Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run leticiaaduke/test2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"leticiaaduke/test2:5f6bfb817ddae4f4423f0730e1ea04dca771ea57fbe65306c26a39526d9bfffb",
{
input: {
image: "https://replicate.delivery/pbxt/M8wxklFIjIjicmWCvhCJ3dsNPV9Nt7sdz6TkeMz7DoZUAasS/IMG_0954.png",
model: "dev",
prompt: "A confident woman le with pale skin and long, sleek brown shoulder length hair sitting on a chair. She is dressed in a perfectly fit tailored deep teal suit with satin lapels, paired with a black top underneath. The background is softly textured, creating a subtle contrast with her polished and elegant appearance. Her expression is poised and composed, exuding authority and charisma. The shot is professional. She has dark eyes. ",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "1:1",
output_format: "png",
guidance_scale: 2,
output_quality: 100,
prompt_strength: 0.9,
extra_lora_scale: 1,
num_inference_steps: 45
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run leticiaaduke/test2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"leticiaaduke/test2:5f6bfb817ddae4f4423f0730e1ea04dca771ea57fbe65306c26a39526d9bfffb",
input={
"image": "https://replicate.delivery/pbxt/M8wxklFIjIjicmWCvhCJ3dsNPV9Nt7sdz6TkeMz7DoZUAasS/IMG_0954.png",
"model": "dev",
"prompt": "A confident woman le with pale skin and long, sleek brown shoulder length hair sitting on a chair. She is dressed in a perfectly fit tailored deep teal suit with satin lapels, paired with a black top underneath. The background is softly textured, creating a subtle contrast with her polished and elegant appearance. Her expression is poised and composed, exuding authority and charisma. The shot is professional. She has dark eyes. ",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "png",
"guidance_scale": 2,
"output_quality": 100,
"prompt_strength": 0.9,
"extra_lora_scale": 1,
"num_inference_steps": 45
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run leticiaaduke/test2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "leticiaaduke/test2:5f6bfb817ddae4f4423f0730e1ea04dca771ea57fbe65306c26a39526d9bfffb",
"input": {
"image": "https://replicate.delivery/pbxt/M8wxklFIjIjicmWCvhCJ3dsNPV9Nt7sdz6TkeMz7DoZUAasS/IMG_0954.png",
"model": "dev",
"prompt": "A confident woman le with pale skin and long, sleek brown shoulder length hair sitting on a chair. She is dressed in a perfectly fit tailored deep teal suit with satin lapels, paired with a black top underneath. The background is softly textured, creating a subtle contrast with her polished and elegant appearance. Her expression is poised and composed, exuding authority and charisma. The shot is professional. She has dark eyes. ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "png",
"guidance_scale": 2,
"output_quality": 100,
"prompt_strength": 0.9,
"extra_lora_scale": 1,
"num_inference_steps": 45
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
Each run costs approximately $0.034. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-12-14T15:32:35.561034Z",
"created_at": "2024-12-14T15:32:07.082000Z",
"data_removed": false,
"error": null,
"id": "aqsp0xk559rme0ckrq68rh6xe4",
"input": {
"image": "https://replicate.delivery/pbxt/M8wxklFIjIjicmWCvhCJ3dsNPV9Nt7sdz6TkeMz7DoZUAasS/IMG_0954.png",
"model": "dev",
"prompt": "A confident woman le with pale skin and long, sleek brown shoulder length hair sitting on a chair. She is dressed in a perfectly fit tailored deep teal suit with satin lapels, paired with a black top underneath. The background is softly textured, creating a subtle contrast with her polished and elegant appearance. Her expression is poised and composed, exuding authority and charisma. The shot is professional. She has dark eyes. ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "1:1",
