it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 9.10it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 9.09it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 9.06it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 9.07it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:01<00:02, 9.07it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 9.08it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 9.06it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 9.05it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:01, 9.06it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 9.07it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 9.08it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 9.10it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 9.10it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.12it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.13it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 8.97it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 8.92it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:01, 8.93it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 8.95it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 8.97it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 8.97it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 8.98it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:04<00:00, 8.96it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 8.96it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 8.95it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 8.95it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 8.95it/s] Epoch 0: | | 400/? [02:30<00:00, 2.65it/s, train/loss=2.450] Epoch 0: | | 401/? [02:50<00:00, 2.35it/s, train/loss=2.450] Epoch 0: | | 401/? [02:51<00:00, 2.34it/s, train/loss=0.663] Epoch 0: | | 402/? [02:51<00:00, 2.35it/s, train/loss=0.663] Epoch 0: | | 402/? [02:51<00:00, 2.35it/s, train/loss=1.990] Epoch 0: | | 403/? [02:51<00:00, 2.35it/s, train/loss=1.990] Epoch 0: | | 403/? [02:51<00:00, 2.35it/s, train/loss=4.650] Epoch 0: | | 404/? [02:51<00:00, 2.35it/s, train/loss=4.650] Epoch 0: | | 404/? [02:51<00:00, 2.35it/s, train/loss=1.070] Epoch 0: | | 405/? [02:51<00:00, 2.36it/s, train/loss=1.070] Epoch 0: | | 405/? [02:51<00:00, 2.36it/s, train/loss=4.640] Epoch 0: | | 406/? [02:52<00:00, 2.36it/s, train/loss=4.640] Epoch 0: | | 406/? [02:52<00:00, 2.36it/s, train/loss=2.970] Epoch 0: | | 407/? [02:52<00:00, 2.36it/s, train/loss=2.970] Epoch 0: | | 407/? [02:52<00:00, 2.36it/s, train/loss=4.610] Epoch 0: | | 408/? [02:52<00:00, 2.36it/s, train/loss=4.610] Epoch 0: | | 408/? [02:52<00:00, 2.36it/s, train/loss=2.380] Epoch 0: | | 409/? [02:52<00:00, 2.37it/s, train/loss=2.380] Epoch 0: | | 409/? [02:52<00:00, 2.37it/s, train/loss=4.590] Epoch 0: | | 410/? [02:53<00:00, 2.36it/s, train/loss=4.590] Epoch 0: | | 410/? [02:53<00:00, 2.36it/s, train/loss=1.430] Epoch 0: | | 411/? [02:54<00:00, 2.36it/s, train/loss=1.430] Epoch 0: | | 411/? [02:54<00:00, 2.35it/s, train/loss=1.160] Epoch 0: | | 412/? [02:54<00:00, 2.36it/s, train/loss=1.160] Epoch 0: | | 412/? [02:54<00:00, 2.36it/s, train/loss=1.590] Epoch 0: | | 413/? [02:54<00:00, 2.36it/s, train/loss=1.590] Epoch 0: | | 413/? [02:54<00:00, 2.36it/s, train/loss=4.570] Epoch 0: | | 414/? [02:55<00:00, 2.36it/s, train/loss=4.570] Epoch 0: | | 414/? [02:55<00:00, 2.36it/s, train/loss=1.560] Epoch 0: | | 415/? [02:55<00:00, 2.37it/s, train/loss=1.560] Epoch 0: | | 415/? [02:55<00:00, 2.37it/s, train/loss=4.550] Epoch 0: | | 416/? [02:55<00:00, 2.37it/s, train/loss=4.550] Epoch 0: | | 416/? [02:55<00:00, 2.37it/s, train/loss=3.270] Epoch 0: | | 417/? [02:55<00:00, 2.37it/s, train/loss=3.270] Epoch 0: | | 417/? [02:55<00:00, 2.37it/s, train/loss=4.530] Epoch 0: | | 418/? [02:56<00:00, 2.37it/s, train/loss=4.530] Epoch 0: | | 418/? [02:56<00:00, 2.37it/s, train/loss=3.370] Epoch 0: | | 419/? [02:56<00:00, 2.38it/s, train/loss=3.370] Epoch 0: | | 419/? [02:56<00:00, 2.38it/s, train/loss=4.520] Epoch 0: | | 420/? [02:56<00:00, 2.38it/s, train/loss=4.520] Epoch 0: | | 420/? [02:56<00:00, 2.38it/s, train/loss=2.730] Epoch 0: | | 421/? [02:57<00:00, 2.37it/s, train/loss=2.730] Epoch 0: | | 421/? [02:57<00:00, 2.37it/s, train/loss=0.665] Epoch 0: | | 422/? [02:58<00:00, 2.37it/s, train/loss=0.665] Epoch 0: | | 422/? [02:58<00:00, 2.37it/s, train/loss=2.290] Epoch 0: | | 423/? [02:58<00:00, 2.37it/s, train/loss=2.290] Epoch 0: | | 423/? [02:58<00:00, 2.37it/s, train/loss=4.540] Epoch 0: | | 424/? [02:58<00:00, 2.38it/s, train/loss=4.540] Epoch 0: | | 424/? [02:58<00:00, 2.38it/s, train/loss=2.300] Epoch 0: | | 425/? [02:58<00:00, 2.38it/s, train/loss=2.300] Epoch 0: | | 425/? [02:58<00:00, 2.38it/s, train/loss=4.540] Epoch 0: | | 426/? [02:58<00:00, 2.38it/s, train/loss=4.540] Epoch 0: | | 426/? [02:58<00:00, 2.38it/s, train/loss=1.450] Epoch 0: | | 427/? [02:59<00:00, 2.39it/s, train/loss=1.450] Epoch 0: | | 427/? [02:59<00:00, 2.38it/s, train/loss=4.500] Epoch 0: | | 428/? [02:59<00:00, 2.39it/s, train/loss=4.500] Epoch 0: | | 428/? [02:59<00:00, 2.39it/s, train/loss=0.830] Epoch 0: | | 429/? [02:59<00:00, 2.39it/s, train/loss=0.830] Epoch 0: | | 429/? [02:59<00:00, 2.39it/s, train/loss=4.490] Epoch 0: | | 430/? [02:59<00:00, 2.39it/s, train/loss=4.490] Epoch 0: | | 430/? [02:59<00:00, 2.39it/s, train/loss=0.742] Epoch 0: | | 431/? [03:00<00:00, 2.38it/s, train/loss=0.742] Epoch 0: | | 431/? [03:00<00:00, 2.38it/s, train/loss=1.350] Epoch 0: | | 432/? [03:01<00:00, 2.38it/s, train/loss=1.350] Epoch 0: | | 432/? [03:01<00:00, 2.38it/s, train/loss=2.160] Epoch 0: | | 433/? [03:01<00:00, 2.39it/s, train/loss=2.160] Epoch 0: | | 433/? [03:01<00:00, 2.39it/s, train/loss=4.540] Epoch 0: | | 434/? [03:01<00:00, 2.39it/s, train/loss=4.540] Epoch 0: | | 434/? [03:01<00:00, 2.39it/s, train/loss=2.430] Epoch 0: | | 435/? [03:01<00:00, 2.39it/s, train/loss=2.430] Epoch 0: | | 435/? [03:01<00:00, 2.39it/s, train/loss=4.530] Epoch 0: | | 436/? [03:02<00:00, 2.39it/s, train/loss=4.530] Epoch 0: | | 436/? [03:02<00:00, 2.39it/s, train/loss=3.150] Epoch 0: | | 437/? [03:02<00:00, 2.40it/s, train/loss=3.150] Epoch 0: | | 437/? [03:02<00:00, 2.40it/s, train/loss=4.510] Epoch 0: | | 438/? [03:02<00:00, 2.40it/s, train/loss=4.510] Epoch 0: | | 438/? [03:02<00:00, 2.40it/s, train/loss=2.300] Epoch 0: | | 439/? [03:02<00:00, 2.40it/s, train/loss=2.300] Epoch 0: | | 439/? [03:02<00:00, 2.40it/s, train/loss=4.510] Epoch 0: | | 440/? [03:03<00:00, 2.40it/s, train/loss=4.510] Epoch 0: | | 440/? [03:03<00:00, 2.40it/s, train/loss=3.060] Epoch 0: | | 441/? [03:03<00:00, 2.40it/s, train/loss=3.060] Epoch 0: | | 441/? [03:03<00:00, 2.40it/s, train/loss=1.380] Epoch 0: | | 442/? [03:04<00:00, 2.40it/s, train/loss=1.380] Epoch 0: | | 442/? [03:04<00:00, 2.40it/s, train/loss=2.210] Epoch 0: | | 443/? [03:04<00:00, 2.40it/s, train/loss=2.210] Epoch 0: | | 443/? [03:04<00:00, 2.40it/s, train/loss=4.530] Epoch 0: | | 444/? [03:04<00:00, 2.40it/s, train/loss=4.530] Epoch 0: | | 444/? [03:04<00:00, 2.40it/s, train/loss=1.410] Epoch 0: | | 445/? [03:04<00:00, 2.41it/s, train/loss=1.410] Epoch 0: | | 445/? [03:04<00:00, 2.41it/s, train/loss=4.520] Epoch 0: | | 446/? [03:05<00:00, 2.41it/s, train/loss=4.520] Epoch 0: | | 446/? [03:05<00:00, 2.41it/s, train/loss=0.731] Epoch 0: | | 447/? [03:05<00:00, 2.41it/s, train/loss=0.731] Epoch 0: | | 447/? [03:05<00:00, 2.41it/s, train/loss=4.500] Epoch 0: | | 448/? [03:05<00:00, 2.41it/s, train/loss=4.500] Epoch 0: | | 448/? [03:05<00:00, 2.41it/s, train/loss=1.490] Epoch 0: | | 449/? [03:05<00:00, 2.42it/s, train/loss=1.490] Epoch 0: | | 449/? [03:05<00:00, 2.42it/s, train/loss=4.470] Epoch 0: | | 450/? [03:06<00:00, 2.42it/s, train/loss=4.470] Epoch 0: | | 450/? [03:06<00:00, 2.42it/s, train/loss=3.620] Epoch 0: | | 451/? [03:07<00:00, 2.41it/s, train/loss=3.620] Epoch 0: | | 451/? [03:07<00:00, 2.41it/s, train/loss=3.350] Epoch 0: | | 452/? [03:07<00:00, 2.41it/s, train/loss=3.350] Epoch 0: | | 452/? [03:07<00:00, 2.41it/s, train/loss=1.390] Epoch 0: | | 453/? [03:07<00:00, 2.42it/s, train/loss=1.390] Epoch 0: | | 453/? [03:07<00:00, 2.42it/s, train/loss=4.420] Epoch 0: | | 454/? [03:07<00:00, 2.42it/s, train/loss=4.420] Epoch 0: | | 454/? [03:07<00:00, 2.42it/s, train/loss=2.750] Epoch 0: | | 455/? [03:07<00:00, 2.42it/s, train/loss=2.750] Epoch 0: | | 455/? [03:07<00:00, 2.42it/s, train/loss=4.400] Epoch 0: | | 456/? [03:08<00:00, 2.42it/s, train/loss=4.400] Epoch 0: | | 456/? [03:08<00:00, 2.42it/s, train/loss=1.430] Epoch 0: | | 457/? [03:08<00:00, 2.43it/s, train/loss=1.430] Epoch 0: | | 457/? [03:08<00:00, 2.43it/s, train/loss=4.380] Epoch 0: | | 458/? [03:08<00:00, 2.43it/s, train/loss=4.380] Epoch 0: | | 458/? [03:08<00:00, 2.43it/s, train/loss=1.900] Epoch 0: | | 459/? [03:08<00:00, 2.43it/s, train/loss=1.900] Epoch 0: | | 459/? [03:08<00:00, 2.43it/s, train/loss=4.350] Epoch 0: | | 460/? [03:09<00:00, 2.43it/s, train/loss=4.350] Epoch 0: | | 460/? [03:09<00:00, 2.43it/s, train/loss=3.030] Epoch 0: | | 461/? [03:10<00:00, 2.42it/s, train/loss=3.030] Epoch 0: | | 461/? [03:10<00:00, 2.42it/s, train/loss=2.120] Epoch 0: | | 462/? [03:10<00:00, 2.43it/s, train/loss=2.120] Epoch 0: | | 462/? [03:10<00:00, 2.42it/s, train/loss=1.960] Epoch 0: | | 463/? [03:10<00:00, 2.43it/s, train/loss=1.960] Epoch 0: | | 463/? [03:10<00:00, 2.43it/s, train/loss=4.340] Epoch 0: | | 464/? [03:10<00:00, 2.43it/s, train/loss=4.340] Epoch 0: | | 464/? [03:10<00:00, 2.43it/s, train/loss=1.650] Epoch 0: | | 465/? [03:11<00:00, 2.43it/s, train/loss=1.650] Epoch 0: | | 465/? [03:11<00:00, 2.43it/s, train/loss=4.340] Epoch 0: | | 466/? [03:11<00:00, 2.43it/s, train/loss=4.340] Epoch 0: | | 466/? [03:11<00:00, 2.43it/s, train/loss=0.967] Epoch 0: | | 467/? [03:11<00:00, 2.44it/s, train/loss=0.967] Epoch 0: | | 467/? [03:11<00:00, 2.44it/s, train/loss=4.320] Epoch 0: | | 468/? [03:11<00:00, 2.44it/s, train/loss=4.320] Epoch 