Readme
This model doesn't have a readme.
Remodels interior (Updated 5 months, 2 weeks ago)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run jschoormans/interior-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"jschoormans/interior-v2:8372bd24c6011ea957a0861f0146671eed615e375f038c13259c1882e3c8bac7",
{
input: {
image: "https://replicate.delivery/pbxt/LscMB7dbg6KGk8OI5HbaPFLUukh15hFww9X9S5W5NF4u7OUm/149_1440.jpg",
prompt: "Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k",
strength: 0.999999,
guidance_scale: 7,
max_resolution: 1051,
empty_room_mode: false,
negative_prompt: "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
mask_prompt_window: "window, doorway",
mask_prompt_ceiling: "ceiling",
num_inference_steps: 30,
control_guidance_end: 0.8,
mask_prompt_furniture: "furniture, couch, table, chair, desk, bed, sofa, cupboard, shelf, cabinet, bookcase, dresser, nightstand, armchair, decoration, plant, flower, pillow, lamp, TV",
control_guidance_start: 0,
keep_furniture_structure: false,
controlnet_conditioning_scale: 0.03
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run jschoormans/interior-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"jschoormans/interior-v2:8372bd24c6011ea957a0861f0146671eed615e375f038c13259c1882e3c8bac7",
input={
"image": "https://replicate.delivery/pbxt/LscMB7dbg6KGk8OI5HbaPFLUukh15hFww9X9S5W5NF4u7OUm/149_1440.jpg",
"prompt": "Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k",
"strength": 0.999999,
"guidance_scale": 7,
"max_resolution": 1051,
"empty_room_mode": False,
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"mask_prompt_window": "window, doorway",
"mask_prompt_ceiling": "ceiling",
"num_inference_steps": 30,
"control_guidance_end": 0.8,
"mask_prompt_furniture": "furniture, couch, table, chair, desk, bed, sofa, cupboard, shelf, cabinet, bookcase, dresser, nightstand, armchair, decoration, plant, flower, pillow, lamp, TV",
"control_guidance_start": 0,
"keep_furniture_structure": False,
"controlnet_conditioning_scale": 0.03
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run jschoormans/interior-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "jschoormans/interior-v2:8372bd24c6011ea957a0861f0146671eed615e375f038c13259c1882e3c8bac7",
"input": {
"image": "https://replicate.delivery/pbxt/LscMB7dbg6KGk8OI5HbaPFLUukh15hFww9X9S5W5NF4u7OUm/149_1440.jpg",
"prompt": "Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k",
"strength": 0.999999,
"guidance_scale": 7,
"max_resolution": 1051,
"empty_room_mode": false,
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"mask_prompt_window": "window, doorway",
"mask_prompt_ceiling": "ceiling",
"num_inference_steps": 30,
"control_guidance_end": 0.8,
"mask_prompt_furniture": "furniture, couch, table, chair, desk, bed, sofa, cupboard, shelf, cabinet, bookcase, dresser, nightstand, armchair, decoration, plant, flower, pillow, lamp, TV",
"control_guidance_start": 0,
"keep_furniture_structure": false,
"controlnet_conditioning_scale": 0.03
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-10-29T15:31:46.193799Z",