0: | | 468/? [03:11<00:00, 2.44it/s, train/loss=3.190] Epoch 0: | | 469/? [03:11<00:00, 2.44it/s, train/loss=3.190] Epoch 0: | | 469/? [03:11<00:00, 2.44it/s, train/loss=4.310] Epoch 0: | | 470/? [03:12<00:00, 2.44it/s, train/loss=4.310] Epoch 0: | | 470/? [03:12<00:00, 2.44it/s, train/loss=2.530] Epoch 0: | | 471/? [03:13<00:00, 2.44it/s, train/loss=2.530] Epoch 0: | | 471/? [03:13<00:00, 2.44it/s, train/loss=2.540] Epoch 0: | | 472/? [03:13<00:00, 2.44it/s, train/loss=2.540] Epoch 0: | | 472/? [03:13<00:00, 2.44it/s, train/loss=1.790] Epoch 0: | | 473/? [03:13<00:00, 2.44it/s, train/loss=1.790] Epoch 0: | | 473/? [03:13<00:00, 2.44it/s, train/loss=4.330] Epoch 0: | | 474/? [03:14<00:00, 2.44it/s, train/loss=4.330] Epoch 0: | | 474/? [03:14<00:00, 2.44it/s, train/loss=3.140] Epoch 0: | | 475/? [03:14<00:00, 2.45it/s, train/loss=3.140] Epoch 0: | | 475/? [03:14<00:00, 2.45it/s, train/loss=4.320] Epoch 0: | | 476/? [03:14<00:00, 2.45it/s, train/loss=4.320] Epoch 0: | | 476/? [03:14<00:00, 2.45it/s, train/loss=2.120] Epoch 0: | | 477/? [03:14<00:00, 2.45it/s, train/loss=2.120] Epoch 0: | | 477/? [03:14<00:00, 2.45it/s, train/loss=4.300] Epoch 0: | | 478/? [03:15<00:00, 2.45it/s, train/loss=4.300] Epoch 0: | | 478/? [03:15<00:00, 2.45it/s, train/loss=1.920] Epoch 0: | | 479/? [03:15<00:00, 2.46it/s, train/loss=1.920] Epoch 0: | | 479/? [03:15<00:00, 2.46it/s, train/loss=4.280] Epoch 0: | | 480/? [03:15<00:00, 2.46it/s, train/loss=4.280] Epoch 0: | | 480/? [03:15<00:00, 2.46it/s, train/loss=2.280] Epoch 0: | | 481/? [03:16<00:00, 2.45it/s, train/loss=2.280] Epoch 0: | | 481/? [03:16<00:00, 2.45it/s, train/loss=0.513] Epoch 0: | | 482/? [03:16<00:00, 2.45it/s, train/loss=0.513] Epoch 0: | | 482/? [03:16<00:00, 2.45it/s, train/loss=0.849] Epoch 0: | | 483/? [03:16<00:00, 2.45it/s, train/loss=0.849] Epoch 0: | | 483/? [03:16<00:00, 2.45it/s, train/loss=4.270] Epoch 0: | | 484/? [03:17<00:00, 2.45it/s, train/loss=4.270] Epoch 0: | | 484/? [03:17<00:00, 2.45it/s, train/loss=1.970] Epoch 0: | | 485/? [03:17<00:00, 2.46it/s, train/loss=1.970] Epoch 0: | | 485/? [03:17<00:00, 2.46it/s, train/loss=4.250] Epoch 0: | | 486/? [03:17<00:00, 2.46it/s, train/loss=4.250] Epoch 0: | | 486/? [03:17<00:00, 2.46it/s, train/loss=1.330] Epoch 0: | | 487/? [03:17<00:00, 2.46it/s, train/loss=1.330] Epoch 0: | | 487/? [03:17<00:00, 2.46it/s, train/loss=4.240] Epoch 0: | | 488/? [03:18<00:00, 2.46it/s, train/loss=4.240] Epoch 0: | | 488/? [03:18<00:00, 2.46it/s, train/loss=3.980] Epoch 0: | | 489/? [03:18<00:00, 2.47it/s, train/loss=3.980] Epoch 0: | | 489/? [03:18<00:00, 2.47it/s, train/loss=4.250] Epoch 0: | | 490/? [03:18<00:00, 2.47it/s, train/loss=4.250] Epoch 0: | | 490/? [03:18<00:00, 2.47it/s, train/loss=3.170] Epoch 0: | | 491/? [03:19<00:00, 2.46it/s, train/loss=3.170] Epoch 0: | | 491/? [03:19<00:00, 2.46it/s, train/loss=3.520] Epoch 0: | | 492/? [03:19<00:00, 2.46it/s, train/loss=3.520] Epoch 0: | | 492/? [03:19<00:00, 2.46it/s, train/loss=1.780] Epoch 0: | | 493/? [03:19<00:00, 2.47it/s, train/loss=1.780] Epoch 0: | | 493/? [03:19<00:00, 2.47it/s, train/loss=4.330] Epoch 0: | | 494/? [03:20<00:00, 2.47it/s, train/loss=4.330] Epoch 0: | | 494/? [03:20<00:00, 2.46it/s, train/loss=2.840] Epoch 0: | | 495/? [03:20<00:00, 2.47it/s, train/loss=2.840] Epoch 0: | | 495/? [03:20<00:00, 2.47it/s, train/loss=4.350] Epoch 0: | | 496/? [03:20<00:00, 2.47it/s, train/loss=4.350] Epoch 0: | | 496/? [03:20<00:00, 2.47it/s, train/loss=2.180] Epoch 0: | | 497/? [03:21<00:00, 2.47it/s, train/loss=2.180] Epoch 0: | | 497/? [03:21<00:00, 2.47it/s, train/loss=4.350] Epoch 0: | | 498/? [03:21<00:00, 2.47it/s, train/loss=4.350] Epoch 0: | | 498/? [03:21<00:00, 2.47it/s, train/loss=0.676] Epoch 0: | | 499/? [03:21<00:00, 2.48it/s, train/loss=0.676] Epoch 0: | | 499/? [03:21<00:00, 2.48it/s, train/loss=4.340] Epoch 0: | | 500/? [03:21<00:00, 2.48it/s, train/loss=4.340] Epoch 0: | | 500/? [03:21<00:00, 2.48it/s, train/loss=1.350] Epoch 0: | | 501/? [03:22<00:00, 2.47it/s, train/loss=1.350] Epoch 0: | | 501/? [03:22<00:00, 2.47it/s, train/loss=1.280] Epoch 0: | | 502/? [03:23<00:00, 2.47it/s, train/loss=1.280] Epoch 0: | | 502/? [03:23<00:00, 2.47it/s, train/loss=1.450] Epoch 0: | | 503/? [03:23<00:00, 2.47it/s, train/loss=1.450] Epoch 0: | | 503/? [03:23<00:00, 2.47it/s, train/loss=4.360] Epoch 0: | | 504/? [03:23<00:00, 2.47it/s, train/loss=4.360] Epoch 0: | | 504/? [03:23<00:00, 2.47it/s, train/loss=2.170] Epoch 0: | | 505/? [03:23<00:00, 2.48it/s, train/loss=2.170] Epoch 0: | | 505/? [03:23<00:00, 2.48it/s, train/loss=4.350] Epoch 0: | | 506/? [03:24<00:00, 2.48it/s, train/loss=4.350] Epoch 0: | | 506/? [03:24<00:00, 2.48it/s, train/loss=1.810] Epoch 0: | | 507/? [03:24<00:00, 2.48it/s, train/loss=1.810] Epoch 0: | | 507/? [03:24<00:00, 2.48it/s, train/loss=4.340] Epoch 0: | | 508/? [03:24<00:00, 2.48it/s, train/loss=4.340] Epoch 0: | | 508/? [03:24<00:00, 2.48it/s, train/loss=2.820] Epoch 0: | | 509/? [03:24<00:00, 2.49it/s, train/loss=2.820] Epoch 0: | | 509/? [03:24<00:00, 2.49it/s, train/loss=4.320] Epoch 0: | | 510/? [03:25<00:00, 2.49it/s, train/loss=4.320] Epoch 0: | | 510/? [03:25<00:00, 2.49it/s, train/loss=1.890] Epoch 0: | | 511/? [03:25<00:00, 2.48it/s, train/loss=1.890] Epoch 0: | | 511/? [03:26<00:00, 2.48it/s, train/loss=1.120] Epoch 0: | | 512/? [03:26<00:00, 2.48it/s, train/loss=1.120] Epoch 0: | | 512/? [03:26<00:00, 2.48it/s, train/loss=2.630] Epoch 0: | | 513/? [03:26<00:00, 2.49it/s, train/loss=2.630] Epoch 0: | | 513/? [03:26<00:00, 2.49it/s, train/loss=4.340] Epoch 0: | | 514/? [03:26<00:00, 2.49it/s, train/loss=4.340] Epoch 0: | | 514/? [03:26<00:00, 2.49it/s, train/loss=0.942] Epoch 0: | | 515/? [03:26<00:00, 2.49it/s, train/loss=0.942] Epoch 0: | | 515/? [03:26<00:00, 2.49it/s, train/loss=4.340] Epoch 0: | | 516/? [03:27<00:00, 2.49it/s, train/loss=4.340] Epoch 0: | | 516/? [03:27<00:00, 2.49it/s, train/loss=1.110] Epoch 0: | | 517/? [03:27<00:00, 2.49it/s, train/loss=1.110] Epoch 0: | | 517/? [03:27<00:00, 2.49it/s, train/loss=4.320] Epoch 0: | | 518/? [03:27<00:00, 2.49it/s, train/loss=4.320] Epoch 0: | | 518/? [03:27<00:00, 2.49it/s, train/loss=4.760] Epoch 0: | | 519/? [03:27<00:00, 2.50it/s, train/loss=4.760] Epoch 0: | | 519/? [03:27<00:00, 2.50it/s, train/loss=4.300] Epoch 0: | | 520/? [03:28<00:00, 2.50it/s, train/loss=4.300] Epoch 0: | | 520/? [03:28<00:00, 2.50it/s, train/loss=1.390] Epoch 0: | | 521/? [03:29<00:00, 2.49it/s, train/loss=1.390] Epoch 0: | | 521/? [03:29<00:00, 2.49it/s, train/loss=1.430] Epoch 0: | | 522/? [03:29<00:00, 2.49it/s, train/loss=1.430] Epoch 0: | | 522/? [03:29<00:00, 2.49it/s, train/loss=1.370] Epoch 0: | | 523/? [03:29<00:00, 2.50it/s, train/loss=1.370] Epoch 0: | | 523/? [03:29<00:00, 2.50it/s, train/loss=4.260] Epoch 0: | | 524/? [03:29<00:00, 2.50it/s, train/loss=4.260] Epoch 0: | | 524/? [03:29<00:00, 2.50it/s, train/loss=1.990] Epoch 0: | | 525/? [03:29<00:00, 2.50it/s, train/loss=1.990] Epoch 0: | | 525/? [03:29<00:00, 2.50it/s, train/loss=4.240] Epoch 0: | | 526/? [03:30<00:00, 2.50it/s, train/loss=4.240] Epoch 0: | | 526/? [03:30<00:00, 2.50it/s, train/loss=1.040] Epoch 0: | | 527/? [03:30<00:00, 2.50it/s, train/loss=1.040] Epoch 0: | | 527/? [03:30<00:00, 2.50it/s, train/loss=4.210] Epoch 0: | | 528/? [03:30<00:00, 2.50it/s, train/loss=4.210] Epoch 0: | | 528/? [03:30<00:00, 2.50it/s, train/loss=1.550] Epoch 0: | | 529/? [03:30<00:00, 2.51it/s, train/loss=1.550] Epoch 0: | | 529/? [03:30<00:00, 2.51it/s, train/loss=4.190] Epoch 0: | | 530/? [03:31<00:00, 2.51it/s, train/loss=4.190] Epoch 0: | | 530/? [03:31<00:00, 2.51it/s, train/loss=2.190] Epoch 0: | | 531/? [03:32<00:00, 2.50it/s, train/loss=2.190] Epoch 0: | | 531/? [03:32<00:00, 2.50it/s, train/loss=2.480] Epoch 0: | | 532/? [03:32<00:00, 2.50it/s, train/loss=2.480] Epoch 0: | | 532/? [03:32<00:00, 2.50it/s, train/loss=3.060] Epoch 0: | | 533/? [03:32<00:00, 2.51it/s, train/loss=3.060] Epoch 0: | | 533/? [03:32<00:00, 2.51it/s, train/loss=4.170] Epoch 0: | | 534/? [03:33<00:00, 2.51it/s, train/loss=4.170] Epoch 0: | | 534/? [03:33<00:00, 2.51it/s, train/loss=1.580] Epoch 0: | | 535/? [03:33<00:00, 2.51it/s, train/loss=1.580] Epoch 0: | | 535/? [03:33<00:00, 2.51it/s, train/loss=4.150] Epoch 0: | | 536/? [03:33<00:00, 2.51it/s, train/loss=4.150] Epoch 0: | | 536/? [03:33<00:00, 2.51it/s, train/loss=2.330] Epoch 0: | | 537/? [03:33<00:00, 2.51it/s, train/loss=2.330] Epoch 0: | | 537/? [03:33<00:00, 2.51it/s, train/loss=4.130] Epoch 0: | | 538/? [03:33<00:00, 2.51it/s, train/loss=4.130] Epoch 0: | | 538/? [03:33<00:00, 2.51it/s, train/loss=1.740] Epoch 0: | | 539/? [03:34<00:00, 2.52it/s, train/loss=1.740] Epoch 0: | | 539/? [03:34<00:00, 2.52it/s, train/loss=4.120] Epoch 0: | | 540/? [03:34<00:00, 2.52it/s, train/loss=4.120] Epoch 0: | | 540/? [03:34<00:00, 2.52it/s, train/loss=2.130] Epoch 0: | | 541/? [03:35<00:00, 2.51it/s, train/loss=2.130] Epoch 0: | | 541/? [03:35<00:00, 2.51it/s, train/loss=2.980] Epoch 0: | | 542/? [03:35<00:00, 2.51it/s, train/loss=2.980] Epoch 0: | | 542/? [03:35<00:00, 2.51it/s, train/loss=1.930] Epoch 0: | | 543/? [03:35<00:00, 2.52it/s, train/loss=1.930] Epoch 0: | | 543/? [03:35<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 544/? [03:36<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 544/? [03:36<00:00, 2.52it/s, train/loss=2.970] Epoch 0: | | 545/? [03:36<00:00, 2.52it/s, train/loss=2.970] Epoch 0: | | 545/? [03:36<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 546/? [03:36<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 546/? [03:36<00:00, 2.52it/s, train/loss=1.780] Epoch 0: | | 547/? [03:36<00:00, 2.52it/s, train/loss=1.780] Epoch 0: | | 547/? [03:36<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 548/? [03:37<00:00, 2.52it/s, train/loss=4.130] Epoch 0: | | 548/? [03:37<00:00, 2.52it/s, train/loss=2.270] Epoch 0: | | 549/? [03:37<00:00, 2.53it/s, train/loss=2.270] Epoch 0: | | 549/? [03:37<00:00, 2.53it/s, train/loss=4.110] Epoch 0: | | 550/? [03:37<00:00, 2.53it/s, train/loss=4.110] Epoch 0: | | 550/? [03:37<00:00, 2.53it/s, train/loss=2.440] Epoch 0: | | 551/? [03:38<00:00, 2.52it/s, train/loss=2.440] Epoch 0: | | 551/? [03:38<00:00, 2.52it/s, train/loss=2.390] Epoch 0: | | 552/? [03:38<00:00, 2.52it/s, train/loss=2.390] Epoch 0: | | 552/? [03:38<00:00, 2.52it/s, train/loss=1.130] Epoch 0: | | 553/? [03:38<00:00, 2.53it/s, train/loss=1.130] Epoch 0: | | 553/? [03:38<00:00, 2.53it/s, train/loss=4.110] Epoch 0: | | 554/? [03:39<00:00, 2.53it/s, train/loss=4.110] Epoch 0: | | 554/? [03:39<00:00, 2.53it/s, train/loss=0.801] Epoch 0: | | 555/? [03:39<00:00, 2.53it/s, train/loss=0.801] Epoch 0: | | 555/? [03:39<00:00, 2.53it/s, train/loss=4.090] Epoch 0: | | 556/? [03:39<00:00, 2.53it/s, train/loss=4.090] Epoch 0: | | 556/? [03:39<00:00, 2.53it/s, train/loss=3.380] Epoch 0: | | 557/? [03:39<00:00, 2.53it/s, train/loss=3.380] Epoch 0: | | 557/? [03:39<00:00, 2.53it/s, train/loss=4.070] Epoch 0: | | 558/? [03:40<00:00, 2.53it/s, train/loss=4.070] Epoch 0: | | 558/? [03:40<00:00, 2.53it/s, train/loss=2.010] Epoch 0: | | 559/? [03:40<00:00, 2.54it/s, train/loss=2.010] Epoch 0: | | 559/? [03:40<00:00, 2.54it/s, train/loss=4.050] Epoch 0: | | 560/? [03:40<00:00, 2.54it/s, train/loss=4.050] Epoch 0: | | 560/? [03:40<00:00, 2.54it/s, train/loss=1.340] Epoch 0: | | 561/? [03:41<00:00, 2.53it/s, train/loss=1.340] Epoch 0: | | 561/? [03:41<00:00, 2.53it/s, train/loss=2.310] Epoch 0: | | 562/? [03:42<00:00, 2.53it/s, train/loss=2.310] Epoch 0: | | 562/? [03:42<00:00, 2.53it/s, train/loss=0.956] Epoch 0: | | 563/? [03:42<00:00, 2.53it/s, train/loss=0.956] Epoch 0: | | 563/? [03:42<00:00, 2.53it/s, train/loss=4.030] Epoch 0: | | 564/? [03:42<00:00, 2.53it/s, train/loss=4.030] Epoch 0: | | 564/? [03:42<00:00, 2.53it/s, train/loss=3.390] Epoch 0: | | 565/? [03:42<00:00, 2.54it/s, train/loss=3.390] Epoch 0: | | 565/? [03:42<00:00, 2.54it/s, train/loss=4.010] Epoch 0: | | 566/? [03:43<00:00, 2.54it/s, train/loss=4.010] Epoch 0: | | 566/? [03:43<00:00, 2.54it/s, train/loss=2.930] Epoch 0: | | 567/? [03:43<00:00, 2.54it/s, train/loss=2.930] Epoch 0: | | 567/? [03:43<00:00, 2.54it/s, train/loss=4.000] Epoch 0: | | 568/? [03:43<00:00, 2.54it/s, train/loss=4.000] Epoch 0: | | 568/? [03:43<00:00, 2.54it/s, train/loss=2.650] Epoch 0: | | 569/? [03:43<00:00, 2.55it/s, train/loss=2.650] Epoch 0: | | 569/? [03:43<00:00, 2.55it/s, train/loss=3.990] Epoch 0: | | 570/? [03:43<00:00, 2.55it/s, train/loss=3.990] Epoch 0: | | 570/? [03:43<00:00, 2.55it/s, train/loss=0.636] Epoch 0: | | 571/? [03:44<00:00, 2.54it/s, train/loss=0.636] Epoch 0: | | 571/? [03:44<00:00, 2.54it/s, train/loss=1.320] Epoch 0: | | 572/? [03:45<00:00, 2.54it/s, train/loss=1.320] Epoch 0: | | 572/? [03:45<00:00, 2.54it/s, train/loss=0.937] Epoch 0: | | 573/? [03:45<00:00, 2.54it/s, train/loss=0.937] Epoch 0: | | 573/? [03:45<00:00, 2.54it/s, train/loss=4.000] Epoch 0: | | 574/? [03:45<00:00, 2.54it/s, train/loss=4.000] Epoch 0: | | 574/? [03:45<00:00, 2.54it/s, train/loss=0.672] Epoch 0: | | 575/? [03:45<00:00, 2.55it/s, train/loss=0.672] Epoch 0: | | 575/? [03:45<00:00, 2.55it/s, train/loss=3.980] Epoch 0: | | 576/? [03:46<00:00, 2.55it/s, train/loss=3.980] Epoch 0: | | 576/? [03:46<00:00, 2.55it/s, train/loss=2.170] Epoch 0: | | 577/? [03:46<00:00, 2.55it/s, train/loss=2.170] Epoch 0: | | 577/? [03:46<00:00, 2.55it/s, train/loss=3.970] Epoch 0: | | 578/? [03:46<00:00, 2.55it/s, train/loss=3.970] Epoch 0: | | 578/? [03:46<00:00, 2.55it/s, train/loss=1.480] Epoch 0: | | 579/? [03:46<00:00, 2.55it/s, train/loss=1.480] Epoch 0: | | 579/? [03:46<00:00, 2.55it/s, train/loss=3.960] Epoch 0: | | 580/? [03:47<00:00, 2.55it/s, train/loss=3.960] Epoch 0: | | 580/? [03:47<00:00, 2.55it/s, train/loss=3.060] Epoch 0: | | 581/? [03:47<00:00, 2.55it/s, train/loss=3.060] Epoch 0: | | 581/? [03:48<00:00, 2.55it/s, train/loss=2.920] Epoch 0: | | 582/? [03:48<00:00, 2.55it/s, train/loss=2.920] Epoch 0: | | 582/? [03:48<00:00, 2.55it/s, train/loss=0.917] Epoch 0: | | 583/? [03:48<00:00, 2.55it/s, train/loss=0.917] Epoch 0: | | 583/? [03:48<00:00, 2.55it/s, train/loss=3.960] Epoch 0: | | 584/? [03:48<00:00, 2.55it/s, train/loss=3.960] Epoch 0: | | 584/? [03:48<00:00, 2.55it/s, train/loss=2.450] Epoch 0: | | 585/? [03:49<00:00, 2.55it/s, train/loss=2.450] Epoch 0: | | 585/? [03:49<00:00, 2.55it/s, train/loss=3.950] Epoch 0: | | 586/? [03:49<00:00, 2.55it/s, train/loss=3.950] Epoch 0: | | 586/? [03:49<00:00, 2.55it/s, train/loss=2.180] Epoch 0: | | 587/? [03:49<00:00, 2.56it/s, train/loss=2.180] Epoch 0: | | 587/? [03:49<00:00, 2.56it/s, train/loss=3.920] Epoch 0: | | 588/? [03:49<00:00, 2.56it/s, train/loss=3.920] Epoch 0: | | 588/? [03:49<00:00, 2.56it/s, train/loss=2.390] Epoch 0: | | 589/? [03:49<00:00, 2.56it/s, train/loss=2.390] Epoch 0: | | 589/? [03:49<00:00, 2.56it/s, train/loss=3.920] Epoch 0: | | 590/? [03:50<00:00, 2.56it/s, train/loss=3.920] Epoch 0: | | 590/? [03:50<00:00, 2.56it/s, train/loss=3.030] Epoch 0: | | 591/? [03:51<00:00, 2.56it/s, train/loss=3.030] Epoch 0: | | 591/? [03:51<00:00, 2.56it/s, train/loss=1.200] Epoch 0: | | 592/? [03:51<00:00, 2.56it/s, train/loss=1.200] Epoch 0: | | 592/? [03:51<00:00, 2.56it/s, train/loss=0.798] Epoch 0: | | 593/? [03:51<00:00, 2.56it/s, train/loss=0.798] Epoch 0: | | 593/? [03:51<00:00, 2.56it/s, train/loss=3.990] Epoch 0: | | 594/? [03:52<00:00, 2.56it/s, train/loss=3.990] Epoch 0: | | 594/? [03:52<00:00, 2.56it/s, train/loss=1.160] Epoch 0: | | 595/? [03:52<00:00, 2.56it/s, train/loss=1.160] Epoch 0: | | 595/? [03:52<00:00, 2.56it/s, train/loss=4.010] Epoch 0: | | 596/? [03:52<00:00, 2.56it/s, train/loss=4.010] Epoch 0: | | 596/? [03:52<00:00, 2.56it/s, train/loss=3.640] Epoch 0: | | 597/? [03:52<00:00, 2.57it/s, train/loss=3.640] Epoch 0: | | 597/? [03:52<00:00, 2.57it/s, train/loss=4.010] Epoch 0: | | 598/? [03:53<00:00, 2.57it/s, train/loss=4.010] Epoch 0: | | 598/? [03:53<00:00, 2.57it/s, train/loss=2.290] Epoch 0: | | 599/? [03:53<00:00, 2.57it/s, train/loss=2.290] Epoch 0: | | 599/? [03:53<00:00, 2.57it/s, train/loss=4.020] Epoch 0: | | 600/? [03:53<00:00, 2.57it/s, train/loss=4.020] Epoch 0: | | 600/? [03:53<00:00, 2.57it/s, train/loss=2.900] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.54it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.56it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.57it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.60it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:04, 8.62it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:03, 8.65it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.68it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.72it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:03, 8.75it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 8.82it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 8.86it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 8.55it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:03, 8.54it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:03, 8.59it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 8.61it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 8.62it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 8.63it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:02, 8.66it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 8.69it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 8.69it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 8.71it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:02, 8.72it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 8.75it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 8.78it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 8.78it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 8.80it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:03<00:01, 8.81it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 8.82it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 8.82it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 8.83it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:01, 8.85it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 8.86it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 8.86it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 8.88it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 8.87it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:04<00:00, 8.84it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 8.83it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 8.83it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 8.83it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 8.82it/s] Epoch 0: | | 600/? [04:04<00:00, 2.46it/s, train/loss=2.900] Epoch 0: | | 601/? [04:19<00:00, 2.31it/s, train/loss=2.900] Epoch 0: | | 601/? [04:19<00:00, 2.31it/s, train/loss=1.340] Epoch 0: | | 602/? [04:19<00:00, 2.32it/s, train/loss=1.340] Epoch 0: | | 602/? [04:20<00:00, 2.32it/s, train/loss=1.860] Epoch 0: | | 603/? [04:20<00:00, 2.32it/s, train/loss=1.860] Epoch 0: | | 603/? [04:20<00:00, 2.32it/s, train/loss=4.060] Epoch 0: | | 604/? [04:20<00:00, 2.32it/s, train/loss=4.060] Epoch 0: | | 604/? [04:20<00:00, 2.32it/s, train/loss=2.570] Epoch 0: | | 605/? [04:20<00:00, 2.32it/s, train/loss=2.570] Epoch 0: | | 605/? [04:20<00:00, 2.32it/s, train/loss=4.070] Epoch 0: | | 606/? [04:20<00:00, 2.32it/s, train/loss=4.070] Epoch 0: | | 606/? [04:20<00:00, 2.32it/s, train/loss=3.590] Epoch 0: | | 607/? [04:20<00:00, 2.33it/s, train/loss=3.590] Epoch 0: | | 607/? [04:20<00:00, 2.33it/s, train/loss=4.070] Epoch 0: | | 608/? [04:21<00:00, 2.33it/s, train/loss=4.070] Epoch 0: | | 608/? [04:21<00:00, 2.33it/s, train/loss=3.050] Epoch 0: | | 609/? [04:21<00:00, 2.33it/s, train/loss=3.050] Epoch 0: | | 609/? [04:21<00:00, 2.33it/s, train/loss=4.060] Epoch 0: | | 610/? [04:21<00:00, 2.33it/s, train/loss=4.060] Epoch 0: | | 610/? [04:21<00:00, 2.33it/s, train/loss=1.530] Epoch 