"created_at": "2024-10-29T15:29:36.963000Z",
"data_removed": false,
"error": null,
"id": "m14db5wjrdrgm0cjv3jrvhvx24",
"input": {
"image": "https://replicate.delivery/pbxt/LscMB7dbg6KGk8OI5HbaPFLUukh15hFww9X9S5W5NF4u7OUm/149_1440.jpg",
"prompt": "Living room, scandinavian interior, photograph, clean, beautiful, high quality, 8k",
"strength": 0.999999,
"guidance_scale": 7,
"max_resolution": 1051,
"negative_prompt": "(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
"mask_prompt_window": "window, doorway",
"mask_prompt_ceiling": "ceiling",
"num_inference_steps": 30,
"control_guidance_end": 0.8,
"mask_prompt_furniture": "furniture, couch, table, chair, desk, bed, sofa, cupboard, shelf, cabinet, bookcase, dresser, nightstand, armchair, decoration, plant, flower, pillow, lamp, TV",
"control_guidance_start": 0,
"keep_furniture_structure": false,
"controlnet_conditioning_scale": 0.03
},
"logs": "positive_prompt: window\nUserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.\nUserWarning: None of the inputs have requires_grad=True. Gradients will be None\npositive_prompt: doorway\nDone!\npositive_prompt: ceiling\nDone!\npositive_prompt: furniture\npositive_prompt: couch\npositive_prompt: table\npositive_prompt: chair\npositive_prompt: desk\npositive_prompt: bed\npositive_prompt: sofa\npositive_prompt: cupboard\npositive_prompt: shelf\npositive_prompt: cabinet\npositive_prompt: bookcase\npositive_prompt: dresser\npositive_prompt: nightstand\npositive_prompt: armchair\npositive_prompt: decoration\npositive_prompt: plant\npositive_prompt: flower\npositive_prompt: pillow\npositive_prompt: lamp\npositive_prompt: TV\nDone!\n`last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True.\n 0%| | 0/29 [00:00<?, ?it/s]\n 3%|▎ | 1/29 [00:03<01:31, 3.27s/it]\n 7%|▋ | 2/29 [00:03<00:39, 1.48s/it]\n 10%|█ | 3/29 [00:03<00:24, 1.04it/s]\n 14%|█▍ | 4/29 [00:04<00:17, 1.40it/s]\n 17%|█▋ | 5/29 [00:04<00:13, 1.73it/s]\n 21%|██ | 6/29 [00:04<00:11, 2.02it/s]\n 24%|██▍ | 7/29 [00:05<00:09, 2.26it/s]\n 28%|██▊ | 8/29 [00:05<00:08, 2.44it/s]\n 31%|███ | 9/29 [00:05<00:07, 2.59it/s]\n 34%|███▍ | 10/29 [00:06<00:07, 2.70it/s]\n 38%|███▊ | 11/29 [00:06<00:06, 2.78it/s]\n 41%|████▏ | 12/29 [00:06<00:05, 2.84it/s]\n 45%|████▍ | 13/29 [00:07<00:05, 2.88it/s]\n 48%|████▊ | 14/29 [00:07<00:05, 2.91it/s]\n 52%|█████▏ | 15/29 [00:07<00:04, 2.93it/s]\n 55%|█████▌ | 16/29 [00:08<00:04, 2.94it/s]\n 59%|█████▊ | 17/29 [00:08<00:04, 2.95it/s]\n 62%|██████▏ | 18/29 [00:08<00:03, 2.96it/s]\n 66%|██████▌ | 19/29 [00:09<00:03, 2.96it/s]\n 69%|██████▉ | 20/29 [00:09<00:03, 2.96it/s]\n 72%|███████▏ | 21/29 [00:09<00:02, 2.96it/s]\n 76%|███████▌ | 22/29 [00:10<00:02, 2.97it/s]\n 79%|███████▉ | 23/29 [00:10<00:02, 2.96it/s]\n 83%|████████▎ | 24/29 [00:10<00:01, 2.96it/s]\n 86%|████████▌ | 25/29 [00:11<00:01, 2.96it/s]\n 90%|████████▉ | 26/29 [00:11<00:01, 2.96it/s]\n 93%|█████████▎| 27/29 [00:11<00:00, 2.96it/s]\n 97%|█████████▋| 28/29 [00:12<00:00, 2.96it/s]\n100%|██████████| 29/29 [00:12<00:00, 2.96it/s]\n100%|██████████| 29/29 [00:12<00:00, 2.30it/s]\nTime taken: 36.87832283973694 seconds",