0: | | 611/? [04:22<00:00, 2.33it/s, train/loss=1.530] Epoch 0: | | 611/? [04:22<00:00, 2.32it/s, train/loss=1.450] Epoch 0: | | 612/? [04:23<00:00, 2.33it/s, train/loss=1.450] Epoch 0: | | 612/? [04:23<00:00, 2.33it/s, train/loss=1.410] Epoch 0: | | 613/? [04:23<00:00, 2.33it/s, train/loss=1.410] Epoch 0: | | 613/? [04:23<00:00, 2.33it/s, train/loss=4.070] Epoch 0: | | 614/? [04:23<00:00, 2.33it/s, train/loss=4.070] Epoch 0: | | 614/? [04:23<00:00, 2.33it/s, train/loss=2.290] Epoch 0: | | 615/? [04:23<00:00, 2.33it/s, train/loss=2.290] Epoch 0: | | 615/? [04:23<00:00, 2.33it/s, train/loss=4.050] Epoch 0: | | 616/? [04:24<00:00, 2.33it/s, train/loss=4.050] Epoch 0: | | 616/? [04:24<00:00, 2.33it/s, train/loss=2.550] Epoch 0: | | 617/? [04:24<00:00, 2.34it/s, train/loss=2.550] Epoch 0: | | 617/? [04:24<00:00, 2.34it/s, train/loss=4.010] Epoch 0: | | 618/? [04:24<00:00, 2.34it/s, train/loss=4.010] Epoch 0: | | 618/? [04:24<00:00, 2.34it/s, train/loss=2.220] Epoch 0: | | 619/? [04:24<00:00, 2.34it/s, train/loss=2.220] Epoch 0: | | 619/? [04:24<00:00, 2.34it/s, train/loss=3.990] Epoch 0: | | 620/? [04:25<00:00, 2.34it/s, train/loss=3.990] Epoch 0: | | 620/? [04:25<00:00, 2.34it/s, train/loss=0.898] Epoch 0: | | 621/? [04:25<00:00, 2.33it/s, train/loss=0.898] Epoch 0: | | 621/? [04:26<00:00, 2.33it/s, train/loss=1.590] Epoch 0: | | 622/? [04:26<00:00, 2.34it/s, train/loss=1.590] Epoch 0: | | 622/? [04:26<00:00, 2.34it/s, train/loss=0.873] Epoch 0: | | 623/? [04:26<00:00, 2.34it/s, train/loss=0.873] Epoch 0: | | 623/? [04:26<00:00, 2.34it/s, train/loss=3.970] Epoch 0: | | 624/? [04:26<00:00, 2.34it/s, train/loss=3.970] Epoch 0: | | 624/? [04:26<00:00, 2.34it/s, train/loss=2.080] Epoch 0: | | 625/? [04:26<00:00, 2.34it/s, train/loss=2.080] Epoch 0: | | 625/? [04:26<00:00, 2.34it/s, train/loss=3.940] Epoch 0: | | 626/? [04:27<00:00, 2.34it/s, train/loss=3.940] Epoch 0: | | 626/? [04:27<00:00, 2.34it/s, train/loss=2.700] Epoch 0: | | 627/? [04:27<00:00, 2.35it/s, train/loss=2.700] Epoch 0: | | 627/? [04:27<00:00, 2.35it/s, train/loss=3.920] Epoch 0: | | 628/? [04:27<00:00, 2.35it/s, train/loss=3.920] Epoch 0: | | 628/? [04:27<00:00, 2.35it/s, train/loss=1.280] Epoch 0: | | 629/? [04:27<00:00, 2.35it/s, train/loss=1.280] Epoch 0: | | 629/? [04:27<00:00, 2.35it/s, train/loss=3.910] Epoch 0: | | 630/? [04:28<00:00, 2.35it/s, train/loss=3.910] Epoch 0: | | 630/? [04:28<00:00, 2.35it/s, train/loss=1.190] Epoch 0: | | 631/? [04:29<00:00, 2.35it/s, train/loss=1.190] Epoch 0: | | 631/? [04:29<00:00, 2.34it/s, train/loss=0.802] Epoch 0: | | 632/? [04:29<00:00, 2.35it/s, train/loss=0.802] Epoch 0: | | 632/? [04:29<00:00, 2.35it/s, train/loss=1.520] Epoch 0: | | 633/? [04:29<00:00, 2.35it/s, train/loss=1.520] Epoch 0: | | 633/? [04:29<00:00, 2.35it/s, train/loss=3.940] Epoch 0: | | 634/? [04:29<00:00, 2.35it/s, train/loss=3.940] Epoch 0: | | 634/? [04:29<00:00, 2.35it/s, train/loss=3.810] Epoch 0: | | 635/? [04:29<00:00, 2.35it/s, train/loss=3.810] Epoch 0: | | 635/? [04:29<00:00, 2.35it/s, train/loss=3.930] Epoch 0: | | 636/? [04:30<00:00, 2.35it/s, train/loss=3.930] Epoch 0: | | 636/? [04:30<00:00, 2.35it/s, train/loss=2.680] Epoch 0: | | 637/? [04:30<00:00, 2.36it/s, train/loss=2.680] Epoch 0: | | 637/? [04:30<00:00, 2.36it/s, train/loss=3.910] Epoch 0: | | 638/? [04:30<00:00, 2.36it/s, train/loss=3.910] Epoch 0: | | 638/? [04:30<00:00, 2.36it/s, train/loss=2.430] Epoch 0: | | 639/? [04:30<00:00, 2.36it/s, train/loss=2.430] Epoch 0: | | 639/? [04:30<00:00, 2.36it/s, train/loss=3.890] Epoch 0: | | 640/? [04:31<00:00, 2.36it/s, train/loss=3.890] Epoch 0: | | 640/? [04:31<00:00, 2.36it/s, train/loss=3.000] Epoch 0: | | 641/? [04:32<00:00, 2.36it/s, train/loss=3.000] Epoch 0: | | 641/? [04:32<00:00, 2.35it/s, train/loss=0.737] Epoch 0: | | 642/? [04:32<00:00, 2.36it/s, train/loss=0.737] Epoch 0: | | 642/? [04:32<00:00, 2.36it/s, train/loss=1.870] Epoch 0: | | 643/? [04:32<00:00, 2.36it/s, train/loss=1.870] Epoch 0: | | 643/? [04:32<00:00, 2.36it/s, train/loss=3.870] Epoch 0: | | 644/? [04:33<00:00, 2.36it/s, train/loss=3.870] Epoch 0: | | 644/? [04:33<00:00, 2.36it/s, train/loss=2.900] Epoch 0: | | 645/? [04:33<00:00, 2.36it/s, train/loss=2.900] Epoch 0: | | 645/? [04:33<00:00, 2.36it/s, train/loss=3.850] Epoch 0: | | 646/? [04:33<00:00, 2.36it/s, train/loss=3.850] Epoch 0: | | 646/? [04:33<00:00, 2.36it/s, train/loss=2.790] Epoch 0: | | 647/? [04:33<00:00, 2.37it/s, train/loss=2.790] Epoch 0: | | 647/? [04:33<00:00, 2.37it/s, train/loss=3.830] Epoch 0: | | 648/? [04:33<00:00, 2.37it/s, train/loss=3.830] Epoch 0: | | 648/? [04:33<00:00, 2.37it/s, train/loss=3.090] Epoch 0: | | 649/? [04:33<00:00, 2.37it/s, train/loss=3.090] Epoch 0: | | 649/? [04:34<00:00, 2.37it/s, train/loss=3.810] Epoch 0: | | 650/? [04:34<00:00, 2.37it/s, train/loss=3.810] Epoch 0: | | 650/? [04:34<00:00, 2.37it/s, train/loss=5.800] Epoch 0: | | 651/? [04:35<00:00, 2.36it/s, train/loss=5.800] Epoch 0: | | 651/? [04:35<00:00, 2.36it/s, train/loss=1.430] Epoch 0: | | 652/? [04:35<00:00, 2.36it/s, train/loss=1.430] Epoch 0: | | 652/? [04:35<00:00, 2.36it/s, train/loss=0.542] Epoch 0: | | 653/? [04:35<00:00, 2.37it/s, train/loss=0.542] Epoch 0: | | 653/? [04:35<00:00, 2.37it/s, train/loss=3.840] Epoch 0: | | 654/? [04:36<00:00, 2.37it/s, train/loss=3.840] Epoch 0: | | 654/? [04:36<00:00, 2.37it/s, train/loss=1.890] Epoch 0: | | 655/? [04:36<00:00, 2.37it/s, train/loss=1.890] Epoch 0: | | 655/? [04:36<00:00, 2.37it/s, train/loss=3.850] Epoch 0: | | 656/? [04:36<00:00, 2.37it/s, train/loss=3.850] Epoch 0: | | 656/? [04:36<00:00, 2.37it/s, train/loss=1.940] Epoch 0: | | 657/? [04:36<00:00, 2.37it/s, train/loss=1.940] Epoch 0: | | 657/? [04:36<00:00, 2.37it/s, train/loss=3.850] Epoch 0: | | 658/? [04:37<00:00, 2.37it/s, train/loss=3.850] Epoch 0: | | 658/? [04:37<00:00, 2.37it/s, train/loss=2.310] Epoch 0: | | 659/? [04:37<00:00, 2.38it/s, train/loss=2.310] Epoch 0: | | 659/? [04:37<00:00, 2.38it/s, train/loss=3.850] Epoch 0: | | 660/? [04:37<00:00, 2.38it/s, train/loss=3.850] Epoch 0: | | 660/? [04:37<00:00, 2.38it/s, train/loss=3.240] Epoch 0: | | 661/? [04:38<00:00, 2.37it/s, train/loss=3.240] Epoch 0: | | 661/? [04:38<00:00, 2.37it/s, train/loss=1.370] Epoch 0: | | 662/? [04:38<00:00, 2.37it/s, train/loss=1.370] Epoch 0: | | 662/? [04:38<00:00, 2.37it/s, train/loss=0.638] Epoch 0: | | 663/? [04:38<00:00, 2.38it/s, train/loss=0.638] Epoch 0: | | 663/? [04:38<00:00, 2.38it/s, train/loss=3.890] Epoch 0: | | 664/? [04:39<00:00, 2.38it/s, train/loss=3.890] Epoch 0: | | 664/? [04:39<00:00, 2.38it/s, train/loss=2.390] Epoch 0: | | 665/? [04:39<00:00, 2.38it/s, train/loss=2.390] Epoch 0: | | 665/? [04:39<00:00, 2.38it/s, train/loss=3.900] Epoch 0: | | 666/? [04:39<00:00, 2.38it/s, train/loss=3.900] Epoch 0: | | 666/? [04:39<00:00, 2.38it/s, train/loss=1.330] Epoch 0: | | 667/? [04:39<00:00, 2.38it/s, train/loss=1.330] Epoch 0: | | 667/? [04:39<00:00, 2.38it/s, train/loss=3.870] Epoch 0: | | 668/? [04:40<00:00, 2.38it/s, train/loss=3.870] Epoch 0: | | 668/? [04:40<00:00, 2.38it/s, train/loss=2.550] Epoch 0: | | 669/? [04:40<00:00, 2.39it/s, train/loss=2.550] Epoch 0: | | 669/? [04:40<00:00, 2.39it/s, train/loss=3.870] Epoch 0: | | 670/? [04:40<00:00, 2.39it/s, train/loss=3.870] Epoch 0: | | 670/? [04:40<00:00, 2.39it/s, train/loss=1.670] Epoch 0: | | 671/? [04:41<00:00, 2.38it/s, train/loss=1.670] Epoch 0: | | 671/? [04:41<00:00, 2.38it/s, train/loss=0.788] Epoch 0: | | 672/? [04:41<00:00, 2.38it/s, train/loss=0.788] Epoch 0: | | 672/? [04:42<00:00, 2.38it/s, train/loss=1.160] Epoch 0: | | 673/? [04:42<00:00, 2.39it/s, train/loss=1.160] Epoch 0: | | 673/? [04:42<00:00, 2.39it/s, train/loss=3.890] Epoch 0: | | 674/? [04:42<00:00, 2.39it/s, train/loss=3.890] Epoch 0: | | 674/? [04:42<00:00, 2.39it/s, train/loss=1.260] Epoch 0: | | 675/? [04:42<00:00, 2.39it/s, train/loss=1.260] Epoch 0: | | 675/? [04:42<00:00, 2.39it/s, train/loss=3.880] Epoch 0: | | 676/? [04:42<00:00, 2.39it/s, train/loss=3.880] Epoch 0: | | 676/? [04:42<00:00, 2.39it/s, train/loss=3.090] Epoch 0: | | 677/? [04:43<00:00, 2.39it/s, train/loss=3.090] Epoch 0: | | 677/? [04:43<00:00, 2.39it/s, train/loss=3.870] Epoch 0: | | 678/? [04:43<00:00, 2.39it/s, train/loss=3.870] Epoch 0: | | 678/? [04:43<00:00, 2.39it/s, train/loss=3.090] Epoch 0: | | 679/? [04:43<00:00, 2.40it/s, train/loss=3.090] Epoch 0: | | 679/? [04:43<00:00, 2.40it/s, train/loss=3.850] Epoch 0: | | 680/? [04:43<00:00, 2.40it/s, train/loss=3.850] Epoch 0: | | 680/? [04:43<00:00, 2.40it/s, train/loss=2.110] Epoch 0: | | 681/? [04:44<00:00, 2.39it/s, train/loss=2.110] Epoch 0: | | 681/? [04:44<00:00, 2.39it/s, train/loss=0.638] Epoch 0: | | 682/? [04:45<00:00, 2.39it/s, train/loss=0.638] Epoch 0: | | 682/? [04:45<00:00, 2.39it/s, train/loss=1.190] Epoch 0: | | 683/? [04:45<00:00, 2.39it/s, train/loss=1.190] Epoch 0: | | 683/? [04:45<00:00, 2.39it/s, train/loss=3.870] Epoch 0: | | 684/? [04:45<00:00, 2.40it/s, train/loss=3.870] Epoch 0: | | 684/? [04:45<00:00, 2.40it/s, train/loss=2.190] Epoch 0: | | 685/? [04:45<00:00, 2.40it/s, train/loss=2.190] Epoch 0: | | 685/? [04:45<00:00, 2.40it/s, train/loss=3.850] Epoch 0: | | 686/? [04:46<00:00, 2.40it/s, train/loss=3.850] Epoch 0: | | 686/? [04:46<00:00, 2.40it/s, train/loss=2.970] Epoch 0: | | 687/? [04:46<00:00, 2.40it/s, train/loss=2.970] Epoch 0: | | 687/? [04:46<00:00, 2.40it/s, train/loss=3.830] Epoch 0: | | 688/? [04:46<00:00, 2.40it/s, train/loss=3.830] Epoch 0: | | 688/? [04:46<00:00, 2.40it/s, train/loss=3.460] Epoch 0: | | 689/? [04:46<00:00, 2.40it/s, train/loss=3.460] Epoch 0: | | 689/? [04:46<00:00, 2.40it/s, train/loss=3.830] Epoch 0: | | 690/? [04:46<00:00, 2.40it/s, train/loss=3.830] Epoch 0: | | 690/? [04:46<00:00, 2.40it/s, train/loss=3.190] Epoch 0: | | 691/? [04:47<00:00, 2.40it/s, train/loss=3.190] Epoch 0: | | 691/? [04:47<00:00, 2.40it/s, train/loss=5.260] Epoch 0: | | 692/? [04:48<00:00, 2.40it/s, train/loss=5.260] Epoch 0: | | 692/? [04:48<00:00, 2.40it/s, train/loss=1.940] Epoch 0: | | 693/? [04:48<00:00, 2.40it/s, train/loss=1.940] Epoch 0: | | 693/? [04:48<00:00, 2.40it/s, train/loss=3.870] Epoch 0: | | 694/? [04:48<00:00, 2.40it/s, train/loss=3.870] Epoch 0: | | 694/? [04:48<00:00, 2.40it/s, train/loss=1.400] Epoch 0: | | 695/? [04:48<00:00, 2.41it/s, train/loss=1.400] Epoch 0: | | 695/? [04:48<00:00, 2.41it/s, train/loss=3.880] Epoch 0: | | 696/? [04:49<00:00, 2.41it/s, train/loss=3.880] Epoch 0: | | 696/? [04:49<00:00, 2.41it/s, train/loss=3.600] Epoch 0: | | 697/? [04:49<00:00, 2.41it/s, train/loss=3.600] Epoch 0: | | 697/? [04:49<00:00, 2.41it/s, train/loss=3.870] Epoch 0: | | 698/? [04:49<00:00, 2.41it/s, train/loss=3.870] Epoch 0: | | 698/? [04:49<00:00, 2.41it/s, train/loss=0.728] Epoch 0: | | 699/? [04:49<00:00, 2.41it/s, train/loss=0.728] Epoch 0: | | 699/? [04:49<00:00, 2.41it/s, train/loss=3.880] Epoch 0: | | 700/? [04:50<00:00, 2.41it/s, train/loss=3.880] Epoch 0: | | 700/? [04:50<00:00, 2.41it/s, train/loss=4.150] Epoch 0: | | 701/? [04:50<00:00, 2.41it/s, train/loss=4.150] Epoch 0: | | 701/? [04:51<00:00, 2.41it/s, train/loss=3.100] Epoch 0: | | 702/? [04:51<00:00, 2.41it/s, train/loss=3.100] Epoch 0: | | 702/? [04:51<00:00, 2.41it/s, train/loss=1.620] Epoch 0: | | 703/? [04:51<00:00, 2.41it/s, train/loss=1.620] Epoch 0: | | 703/? [04:51<00:00, 2.41it/s, train/loss=3.910] Epoch 0: | | 704/? [04:51<00:00, 2.41it/s, train/loss=3.910] Epoch 0: | | 704/? [04:51<00:00, 2.41it/s, train/loss=2.630] Epoch 0: | | 705/? [04:51<00:00, 2.42it/s, train/loss=2.630] Epoch 0: | | 705/? [04:51<00:00, 2.42it/s, train/loss=3.910] Epoch 0: | | 706/? [04:52<00:00, 2.42it/s, train/loss=3.910] Epoch 0: | | 706/? [04:52<00:00, 2.42it/s, train/loss=2.230] Epoch 0: | | 707/? [04:52<00:00, 2.42it/s, train/loss=2.230] Epoch 0: | | 707/? [04:52<00:00, 2.42it/s, train/loss=3.910] Epoch 0: | | 708/? [04:52<00:00, 2.42it/s, train/loss=3.910] Epoch 0: | | 708/? [04:52<00:00, 2.42it/s, train/loss=1.250] Epoch 0: | | 709/? [04:52<00:00, 2.42it/s, train/loss=1.250] Epoch 0: | | 709/? [04:52<00:00, 2.42it/s, train/loss=3.920] Epoch 0: | | 710/? [04:53<00:00, 2.42it/s, train/loss=3.920] Epoch 0: | | 710/? [04:53<00:00, 2.42it/s, train/loss=4.350] Epoch 0: | | 711/? [04:54<00:00, 2.42it/s, train/loss=4.350] Epoch 0: | | 711/? [04:54<00:00, 2.42it/s, train/loss=1.360] Epoch 0: | | 712/? [04:54<00:00, 2.42it/s, train/loss=1.360] Epoch 0: | | 712/? [04:54<00:00, 2.42it/s, train/loss=0.907] Epoch 0: | | 713/? [04:54<00:00, 2.42it/s, train/loss=0.907] Epoch 0: | | 713/? [04:54<00:00, 2.42it/s, train/loss=3.970] Epoch 0: | | 714/? [04:54<00:00, 2.42it/s, train/loss=3.970] Epoch 0: | | 714/? [04:54<00:00, 2.42it/s, train/loss=1.470] Epoch 0: | | 715/? [04:54<00:00, 2.42it/s, train/loss=1.470] Epoch 0: | | 715/? [04:54<00:00, 2.42it/s, train/loss=3.970] Epoch 0: | | 716/? [04:55<00:00, 2.42it/s, train/loss=3.970] Epoch 0: | | 716/? [04:55<00:00, 2.42it/s, train/loss=3.030] Epoch 0: | | 717/? [04:55<00:00, 2.43it/s, train/loss=3.030] Epoch 0: | | 717/? [04:55<00:00, 2.43it/s, train/loss=3.970] Epoch 0: | | 718/? [04:55<00:00, 2.43it/s, train/loss=3.970] Epoch 0: | | 718/? [04:55<00:00, 2.43it/s, train/loss=3.100] Epoch 0: | | 719/? [04:55<00:00, 2.43it/s, train/loss=3.100] Epoch 0: | | 719/? [04:55<00:00, 2.43it/s, train/loss=3.960] Epoch 0: | | 720/? [04:56<00:00, 2.43it/s, train/loss=3.960] Epoch 0: | | 720/? [04:56<00:00, 2.43it/s, train/loss=0.764] Epoch 0: | | 721/? [04:57<00:00, 2.43it/s, train/loss=0.764] Epoch 0: | | 721/? [04:57<00:00, 2.43it/s, train/loss=1.450] Epoch 0: | | 722/? [04:57<00:00, 2.43it/s, train/loss=1.450] Epoch 0: | | 722/? [04:57<00:00, 2.43it/s, train/loss=0.801] Epoch 0: | | 723/? [04:57<00:00, 2.43it/s, train/loss=0.801] Epoch 0: | | 723/? [04:57<00:00, 2.43it/s, train/loss=3.990] Epoch 0: | | 724/? [04:58<00:00, 2.43it/s, train/loss=3.990] Epoch 0: | | 724/? [04:58<00:00, 2.43it/s, train/loss=4.620] Epoch 0: | | 725/? [04:58<00:00, 2.43it/s, train/loss=4.620] Epoch 0: | | 725/? [04:58<00:00, 2.43it/s, train/loss=3.990] Epoch 0: | | 726/? [04:58<00:00, 2.43it/s, train/loss=3.990] Epoch 0: | | 726/? [04:58<00:00, 2.43it/s, train/loss=2.560] Epoch 0: | | 727/? [04:58<00:00, 2.43it/s, train/loss=2.560] Epoch 0: | | 727/? [04:58<00:00, 2.43it/s, train/loss=3.970] Epoch 0: | | 728/? [04:58<00:00, 2.44it/s, train/loss=3.970] Epoch 0: | | 728/? [04:58<00:00, 2.44it/s, train/loss=2.670] Epoch 0: | | 729/? [04:59<00:00, 2.44it/s, train/loss=2.670] Epoch 0: | | 729/? [04:59<00:00, 2.44it/s, train/loss=3.950] Epoch 0: | | 730/? [04:59<00:00, 2.44it/s, train/loss=3.950] Epoch 0: | | 730/? [04:59<00:00, 2.44it/s, train/loss=1.660] Epoch 0: | | 731/? [05:00<00:00, 2.43it/s, train/loss=1.660] Epoch 0: | | 731/? [05:00<00:00, 2.43it/s, train/loss=0.466] Epoch 0: | | 732/? [05:00<00:00, 2.43it/s, train/loss=0.466] Epoch 0: | | 732/? [05:00<00:00, 2.43it/s, train/loss=1.160] Epoch 0: | | 733/? [05:00<00:00, 2.44it/s, train/loss=1.160] Epoch 0: | | 733/? [05:00<00:00, 2.44it/s, train/loss=3.940] Epoch 0: | | 734/? [05:01<00:00, 2.44it/s, train/loss=3.940] Epoch 0: | | 734/? [05:01<00:00, 2.44it/s, train/loss=1.240] Epoch 0: | | 735/? [05:01<00:00, 2.44it/s, train/loss=1.240] Epoch 0: | | 735/? [05:01<00:00, 2.44it/s, train/loss=3.910] Epoch 0: | | 736/? [05:01<00:00, 2.44it/s, train/loss=3.910] Epoch 0: | | 736/? [05:01<00:00, 2.44it/s, train/loss=1.670] Epoch 0: | | 737/? [05:01<00:00, 2.44it/s, train/loss=1.670] Epoch 0: | | 737/? [05:01<00:00, 2.44it/s, train/loss=3.890] Epoch 0: | | 738/? [05:02<00:00, 2.44it/s, train/loss=3.890] Epoch 0: | | 738/? [05:02<00:00, 2.44it/s, train/loss=3.870] Epoch 0: | | 739/? [05:02<00:00, 2.44it/s, train/loss=3.870] Epoch 0: | | 739/? [05:02<00:00, 2.44it/s, train/loss=3.870] Epoch 0: | | 740/? [05:02<00:00, 2.44it/s, train/loss=3.870] Epoch 0: | | 740/? [05:02<00:00, 2.44it/s, train/loss=2.820] Epoch 0: | | 741/? [05:03<00:00, 2.44it/s, train/loss=2.820] Epoch 0: | | 741/? [05:03<00:00, 2.44it/s, train/loss=1.030] Epoch 0: | | 742/? [05:03<00:00, 2.44it/s, train/loss=1.030] Epoch 0: | | 742/? [05:03<00:00, 2.44it/s, train/loss=4.110] Epoch 0: | | 743/? [05:04<00:00, 2.44it/s, train/loss=4.110] Epoch 0: | | 743/? [05:04<00:00, 2.44it/s, train/loss=3.850] Epoch 0: | | 744/? [05:04<00:00, 2.44it/s, train/loss=3.850] Epoch 0: | | 744/? [05:04<00:00, 2.44it/s, train/loss=3.620] Epoch 0: | | 745/? [05:04<00:00, 2.45it/s, train/loss=3.620] Epoch 0: | | 745/? [05:04<00:00, 2.45it/s, train/loss=3.840] Epoch 0: | | 746/? [05:04<00:00, 2.45it/s, train/loss=3.840] Epoch 0: | | 746/? [05:04<00:00, 2.45it/s, train/loss=4.150] Epoch 0: | | 747/? [05:04<00:00, 2.45it/s, train/loss=4.150] Epoch 0: | | 747/? [05:04<00:00, 2.45it/s, train/loss=3.830] Epoch 0: | | 748/? [05:05<00:00, 2.45it/s, train/loss=3.830] Epoch 0: | | 748/? [05:05<00:00, 2.45it/s, train/loss=2.550] Epoch 0: | | 749/? [05:05<00:00, 2.45it/s, train/loss=2.550] Epoch 0: | | 749/? [05:05<00:00, 2.45it/s, train/loss=3.820] Epoch 0: | | 750/? [05:05<00:00, 2.45it/s, train/loss=3.820] Epoch 0: | | 750/? [05:05<00:00, 2.45it/s, train/loss=3.150] Epoch 0: | | 751/? [05:06<00:00, 2.45it/s, train/loss=3.150] Epoch 0: | | 751/? [05:06<00:00, 2.45it/s, train/loss=1.720] Epoch 0: | | 752/? [05:07<00:00, 2.45it/s, train/loss=1.720] Epoch 0: | | 752/? [05:07<00:00, 2.45it/s, train/loss=1.990] Epoch 0: | | 753/? [05:07<00:00, 2.45it/s, train/loss=1.990] Epoch 0: | | 753/? [05:07<00:00, 2.45it/s, train/loss=3.870] Epoch 0: | | 754/? [05:07<00:00, 2.45it/s, train/loss=3.870] Epoch 0: | | 754/? [05:07<00:00, 2.45it/s, train/loss=1.640] Epoch 0: | | 755/? [05:07<00:00, 2.45it/s, train/loss=1.640] Epoch 0: | | 755/? [05:07<00:00, 2.45it/s, train/loss=3.870] Epoch 0: | | 756/? [05:07<00:00, 2.45it/s, train/loss=3.870] Epoch 0: | | 756/? [05:07<00:00, 2.45it/s, train/loss=1.770] Epoch 0: | | 757/? [05:08<00:00, 2.46it/s, train/loss=1.770] Epoch 0: | | 757/? [05:08<00:00, 2.46it/s, train/loss=3.860] Epoch 0: | | 758/? [05:08<00:00, 2.46it/s, train/loss=3.860] Epoch 0: | | 758/? [05:08<00:00, 2.46it/s, train/loss=0.981] Epoch 0: | | 759/? [05:08<00:00, 2.46it/s, train/loss=0.981] Epoch 0: | | 759/? [05:08<00:00, 2.46it/s, train/loss=3.860] Epoch 0: | | 760/? [05:08<00:00, 2.46it/s, train/loss=3.860] Epoch 0: | | 760/? [05:08<00:00, 2.46it/s, train/loss=0.939] Epoch 0: | | 761/? [05:09<00:00, 2.46it/s, train/loss=0.939] Epoch 0: | | 761/? [05:09<00:00, 2.46it/s, train/loss=0.714] Epoch 0: | | 762/? [05:10<00:00, 2.46it/s, train/loss=0.714] Epoch 0: | | 762/? [05:10<00:00, 2.46it/s, train/loss=1.130] Epoch 0: | | 763/? [05:10<00:00, 2.46it/s, train/loss=1.130] Epoch 0: | | 763/? [05:10<00:00, 2.46it/s, train/loss=3.880] Epoch 0: | | 764/? [05:10<00:00, 2.46it/s, train/loss=3.880] Epoch 0: | | 764/? [05:10<00:00, 2.46it/s, train/loss=0.977] Epoch 0: | | 765/? [05:10<00:00, 2.46it/s, train/loss=0.977] Epoch 0: | | 765/? [05:10<00:00, 2.46it/s, train/loss=3.870] Epoch 0: | | 766/? [05:11<00:00, 2.46it/s, train/loss=3.870] Epoch 0: | | 766/? [05:11<00:00, 2.46it/s, train/loss=0.962] Epoch 0: | | 767/? [05:11<00:00, 2.47it/s, train/loss=0.962] Epoch 0: | | 767/? [05:11<00:00, 2.47it/s, train/loss=3.830] Epoch 0: | | 768/? [05:11<00:00, 2.47it/s, train/loss=3.830] Epoch 0: | | 768/? [05:11<00:00, 2.47it/s, train/loss=1.210] Epoch 0: | | 769/? [05:11<00:00, 2.47it/s, train/loss=1.210] Epoch 0: | | 769/? [05:11<00:00, 2.47it/s, train/loss=3.820] Epoch 0: | | 770/? [05:11<00:00, 2.47it/s, train/loss=3.820] Epoch 0: | | 770/? [05:11<00:00, 2.47it/s, train/loss=3.870] Epoch 0: | | 771/? [05:12<00:00, 2.46it/s, train/loss=3.870] Epoch 0: | | 771/? [05:12<00:00, 2.46it/s, train/loss=1.360] Epoch 0: | | 772/? [05:13<00:00, 2.47it/s, train/loss=1.360] Epoch 0: | | 772/? [05:13<00:00, 2.46it/s, train/loss=3.670] Epoch 0: | | 773/? [05:13<00:00, 2.47it/s, train/loss=3.670] Epoch 0: | | 773/? [05:13<00:00, 2.47it/s, train/loss=3.870] Epoch 