"metrics": {
"predict_time": 40.255916079,
"total_time": 129.230799
},
"output": [
"https://replicate.delivery/pbxt/Qy2teTcZNx2lESNXLJ7QGJeKwzdBXm2u0NW54wEb2J0fOWXnA/output.png",
"https://replicate.delivery/pbxt/WYP8JcfoINRDGan2PxHECkZia3fX51LgzMKmbsrJPjNhHrrTA/control.png",
"https://replicate.delivery/pbxt/icX4CIkNTo5JOtpzaYzfM6Qc4w29V36pTergijq53qbhHrrTA/inverted_mask_window.png",
"https://replicate.delivery/pbxt/fQEbrbQm5L3gUqH9v6sPTSKeBem8LXoRsalv8u64rpICPWXnA/inverted_mask_ceiling.png",
"https://replicate.delivery/pbxt/i6HXINgKqGIlHtFmf2OYe83ahNISNvhblReseJuHcSyEeYddC/mask_furniture.png"
],
"started_at": "2024-10-29T15:31:05.937883Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/m14db5wjrdrgm0cjv3jrvhvx24",
"cancel": "https://api.replicate.com/v1/predictions/m14db5wjrdrgm0cjv3jrvhvx24/cancel"
},
"version": "db5c430268e1bb117f2f0547decafeed3252868cf051ab28f5e1e317b645d743"
}
positive_prompt: window
UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
UserWarning: None of the inputs have requires_grad=True. Gradients will be None
positive_prompt: doorway
Done!
positive_prompt: ceiling
Done!
positive_prompt: furniture
positive_prompt: couch
positive_prompt: table
positive_prompt: chair
positive_prompt: desk
positive_prompt: bed
positive_prompt: sofa
positive_prompt: cupboard
positive_prompt: shelf
positive_prompt: cabinet
positive_prompt: bookcase
positive_prompt: dresser
positive_prompt: nightstand
positive_prompt: armchair
positive_prompt: decoration
positive_prompt: plant
positive_prompt: flower
positive_prompt: pillow
positive_prompt: lamp
positive_prompt: TV
Done!
`last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True.
0%| | 0/29 [00:00<?, ?it/s]
3%|▎ | 1/29 [00:03<01:31, 3.27s/it]
7%|▋ | 2/29 [00:03<00:39, 1.48s/it]
10%|█ | 3/29 [00:03<00:24, 1.04it/s]
14%|█▍ | 4/29 [00:04<00:17, 1.40it/s]
17%|█▋ | 5/29 [00:04<00:13, 1.73it/s]
21%|██ | 6/29 [00:04<00:11, 2.02it/s]
24%|██▍ | 7/29 [00:05<00:09, 2.26it/s]
28%|██▊ | 8/29 [00:05<00:08, 2.44it/s]
31%|███ | 9/29 [00:05<00:07, 2.59it/s]
34%|███▍ | 10/29 [00:06<00:07, 2.70it/s]
38%|███▊ | 11/29 [00:06<00:06, 2.78it/s]
41%|████▏ | 12/29 [00:06<00:05, 2.84it/s]
45%|████▍ | 13/29 [00:07<00:05, 2.88it/s]
48%|████▊ | 14/29 [00:07<00:05, 2.91it/s]
52%|█████▏ | 15/29 [00:07<00:04, 2.93it/s]
55%|█████▌ | 16/29 [00:08<00:04, 2.94it/s]
59%|█████▊ | 17/29 [00:08<00:04, 2.95it/s]
62%|██████▏ | 18/29 [00:08<00:03, 2.96it/s]
66%|██████▌ | 19/29 [00:09<00:03, 2.96it/s]
69%|██████▉ | 20/29 [00:09<00:03, 2.96it/s]
72%|███████▏ | 21/29 [00:09<00:02, 2.96it/s]
76%|███████▌ | 22/29 [00:10<00:02, 2.97it/s]
79%|███████▉ | 23/29 [00:10<00:02, 2.96it/s]
83%|████████▎ | 24/29 [00:10<00:01, 2.96it/s]
86%|████████▌ | 25/29 [00:11<00:01, 2.96it/s]
90%|████████▉ | 26/29 [00:11<00:01, 2.96it/s]
93%|█████████▎| 27/29 [00:11<00:00, 2.96it/s]
97%|█████████▋| 28/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.30it/s]
Time taken: 36.87832283973694 seconds
This output was created using a different version of the model, jschoormans/interior-v2:db5c4302.