0: | | 774/? [05:13<00:00, 2.47it/s, train/loss=3.870] Epoch 0: | | 774/? [05:13<00:00, 2.47it/s, train/loss=3.310] Epoch 0: | | 775/? [05:13<00:00, 2.47it/s, train/loss=3.310] Epoch 0: | | 775/? [05:13<00:00, 2.47it/s, train/loss=3.890] Epoch 0: | | 776/? [05:14<00:00, 2.47it/s, train/loss=3.890] Epoch 0: | | 776/? [05:14<00:00, 2.47it/s, train/loss=2.750] Epoch 0: | | 777/? [05:14<00:00, 2.47it/s, train/loss=2.750] Epoch 0: | | 777/? [05:14<00:00, 2.47it/s, train/loss=3.880] Epoch 0: | | 778/? [05:14<00:00, 2.47it/s, train/loss=3.880] Epoch 0: | | 778/? [05:14<00:00, 2.47it/s, train/loss=2.020] Epoch 0: | | 779/? [05:14<00:00, 2.48it/s, train/loss=2.020] Epoch 0: | | 779/? [05:14<00:00, 2.48it/s, train/loss=3.880] Epoch 0: | | 780/? [05:15<00:00, 2.48it/s, train/loss=3.880] Epoch 0: | | 780/? [05:15<00:00, 2.48it/s, train/loss=2.680] Epoch 0: | | 781/? [05:15<00:00, 2.47it/s, train/loss=2.680] Epoch 0: | | 781/? [05:15<00:00, 2.47it/s, train/loss=0.906] Epoch 0: | | 782/? [05:16<00:00, 2.47it/s, train/loss=0.906] Epoch 0: | | 782/? [05:16<00:00, 2.47it/s, train/loss=0.567] Epoch 0: | | 783/? [05:16<00:00, 2.48it/s, train/loss=0.567] Epoch 0: | | 783/? [05:16<00:00, 2.48it/s, train/loss=3.910] Epoch 0: | | 784/? [05:16<00:00, 2.48it/s, train/loss=3.910] Epoch 0: | | 784/? [05:16<00:00, 2.48it/s, train/loss=1.590] Epoch 0: | | 785/? [05:16<00:00, 2.48it/s, train/loss=1.590] Epoch 0: | | 785/? [05:16<00:00, 2.48it/s, train/loss=3.900] Epoch 0: | | 786/? [05:17<00:00, 2.48it/s, train/loss=3.900] Epoch 0: | | 786/? [05:17<00:00, 2.48it/s, train/loss=2.630] Epoch 0: | | 787/? [05:17<00:00, 2.48it/s, train/loss=2.630] Epoch 0: | | 787/? [05:17<00:00, 2.48it/s, train/loss=3.870] Epoch 0: | | 788/? [05:17<00:00, 2.48it/s, train/loss=3.870] Epoch 0: | | 788/? [05:17<00:00, 2.48it/s, train/loss=0.732] Epoch 0: | | 789/? [05:17<00:00, 2.48it/s, train/loss=0.732] Epoch 0: | | 789/? [05:17<00:00, 2.48it/s, train/loss=3.840] Epoch 0: | | 790/? [05:18<00:00, 2.48it/s, train/loss=3.840] Epoch 0: | | 790/? [05:18<00:00, 2.48it/s, train/loss=3.090] Epoch 0: | | 791/? [05:19<00:00, 2.48it/s, train/loss=3.090] Epoch 0: | | 791/? [05:19<00:00, 2.48it/s, train/loss=1.140] Epoch 0: | | 792/? [05:19<00:00, 2.48it/s, train/loss=1.140] Epoch 0: | | 792/? [05:19<00:00, 2.48it/s, train/loss=1.070] Epoch 0: | | 793/? [05:19<00:00, 2.48it/s, train/loss=1.070] Epoch 0: | | 793/? [05:19<00:00, 2.48it/s, train/loss=3.830] Epoch 0: | | 794/? [05:19<00:00, 2.48it/s, train/loss=3.830] Epoch 0: | | 794/? [05:19<00:00, 2.48it/s, train/loss=4.230] Epoch 0: | | 795/? [05:19<00:00, 2.48it/s, train/loss=4.230] Epoch 0: | | 795/? [05:19<00:00, 2.48it/s, train/loss=3.810] Epoch 0: | | 796/? [05:20<00:00, 2.48it/s, train/loss=3.810] Epoch 0: | | 796/? [05:20<00:00, 2.48it/s, train/loss=3.320] Epoch 0: | | 797/? [05:20<00:00, 2.49it/s, train/loss=3.320] Epoch 0: | | 797/? [05:20<00:00, 2.49it/s, train/loss=3.790] Epoch 0: | | 798/? [05:20<00:00, 2.49it/s, train/loss=3.790] Epoch 0: | | 798/? [05:20<00:00, 2.49it/s, train/loss=3.670] Epoch 0: | | 799/? [05:20<00:00, 2.49it/s, train/loss=3.670] Epoch 0: | | 799/? [05:20<00:00, 2.49it/s, train/loss=3.800] Epoch 0: | | 800/? [05:21<00:00, 2.49it/s, train/loss=3.800] Epoch 0: | | 800/? [05:21<00:00, 2.49it/s, train/loss=1.040] Validation: | | 0/? [00:00<?, ?it/s] Validation: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 0%| | 0/40 [00:00<?, ?it/s] Validation DataLoader 0: 2%|▎ | 1/40 [00:00<00:04, 8.90it/s] Validation DataLoader 0: 5%|▌ | 2/40 [00:00<00:04, 8.71it/s] Validation DataLoader 0: 8%|▊ | 3/40 [00:00<00:04, 8.12it/s] Validation DataLoader 0: 10%|█ | 4/40 [00:00<00:04, 8.12it/s] Validation DataLoader 0: 12%|█▎ | 5/40 [00:00<00:04, 8.32it/s] Validation DataLoader 0: 15%|█▌ | 6/40 [00:00<00:04, 8.34it/s] Validation DataLoader 0: 18%|█▊ | 7/40 [00:00<00:03, 8.46it/s] Validation DataLoader 0: 20%|██ | 8/40 [00:00<00:03, 8.52it/s] Validation DataLoader 0: 22%|██▎ | 9/40 [00:01<00:03, 8.57it/s] Validation DataLoader 0: 25%|██▌ | 10/40 [00:01<00:03, 8.66it/s] Validation DataLoader 0: 28%|██▊ | 11/40 [00:01<00:03, 8.64it/s] Validation DataLoader 0: 30%|███ | 12/40 [00:01<00:03, 8.72it/s] Validation DataLoader 0: 32%|███▎ | 13/40 [00:01<00:03, 8.78it/s] Validation DataLoader 0: 35%|███▌ | 14/40 [00:01<00:02, 8.81it/s] Validation DataLoader 0: 38%|███▊ | 15/40 [00:01<00:02, 8.83it/s] Validation DataLoader 0: 40%|████ | 16/40 [00:01<00:02, 8.85it/s] Validation DataLoader 0: 42%|████▎ | 17/40 [00:01<00:02, 8.88it/s] Validation DataLoader 0: 45%|████▌ | 18/40 [00:02<00:02, 8.90it/s] Validation DataLoader 0: 48%|████▊ | 19/40 [00:02<00:02, 8.92it/s] Validation DataLoader 0: 50%|█████ | 20/40 [00:02<00:02, 8.94it/s] Validation DataLoader 0: 52%|█████▎ | 21/40 [00:02<00:02, 8.93it/s] Validation DataLoader 0: 55%|█████▌ | 22/40 [00:02<00:02, 8.95it/s] Validation DataLoader 0: 57%|█████▊ | 23/40 [00:02<00:01, 8.95it/s] Validation DataLoader 0: 60%|██████ | 24/40 [00:02<00:01, 8.97it/s] Validation DataLoader 0: 62%|██████▎ | 25/40 [00:02<00:01, 8.99it/s] Validation DataLoader 0: 65%|██████▌ | 26/40 [00:02<00:01, 8.99it/s] Validation DataLoader 0: 68%|██████▊ | 27/40 [00:02<00:01, 9.01it/s] Validation DataLoader 0: 70%|███████ | 28/40 [00:03<00:01, 9.03it/s] Validation DataLoader 0: 72%|███████▎ | 29/40 [00:03<00:01, 9.06it/s] Validation DataLoader 0: 75%|███████▌ | 30/40 [00:03<00:01, 9.08it/s] Validation DataLoader 0: 78%|███████▊ | 31/40 [00:03<00:00, 9.09it/s] Validation DataLoader 0: 80%|████████ | 32/40 [00:03<00:00, 9.11it/s] Validation DataLoader 0: 82%|████████▎ | 33/40 [00:03<00:00, 9.10it/s] Validation DataLoader 0: 85%|████████▌ | 34/40 [00:03<00:00, 9.10it/s] Validation DataLoader 0: 88%|████████▊ | 35/40 [00:03<00:00, 9.09it/s] Validation DataLoader 0: 90%|█████████ | 36/40 [00:03<00:00, 9.08it/s] Validation DataLoader 0: 92%|█████████▎| 37/40 [00:04<00:00, 9.07it/s] Validation DataLoader 0: 95%|█████████▌| 38/40 [00:04<00:00, 9.07it/s] Validation DataLoader 0: 98%|█████████▊| 39/40 [00:04<00:00, 9.07it/s] Validation DataLoader 0: 100%|██████████| 40/40 [00:04<00:00, 9.06it/s] Epoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040] `Trainer.fit` stopped: `max_steps=800` reached. Epoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040] Epoch 0: | | 800/? [05:57<00:00, 2.24it/s, train/loss=1.040] [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Testing: | | 0/? [00:00<?, ?it/s] Testing: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] Testing DataLoader 0: 1%| | 1/120 [00:00<00:16, 7.23it/s] Testing DataLoader 0: 2%|▏ | 2/120 [00:00<00:15, 7.84it/s] Testing DataLoader 0: 2%|▎ | 3/120 [00:00<00:14, 8.07it/s] Testing DataLoader 0: 3%|▎ | 4/120 [00:00<00:14, 8.21it/s] Testing DataLoader 0: 4%|▍ | 5/120 [00:00<00:13, 8.37it/s] Testing DataLoader 0: 5%|▌ | 6/120 [00:00<00:13, 8.34it/s] Testing DataLoader 0: 6%|▌ | 7/120 [00:00<00:13, 8.37it/s] Testing DataLoader 0: 7%|▋ | 8/120 [00:00<00:13, 8.44it/s] Testing DataLoader 0: 8%|▊ | 9/120 [00:01<00:13, 8.49it/s] Testing DataLoader 0: 8%|▊ | 10/120 [00:01<00:12, 8.52it/s] Testing DataLoader 0: 9%|▉ | 11/120 [00:01<00:12, 8.54it/s] Testing DataLoader 0: 10%|█ | 12/120 [00:01<00:12, 8.55it/s] Testing DataLoader 0: 11%|█ | 13/120 [00:01<00:12, 8.58it/s] Testing DataLoader 0: 12%|█▏ | 14/120 [00:01<00:12, 8.61it/s] Testing DataLoader 0: 12%|█▎ | 15/120 [00:01<00:12, 8.62it/s] Testing DataLoader 0: 13%|█▎ | 16/120 [00:01<00:12, 8.65it/s] Testing DataLoader 0: 14%|█▍ | 17/120 [00:01<00:11, 8.63it/s] Testing DataLoader 0: 15%|█▌ | 18/120 [00:02<00:11, 8.59it/s] Testing DataLoader 0: 16%|█▌ | 19/120 [00:02<00:11, 8.54it/s] Testing DataLoader 0: 17%|█▋ | 20/120 [00:02<00:11, 8.50it/s] Testing DataLoader 0: 18%|█▊ | 21/120 [00:02<00:11, 8.35it/s] Testing DataLoader 0: 18%|█▊ | 22/120 [00:02<00:11, 8.31it/s] Testing DataLoader 0: 19%|█▉ | 23/120 [00:02<00:11, 8.34it/s] Testing DataLoader 0: 20%|██ | 24/120 [00:02<00:11, 8.38it/s] Testing DataLoader 0: 21%|██ | 25/120 [00:02<00:11, 8.42it/s] Testing DataLoader 0: 22%|██▏ | 26/120 [00:03<00:11, 8.45it/s] Testing DataLoader 0: 22%|██▎ | 27/120 [00:03<00:10, 8.47it/s] Testing DataLoader 0: 23%|██▎ | 28/120 [00:03<00:10, 8.50it/s] Testing DataLoader 0: 24%|██▍ | 29/120 [00:03<00:10, 8.53it/s] Testing DataLoader 0: 25%|██▌ | 30/120 [00:03<00:10, 8.55it/s] Testing DataLoader 0: 26%|██▌ | 31/120 [00:03<00:10, 8.55it/s] Testing DataLoader 0: 27%|██▋ | 32/120 [00:03<00:10, 8.51it/s] Testing DataLoader 0: 28%|██▊ | 33/120 [00:03<00:10, 8.53it/s] Testing DataLoader 0: 28%|██▊ | 34/120 [00:03<00:10, 8.56it/s] Testing DataLoader 0: 29%|██▉ | 35/120 [00:04<00:09, 8.58it/s] Testing DataLoader 0: 30%|███ | 36/120 [00:04<00:09, 8.60it/s] Testing DataLoader 0: 31%|███ | 37/120 [00:04<00:09, 8.54it/s] Testing DataLoader 0: 32%|███▏ | 38/120 [00:04<00:09, 8.55it/s] Testing DataLoader 0: 32%|███▎ | 39/120 [00:04<00:09, 8.57it/s] Testing DataLoader 0: 33%|███▎ | 40/120 [00:04<00:09, 8.58it/s] Testing DataLoader 0: 34%|███▍ | 41/120 [00:04<00:09, 8.59it/s] Testing DataLoader 0: 35%|███▌ | 42/120 [00:04<00:09, 8.60it/s] Testing DataLoader 0: 36%|███▌ | 43/120 [00:04<00:08, 8.60it/s] Testing DataLoader 0: 37%|███▋ | 44/120 [00:05<00:08, 8.61it/s] Testing DataLoader 0: 38%|███▊ | 45/120 [00:05<00:08, 8.62it/s] Testing DataLoader 0: 38%|███▊ | 46/120 [00:05<00:08, 8.63it/s] Testing DataLoader 0: 39%|███▉ | 47/120 [00:05<00:08, 8.63it/s] Testing DataLoader 0: 40%|████ | 48/120 [00:05<00:08, 8.64it/s] Testing DataLoader 0: 41%|████ | 49/120 [00:05<00:08, 8.65it/s] Testing DataLoader 0: 42%|████▏ | 50/120 [00:05<00:08, 8.66it/s] Testing DataLoader 0: 42%|████▎ | 51/120 [00:05<00:07, 8.67it/s] Testing DataLoader 0: 43%|████▎ | 52/120 [00:05<00:07, 8.67it/s] Testing DataLoader 0: 44%|████▍ | 53/120 [00:06<00:07, 8.68it/s] Testing DataLoader 0: 45%|████▌ | 54/120 [00:06<00:07, 8.69it/s] Testing DataLoader 0: 46%|████▌ | 55/120 [00:06<00:07, 8.69it/s] Testing DataLoader 0: 47%|████▋ | 56/120 [00:06<00:07, 8.70it/s] Testing DataLoader 0: 48%|████▊ | 57/120 [00:06<00:07, 8.69it/s] Testing DataLoader 0: 48%|████▊ | 58/120 [00:06<00:07, 8.70it/s] Testing DataLoader 0: 49%|████▉ | 59/120 [00:06<00:07, 8.71it/s] Testing DataLoader 0: 50%|█████ | 60/120 [00:06<00:06, 8.72it/s] Testing DataLoader 0: 51%|█████ | 61/120 [00:06<00:06, 8.73it/s] Testing DataLoader 0: 52%|█████▏ | 62/120 [00:07<00:06, 8.73it/s] Testing DataLoader 0: 52%|█████▎ | 63/120 [00:07<00:06, 8.74it/s] Testing DataLoader 0: 53%|█████▎ | 64/120 [00:07<00:06, 8.75it/s] Testing DataLoader 0: 54%|█████▍ | 65/120 [00:07<00:06, 8.76it/s] Testing DataLoader 0: 55%|█████▌ | 66/120 [00:07<00:06, 8.77it/s] Testing DataLoader 0: 56%|█████▌ | 67/120 [00:07<00:06, 8.75it/s] Testing DataLoader 0: 57%|█████▋ | 68/120 [00:07<00:05, 8.76it/s] Testing DataLoader 0: 57%|█████▊ | 69/120 [00:07<00:05, 8.77it/s] Testing DataLoader 0: 58%|█████▊ | 70/120 [00:07<00:05, 8.78it/s] Testing DataLoader 0: 59%|█████▉ | 71/120 [00:08<00:05, 8.79it/s] Testing DataLoader 0: 60%|██████ | 72/120 [00:08<00:05, 8.79it/s] Testing DataLoader 0: 61%|██████ | 73/120 [00:08<00:05, 8.80it/s] Testing DataLoader 0: 62%|██████▏ | 74/120 [00:08<00:05, 8.81it/s] Testing DataLoader 0: 62%|██████▎ | 75/120 [00:08<00:05, 8.81it/s] Testing DataLoader 0: 63%|██████▎ | 76/120 [00:08<00:04, 8.82it/s] Testing DataLoader 0: 64%|██████▍ | 77/120 [00:08<00:04, 8.82it/s] Testing DataLoader 0: 65%|██████▌ | 78/120 [00:08<00:04, 8.82it/s] Testing DataLoader 0: 66%|██████▌ | 79/120 [00:08<00:04, 8.83it/s] Testing DataLoader 0: 67%|██████▋ | 80/120 [00:09<00:04, 8.84it/s] Testing DataLoader 0: 68%|██████▊ | 81/120 [00:09<00:04, 8.84it/s] Testing DataLoader 0: 68%|██████▊ | 82/120 [00:09<00:04, 8.84it/s] Testing DataLoader 0: 69%|██████▉ | 83/120 [00:09<00:04, 8.84it/s] Testing DataLoader 0: 70%|███████ | 84/120 [00:09<00:04, 8.85it/s] Testing DataLoader 0: 71%|███████ | 85/120 [00:09<00:03, 8.86it/s] Testing DataLoader 0: 72%|███████▏ | 86/120 [00:09<00:03, 8.87it/s] Testing DataLoader 0: 72%|███████▎ | 87/120 [00:09<00:03, 8.87it/s] Testing DataLoader 0: 73%|███████▎ | 88/120 [00:09<00:03, 8.87it/s] Testing DataLoader 0: 74%|███████▍ | 89/120 [00:10<00:03, 8.88it/s] Testing DataLoader 0: 75%|███████▌ | 90/120 [00:10<00:03, 8.88it/s] Testing DataLoader 0: 76%|███████▌ | 91/120 [00:10<00:03, 8.89it/s] Testing DataLoader 0: 77%|███████▋ | 92/120 [00:10<00:03, 8.89it/s] Testing DataLoader 0: 78%|███████▊ | 93/120 [00:10<00:03, 8.90it/s] Testing DataLoader 0: 78%|███████▊ | 94/120 [00:10<00:02, 8.90it/s] Testing DataLoader 0: 79%|███████▉ | 95/120 [00:10<00:02, 8.91it/s] Testing DataLoader 0: 80%|████████ | 96/120 [00:10<00:02, 8.91it/s] Testing DataLoader 0: 81%|████████ | 97/120 [00:10<00:02, 8.92it/s] Testing DataLoader 0: 82%|████████▏ | 98/120 [00:10<00:02, 8.92it/s] Testing DataLoader 0: 82%|████████▎ | 99/120 [00:11<00:02, 8.92it/s] Testing DataLoader 0: 83%|████████▎ | 100/120 [00:11<00:02, 8.92it/s] Testing DataLoader 0: 84%|████████▍ | 101/120 [00:11<00:02, 8.93it/s] Testing DataLoader 0: 85%|████████▌ | 102/120 [00:11<00:02, 8.92it/s] Testing DataLoader 0: 86%|████████▌ | 103/120 [00:11<00:01, 8.92it/s] Testing DataLoader 0: 87%|████████▋ | 104/120 [00:11<00:01, 8.93it/s] Testing DataLoader 0: 88%|████████▊ | 105/120 [00:11<00:01, 8.92it/s] Testing DataLoader 0: 88%|████████▊ | 106/120 [00:11<00:01, 8.92it/s] Testing DataLoader 0: 89%|████████▉ | 107/120 [00:12<00:01, 8.92it/s] Testing DataLoader 0: 90%|█████████ | 108/120 [00:12<00:01, 8.91it/s] Testing DataLoader 0: 91%|█████████ | 109/120 [00:12<00:01, 8.92it/s] Testing DataLoader 0: 92%|█████████▏| 110/120 [00:12<00:01, 8.92it/s] Testing DataLoader 0: 92%|█████████▎| 111/120 [00:12<00:01, 8.91it/s] Testing DataLoader 0: 93%|█████████▎| 112/120 [00:12<00:00, 8.91it/s] Testing DataLoader 0: 94%|█████████▍| 113/120 [00:12<00:00, 8.91it/s] Testing DataLoader 0: 95%|█████████▌| 114/120 [00:12<00:00, 8.91it/s] Testing DataLoader 0: 96%|█████████▌| 115/120 [00:12<00:00, 8.91it/s] Testing DataLoader 0: 97%|█████████▋| 116/120 [00:13<00:00, 8.91it/s] Testing DataLoader 0: 98%|█████████▊| 117/120 [00:13<00:00, 8.91it/s] Testing DataLoader 0: 98%|█████████▊| 118/120 [00:13<00:00, 8.91it/s] Testing DataLoader 0: 99%|█████████▉| 119/120 [00:13<00:00, 8.91it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:13<00:00, 8.91it/s] Testing DataLoader 0: 100%|██████████| 120/120 [00:24<00:00, 4.99it/s] Test results saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save Running step 5: Exporting meshes {'name': 'dreamcraft3d-texture', 'description': '', 'tag': 'replicate_user', 'seed': 0, 'use_timestamp': True, 'timestamp': '@20240222-135357', 'exp_root_dir': 'outputs', 'exp_dir': 'outputs/dreamcraft3d-texture', 'trial_name': 'replicate_user@20240222-135357', 'trial_dir': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357', 'n_gpus': 1, 'resume': 'outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt', 'data_type': 'dreamcraft3d-single-image-datamodule', 'data': {'image_path': '/src/outputs/image_rgba.png', 'height': 1024, 'width': 1024, 'default_elevation_deg': 0.0, 'default_azimuth_deg': 0.0, 'default_camera_distance': 3.8, 'default_fovy_deg': 20.0, 'requires_depth': False, 'requires_normal': False, 'use_mixed_camera_config': False, 'random_camera': {'height': 1024, 'width': 1024, 'batch_size': 1, 'eval_height': 1024, 'eval_width': 1024, 'eval_batch_size': 1, 'elevation_range': [-10, 45], 'azimuth_range': [-180, 180], 'camera_distance_range': [3.8, 3.8], 'fovy_range': [20.0, 20.0], 'progressive_until': 0, 'camera_perturb': 0.0, 'center_perturb': 0.0, 'up_perturb': 0.0, 'eval_elevation_deg': 0.0, 'eval_camera_distance': 3.8, 'eval_fovy_deg': 20.0, 'batch_uniform_azimuth': False, 'n_val_views': 40, 'n_test_views': 120}}, 'system_type': 'dreamcraft3d-system', 'system': {'stage': 'texture', 'use_mixed_camera_config': False, 'geometry_convert_inherit_texture': True, 'geometry_type': 'tetrahedra-sdf-grid', 'geometry': {'radius': 2.0, 'isosurface_resolution': 128, 'isosurface_deformable_grid': True, 'isosurface_remove_outliers': True, 'pos_encoding_config': {'otype': 'HashGrid', 'n_levels': 16, 'n_features_per_level': 2, 'log2_hashmap_size': 19, 'base_resolution': 16, 'per_level_scale': 1.447269237440378}, 'fix_geometry': True}, 'material_type': 'no-material', 'material': {'n_output_dims': 3}, 'background_type': 'solid-color-background', 'renderer_type': 'dreamcraft3d-mask-nvdiff-rasterizer', 'renderer': {'context_type': 'cuda'}, 'prompt_processor_type': 'stable-diffusion-prompt-processor', 'prompt_processor': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'prompt': 'A green leafy plant in a striped terracotta pot', 'front_threshold': 30.0, 'back_threshold': 30.0}, 'guidance_type': 'dreamcraft3d-stable-diffusion-bsd-lora-guidance', 'guidance': {'pretrained_model_name_or_path': 'stabilityai/stable-diffusion-2-1-base', 'pretrained_model_name_or_path_lora': 'stabilityai/stable-diffusion-2-1-base', 'guidance_scale': 5.0, 'min_step_percent': 0.05, 'max_step_percent': 0.3, 'only_pretrain_step': 10, 'per_update_pretrain_step': 10}, 'guidance_3d_type': 'stable-zero123-guidance', 'guidance_3d': {'pretrained_model_name_or_path': './models/zero123/stable_zero123.ckpt', 'pretrained_config': './models/zero123/sd-objaverse-finetune-c_concat-256.yaml', 'cond_image_path': '/src/outputs/image_rgba.png', 'cond_elevation_deg': 0.0, 'cond_azimuth_deg': 0.0, 'cond_camera_distance': 3.8, 'guidance_scale': 5.0, 'min_step_percent': 0.2, 'max_step_percent': 0.5}, 'freq': {'n_ref': 2, 'ref_only_steps': 0, 'ref_or_guidance': 'alternate', 'no_diff_steps': -1, 'guidance_eval': 0}, 'loggers': {'wandb': {'enable': False, 'project': 'threestudio'}}, 'loss': {'lambda_vsd': 0.1, 'lambda_lora': 0.1, 'lambda_pretrain': 0.1, 'lambda_3d_sds': 0.01, 'lambda_rgb': 1000.0, 'lambda_mask': 0.0, 'lambda_mask_binary': 0.0, 'lambda_depth': 0.0, 'lambda_depth_rel': 0.0, 'lambda_normal': 0.0, 'lambda_normal_smooth': 0.0, 'lambda_3d_normal_smooth': 0.0, 'lambda_z_variance': 0.0, 'lambda_reg': 0.0}, 'optimizer': {'name': 'AdamW', 'args': {'betas': [0.9, 0.99], 'eps': 0.0001}, 'params': {'geometry.encoding': {'lr': 0.005}, 'geometry.feature_network': {'lr': 0.001}, 'guidance': {'lr': 0.0001}}}, 'geometry_convert_from': 'outputs/dreamcraft3d-geometry/replicate_user@20240222-134756/ckpts/last.ckpt', 'exporter_type': 'mesh-exporter', 'exporter': {'context_type': 'cuda'}}, 'trainer': {'max_steps': 800, 'log_every_n_steps': 1, 'num_sanity_val_steps': 0, 'val_check_interval': 200, 'enable_progress_bar': True, 'precision': 32, 'gradient_clip_val': 1.0}, 'checkpoint': {'save_last': True, 'save_top_k': -1, 'every_n_train_steps': 800}} Loading Stable Diffusion ... Loading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s] Loading pipeline components...: 25%|██▌ | 1/4 [00:01<00:04, 1.37s/it] Loading pipeline components...: 50%|█████ | 2/4 [00:01<00:01, 1.58it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.57it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.03it/s] Loading pipeline components...: 0%| | 0/4 [00:00<?, ?it/s] Loading pipeline components...: 25%|██▌ | 1/4 [00:00<00:02, 1.05it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 3.13it/s] Loading pipeline components...: 100%|██████████| 4/4 [00:01<00:00, 2.72it/s] Loaded Stable Diffusion! Loading Stable Zero123 ... get obj from str: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion LatentDiffusion: Running in eps-prediction mode DiffusionWrapper has 859.53 M params. Keeping EMAs of 688. making attention of type 'vanilla' with 512 in_channels Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla' with 512 in_channels Loaded Stable Zero123! Using prompt [A green leafy plant in a striped terracotta pot] and negative prompt [] Using view-dependent prompts [side]:[A green leafy plant in a striped terracotta pot, side view] [front]:[A green leafy plant in a striped terracotta