This model costs approximately $0.019 to run on Replicate, or 52 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 20 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
positive_prompt: window
UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
UserWarning: None of the inputs have requires_grad=True. Gradients will be None
positive_prompt: doorway
Done!
positive_prompt: ceiling
Done!
positive_prompt: furniture
positive_prompt: couch
positive_prompt: table
positive_prompt: chair
positive_prompt: desk
positive_prompt: bed
positive_prompt: sofa
positive_prompt: cupboard
positive_prompt: shelf
positive_prompt: cabinet
positive_prompt: bookcase
positive_prompt: dresser
positive_prompt: nightstand
positive_prompt: armchair
positive_prompt: decoration
positive_prompt: plant
positive_prompt: flower
positive_prompt: pillow
positive_prompt: lamp
positive_prompt: TV
Done!
`last_sigmas_type='zero'` is not supported for `lower_order_final=False`. Changing scheduler {self.config} to have `lower_order_final` set to True.
0%| | 0/29 [00:00<?, ?it/s]
3%|▎ | 1/29 [00:03<01:31, 3.27s/it]
7%|▋ | 2/29 [00:03<00:39, 1.48s/it]
10%|█ | 3/29 [00:03<00:24, 1.04it/s]
14%|█▍ | 4/29 [00:04<00:17, 1.40it/s]
17%|█▋ | 5/29 [00:04<00:13, 1.73it/s]
21%|██ | 6/29 [00:04<00:11, 2.02it/s]
24%|██▍ | 7/29 [00:05<00:09, 2.26it/s]
28%|██▊ | 8/29 [00:05<00:08, 2.44it/s]
31%|███ | 9/29 [00:05<00:07, 2.59it/s]
34%|███▍ | 10/29 [00:06<00:07, 2.70it/s]
38%|███▊ | 11/29 [00:06<00:06, 2.78it/s]
41%|████▏ | 12/29 [00:06<00:05, 2.84it/s]
45%|████▍ | 13/29 [00:07<00:05, 2.88it/s]
48%|████▊ | 14/29 [00:07<00:05, 2.91it/s]
52%|█████▏ | 15/29 [00:07<00:04, 2.93it/s]
55%|█████▌ | 16/29 [00:08<00:04, 2.94it/s]
59%|█████▊ | 17/29 [00:08<00:04, 2.95it/s]
62%|██████▏ | 18/29 [00:08<00:03, 2.96it/s]
66%|██████▌ | 19/29 [00:09<00:03, 2.96it/s]
69%|██████▉ | 20/29 [00:09<00:03, 2.96it/s]
72%|███████▏ | 21/29 [00:09<00:02, 2.96it/s]
76%|███████▌ | 22/29 [00:10<00:02, 2.97it/s]
79%|███████▉ | 23/29 [00:10<00:02, 2.96it/s]
83%|████████▎ | 24/29 [00:10<00:01, 2.96it/s]
86%|████████▌ | 25/29 [00:11<00:01, 2.96it/s]
90%|████████▉ | 26/29 [00:11<00:01, 2.96it/s]
93%|█████████▎| 27/29 [00:11<00:00, 2.96it/s]
97%|█████████▋| 28/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.96it/s]
100%|██████████| 29/29 [00:12<00:00, 2.30it/s]
Time taken: 36.87832283973694 seconds