pot, front view] [back]:[A green leafy plant in a striped terracotta pot, back view] [overhead]:[A green leafy plant in a striped terracotta pot, overhead view] loaded pretrained LPIPS loss from threestudio/utils/lpips/vgg.pth GPU available: True (cuda), used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs Missing logger folder: /src/lightning_logs [INFO] single image dataset: load image /src/outputs/image_rgba.png torch.Size([1, 1024, 1024, 3]) Restoring states from the checkpoint path at outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] Loaded model weights from the checkpoint at outputs/dreamcraft3d-texture/replicate_user@20240222-135357/ckpts/last.ckpt /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'predict_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=9` in the `DataLoader` to improve performance. Predicting: | | 0/? [00:00<?, ?it/s] Predicting: 0%| | 0/120 [00:00<?, ?it/s] Predicting DataLoader 0: 0%| | 0/120 [00:00<?, ?it/s] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/pytorch_lightning/loops/prediction_loop.py:255: predict returned None if it was on purpose, ignore this warning... Predicting DataLoader 0: 1%| | 1/120 [00:00<00:00, 407.81it/s] Predicting DataLoader 0: 2%|▏ | 2/120 [00:00<00:00, 196.28it/s] Predicting DataLoader 0: 2%|▎ | 3/120 [00:00<00:00, 148.91it/s] Predicting DataLoader 0: 3%|▎ | 4/120 [00:00<00:00, 143.05it/s] Predicting DataLoader 0: 4%|▍ | 5/120 [00:00<00:00, 139.61it/s] Predicting DataLoader 0: 5%|▌ | 6/120 [00:00<00:00, 130.72it/s] Predicting DataLoader 0: 6%|▌ | 7/120 [00:00<00:00, 130.50it/s] Predicting DataLoader 0: 7%|▋ | 8/120 [00:00<00:01, 102.54it/s] Predicting DataLoader 0: 8%|▊ | 9/120 [00:00<00:01, 88.50it/s] Predicting DataLoader 0: 8%|▊ | 10/120 [00:00<00:01, 91.95it/s] Predicting DataLoader 0: 9%|▉ | 11/120 [00:00<00:01, 94.76it/s] Predicting DataLoader 0: 10%|█ | 12/120 [00:00<00:01, 97.37it/s] Predicting DataLoader 0: 11%|█ | 13/120 [00:00<00:01, 99.94it/s] Predicting DataLoader 0: 12%|█▏ | 14/120 [00:00<00:01, 102.38it/s] Predicting DataLoader 0: 12%|█▎ | 15/120 [00:00<00:01, 104.49it/s] Predicting DataLoader 0: 13%|█▎ | 16/120 [00:00<00:00, 106.34it/s] Predicting DataLoader 0: 14%|█▍ | 17/120 [00:00<00:00, 108.10it/s] Predicting DataLoader 0: 15%|█▌ | 18/120 [00:00<00:00, 109.78it/s] Predicting DataLoader 0: 16%|█▌ | 19/120 [00:00<00:00, 111.24it/s] Predicting DataLoader 0: 17%|█▋ | 20/120 [00:00<00:00, 112.62it/s] Predicting DataLoader 0: 18%|█▊ | 21/120 [00:00<00:00, 113.88it/s] Predicting DataLoader 0: 18%|█▊ | 22/120 [00:00<00:00, 115.20it/s] Predicting DataLoader 0: 19%|█▉ | 23/120 [00:00<00:00, 116.32it/s] Predicting DataLoader 0: 20%|██ | 24/120 [00:00<00:00, 117.41it/s] Predicting DataLoader 0: 21%|██ | 25/120 [00:00<00:00, 118.37it/s] Predicting DataLoader 0: 22%|██▏ | 26/120 [00:00<00:00, 119.12it/s] Predicting DataLoader 0: 22%|██▎ | 27/120 [00:00<00:00, 119.85it/s] Predicting DataLoader 0: 23%|██▎ | 28/120 [00:00<00:00, 120.64it/s] Predicting DataLoader 0: 24%|██▍ | 29/120 [00:00<00:00, 121.31it/s] Predicting DataLoader 0: 25%|██▌ | 30/120 [00:00<00:00, 122.05it/s] Predicting DataLoader 0: 26%|██▌ | 31/120 [00:00<00:00, 122.69it/s] Predicting DataLoader 0: 27%|██▋ | 32/120 [00:00<00:00, 123.33it/s] Predicting DataLoader 0: 28%|██▊ | 33/120 [00:00<00:00, 123.96it/s] Predicting DataLoader 0: 28%|██▊ | 34/120 [00:00<00:00, 124.64it/s] Predicting DataLoader 0: 29%|██▉ | 35/120 [00:00<00:00, 125.25it/s] Predicting DataLoader 0: 30%|███ | 36/120 [00:00<00:00, 125.84it/s] Predicting DataLoader 0: 31%|███ | 37/120 [00:00<00:00, 126.35it/s] Predicting DataLoader 0: 32%|███▏ | 38/120 [00:00<00:00, 126.92it/s] Predicting DataLoader 0: 32%|███▎ | 39/120 [00:00<00:00, 127.41it/s] Predicting DataLoader 0: 33%|███▎ | 40/120 [00:00<00:00, 127.85it/s] Predicting DataLoader 0: 34%|███▍ | 41/120 [00:00<00:00, 128.25it/s] Predicting DataLoader 0: 35%|███▌ | 42/120 [00:00<00:00, 128.73it/s] Predicting DataLoader 0: 36%|███▌ | 43/120 [00:00<00:00, 127.98it/s] Predicting DataLoader 0: 37%|███▋ | 44/120 [00:00<00:00, 128.19it/s] Predicting DataLoader 0: 38%|███▊ | 45/120 [00:00<00:00, 128.60it/s] Predicting DataLoader 0: 38%|███▊ | 46/120 [00:00<00:00, 129.02it/s] Predicting DataLoader 0: 39%|███▉ | 47/120 [00:00<00:00, 129.32it/s] Predicting DataLoader 0: 40%|████ | 48/120 [00:00<00:00, 129.72it/s] Predicting DataLoader 0: 41%|████ | 49/120 [00:00<00:00, 130.08it/s] Predicting DataLoader 0: 42%|████▏ | 50/120 [00:00<00:00, 130.47it/s] Predicting DataLoader 0: 42%|████▎ | 51/120 [00:00<00:00, 130.80it/s] Predicting DataLoader 0: 43%|████▎ | 52/120 [00:00<00:00, 131.13it/s] Predicting DataLoader 0: 44%|████▍ | 53/120 [00:00<00:00, 131.39it/s] Predicting DataLoader 0: 45%|████▌ | 54/120 [00:00<00:00, 131.53it/s] Predicting DataLoader 0: 46%|████▌ | 55/120 [00:00<00:00, 131.65it/s] Predicting DataLoader 0: 47%|████▋ | 56/120 [00:00<00:00, 131.67it/s] Predicting DataLoader 0: 48%|████▊ | 57/120 [00:00<00:00, 131.69it/s] Predicting DataLoader 0: 48%|████▊ | 58/120 [00:00<00:00, 131.71it/s] Predicting DataLoader 0: 49%|████▉ | 59/120 [00:00<00:00, 131.13it/s] Predicting DataLoader 0: 50%|█████ | 60/120 [00:00<00:00, 131.29it/s] Predicting DataLoader 0: 51%|█████ | 61/120 [00:00<00:00, 131.44it/s] Predicting DataLoader 0: 52%|█████▏ | 62/120 [00:00<00:00, 131.67it/s] Predicting DataLoader 0: 52%|█████▎ | 63/120 [00:00<00:00, 131.82it/s] Predicting DataLoader 0: 53%|█████▎ | 64/120 [00:00<00:00, 131.98it/s] Predicting DataLoader 0: 54%|█████▍ | 65/120 [00:00<00:00, 131.16it/s] Predicting DataLoader 0: 55%|█████▌ | 66/120 [00:00<00:00, 131.34it/s] Predicting DataLoader 0: 56%|█████▌ | 67/120 [00:00<00:00, 131.48it/s] Predicting DataLoader 0: 57%|█████▋ | 68/120 [00:00<00:00, 131.62it/s] Predicting DataLoader 0: 57%|█████▊ | 69/120 [00:00<00:00, 131.74it/s] Predicting DataLoader 0: 58%|█████▊ | 70/120 [00:00<00:00, 131.94it/s] Predicting DataLoader 0: 59%|█████▉ | 71/120 [00:00<00:00, 132.02it/s] Predicting DataLoader 0: 60%|██████ | 72/120 [00:00<00:00, 131.85it/s] Predicting DataLoader 0: 61%|██████ | 73/120 [00:00<00:00, 131.27it/s] Predicting DataLoader 0: 62%|██████▏ | 74/120 [00:00<00:00, 128.51it/s] Predicting DataLoader 0: 62%|██████▎ | 75/120 [00:00<00:00, 128.74it/s] Predicting DataLoader 0: 63%|██████▎ | 76/120 [00:00<00:00, 128.96it/s] Predicting DataLoader 0: 64%|██████▍ | 77/120 [00:00<00:00, 129.20it/s] Predicting DataLoader 0: 65%|██████▌ | 78/120 [00:00<00:00, 129.43it/s] Predicting DataLoader 0: 66%|██████▌ | 79/120 [00:00<00:00, 129.64it/s] Predicting DataLoader 0: 67%|██████▋ | 80/120 [00:00<00:00, 129.81it/s] Predicting DataLoader 0: 68%|██████▊ | 81/120 [00:00<00:00, 130.02it/s] Predicting DataLoader 0: 68%|██████▊ | 82/120 [00:00<00:00, 130.25it/s] Predicting DataLoader 0: 69%|██████▉ | 83/120 [00:00<00:00, 130.44it/s] Predicting DataLoader 0: 70%|███████ | 84/120 [00:00<00:00, 130.62it/s] Predicting DataLoader 0: 71%|███████ | 85/120 [00:00<00:00, 130.73it/s] Predicting DataLoader 0: 72%|███████▏ | 86/120 [00:00<00:00, 130.88it/s] Predicting DataLoader 0: 72%|███████▎ | 87/120 [00:00<00:00, 130.96it/s] Predicting DataLoader 0: 73%|███████▎ | 88/120 [00:00<00:00, 131.09it/s] Predicting DataLoader 0: 74%|███████▍ | 89/120 [00:00<00:00, 131.20it/s] Predicting DataLoader 0: 75%|███████▌ | 90/120 [00:00<00:00, 131.34it/s] Predicting DataLoader 0: 76%|███████▌ | 91/120 [00:00<00:00, 131.45it/s] Predicting DataLoader 0: 77%|███████▋ | 92/120 [00:00<00:00, 131.57it/s] Predicting DataLoader 0: 78%|███████▊ | 93/120 [00:00<00:00, 131.68it/s] Predicting DataLoader 0: 78%|███████▊ | 94/120 [00:00<00:00, 131.79it/s] Predicting DataLoader 0: 79%|███████▉ | 95/120 [00:00<00:00, 131.88it/s] Predicting DataLoader 0: 80%|████████ | 96/120 [00:00<00:00, 131.98it/s] Predicting DataLoader 0: 81%|████████ | 97/120 [00:00<00:00, 132.05it/s] Predicting DataLoader 0: 82%|████████▏ | 98/120 [00:00<00:00, 132.12it/s] Predicting DataLoader 0: 82%|████████▎ | 99/120 [00:00<00:00, 132.17it/s] Predicting DataLoader 0: 83%|████████▎ | 100/120 [00:00<00:00, 132.24it/s] Predicting DataLoader 0: 84%|████████▍ | 101/120 [00:00<00:00, 132.29it/s] Predicting DataLoader 0: 85%|████████▌ | 102/120 [00:00<00:00, 132.38it/s] Predicting DataLoader 0: 86%|████████▌ | 103/120 [00:00<00:00, 132.45it/s] Predicting DataLoader 0: 87%|████████▋ | 104/120 [00:00<00:00, 132.51it/s] Predicting DataLoader 0: 88%|████████▊ | 105/120 [00:00<00:00, 132.58it/s] Predicting DataLoader 0: 88%|████████▊ | 106/120 [00:00<00:00, 132.68it/s] Predicting DataLoader 0: 89%|████████▉ | 107/120 [00:00<00:00, 132.72it/s] Predicting DataLoader 0: 90%|█████████ | 108/120 [00:00<00:00, 132.77it/s] Predicting DataLoader 0: 91%|█████████ | 109/120 [00:00<00:00, 132.83it/s] Predicting DataLoader 0: 92%|█████████▏| 110/120 [00:00<00:00, 132.93it/s] Predicting DataLoader 0: 92%|█████████▎| 111/120 [00:00<00:00, 132.98it/s] Predicting DataLoader 0: 93%|█████████▎| 112/120 [00:00<00:00, 133.03it/s] Predicting DataLoader 0: 94%|█████████▍| 113/120 [00:00<00:00, 133.08it/s] Predicting DataLoader 0: 95%|█████████▌| 114/120 [00:00<00:00, 133.18it/s] Predicting DataLoader 0: 96%|█████████▌| 115/120 [00:00<00:00, 133.22it/s] Predicting DataLoader 0: 97%|█████████▋| 116/120 [00:00<00:00, 133.28it/s] Predicting DataLoader 0: 98%|█████████▊| 117/120 [00:00<00:00, 133.36it/s] Predicting DataLoader 0: 98%|█████████▊| 118/120 [00:00<00:00, 133.44it/s] Predicting DataLoader 0: 99%|█████████▉| 119/120 [00:00<00:00, 133.47it/s] Using xatlas to perform UV unwrapping, may take a while ... Exporting textures ... Perform UV padding on texture maps to avoid seams, may take a while ... Predicting DataLoader 0: 100%|██████████| 120/120 [00:00<00:00, 133.53it/s] Predicting DataLoader 0: 100%|██████████| 120/120 [01:06<00:00, 1.81it/s] Export assets saved to outputs/dreamcraft3d-texture/replicate_user@20240222-135357/save
Want to make some of these yourself?
Run this model