"output_format": "png",
"guidance_scale": 2,
"output_quality": 100,
"prompt_strength": 0.9,
"extra_lora_scale": 1,
"num_inference_steps": 45
},
"logs": "2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2811.56it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2613.00it/s]\n2024-12-14 15:32:08.184 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s\nfree=28649486286848\nDownloading weights\n2024-12-14T15:32:08Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp6a1n8yo5/weights url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar\n2024-12-14T15:32:10Z | INFO | [ Complete ] dest=/tmp/tmp6a1n8yo5/weights size=\"172 MB\" total_elapsed=2.158s url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar\nDownloaded weights in 2.18s\n2024-12-14 15:32:10.369 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/3b1473488bc6cf5f\n2024-12-14 15:32:10.446 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2814.41it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2615.05it/s]\n2024-12-14 15:32:10.563 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s\nUsing seed: 54295\nImage detected - settting to img2img mode\nInput image size: 736x896\nInput image size set to: 736x896\n0it [00:00, ?it/s]\n2it [00:00, 9.48it/s]\n3it [00:00, 8.55it/s]\n4it [00:00, 8.13it/s]\n5it [00:00, 7.90it/s]\n6it [00:00, 7.77it/s]\n7it [00:00, 7.69it/s]\n8it [00:01, 7.63it/s]\n9it [00:01, 7.60it/s]\n10it [00:01, 7.57it/s]\n11it [00:01, 7.55it/s]\n12it [00:01, 7.54it/s]\n13it [00:01, 7.53it/s]\n14it [00:01, 7.51it/s]\n15it [00:01, 7.49it/s]\n16it [00:02, 7.49it/s]\n17it [00:02, 7.50it/s]\n18it [00:02, 7.49it/s]\n19it [00:02, 7.49it/s]\n20it [00:02, 7.49it/s]\n21it [00:02, 7.50it/s]\n22it [00:02, 7.50it/s]\n23it [00:03, 7.50it/s]\n24it [00:03, 7.50it/s]\n25it [00:03, 7.50it/s]\n26it [00:03, 7.49it/s]\n27it [00:03, 7.48it/s]\n28it [00:03, 7.49it/s]\n29it [00:03, 7.48it/s]\n30it [00:03, 7.49it/s]\n31it [00:04, 7.49it/s]\n32it [00:04, 7.50it/s]\n33it [00:04, 7.50it/s]\n34it [00:04, 7.50it/s]\n35it [00:04, 7.50it/s]\n36it [00:04, 7.50it/s]\n37it [00:04, 7.50it/s]\n38it [00:05, 7.50it/s]\n39it [00:05, 7.48it/s]\n40it [00:05, 7.47it/s]\n41it [00:05, 7.48it/s]\n41it [00:05, 7.57it/s]\n0it [00:00, ?it/s]\n1it [00:00, 7.69it/s]\n2it [00:00, 7.57it/s]\n3it [00:00, 7.53it/s]\n4it [00:00, 7.49it/s]\n5it [00:00, 7.45it/s]\n6it [00:00, 7.45it/s]\n7it [00:00, 7.43it/s]\n8it [00:01, 7.43it/s]\n9it [00:01, 7.42it/s]\n10it [00:01, 7.43it/s]\n11it [00:01, 7.45it/s]\n12it [00:01, 7.46it/s]\n13it [00:01, 7.48it/s]\n14it [00:01, 7.48it/s]\n15it [00:02, 7.47it/s]\n16it [00:02, 7.47it/s]\n17it [00:02, 7.47it/s]\n18it [00:02, 7.47it/s]\n19it [00:02, 7.47it/s]\n20it [00:02, 7.47it/s]\n21it [00:02, 7.47it/s]\n22it [00:02, 7.47it/s]\n23it [00:03, 7.48it/s]\n24it [00:03, 7.48it/s]\n25it [00:03, 7.49it/s]\n26it [00:03, 7.50it/s]\n27it [00:03, 7.51it/s]\n28it [00:03, 7.51it/s]\n29it [00:03, 7.50it/s]\n30it [00:04, 7.50it/s]\n31it [00:04, 7.48it/s]\n32it [00:04, 7.48it/s]\n33it [00:04, 7.49it/s]\n34it [00:04, 7.48it/s]\n35it [00:04, 7.48it/s]\n36it [00:04, 7.49it/s]\n37it [00:04, 7.49it/s]\n38it [00:05, 7.50it/s]\n39it [00:05, 7.50it/s]\n40it [00:05, 7.49it/s]\n41it [00:05, 7.50it/s]\n41it [00:05, 7.48it/s]\n0it [00:00, ?it/s]\n1it [00:00, 7.68it/s]\n2it [00:00, 7.57it/s]\n3it [00:00, 7.54it/s]\n4it [00:00, 7.51it/s]\n5it [00:00, 7.49it/s]\n6it [00:00, 7.48it/s]\n7it [00:00, 7.48it/s]\n8it [00:01, 7.46it/s]\n9it [00:01, 7.44it/s]\n10it [00:01, 7.43it/s]\n11it [00:01, 7.43it/s]\n12it [00:01, 7.44it/s]\n13it [00:01, 7.44it/s]\n14it [00:01, 7.44it/s]\n15it [00:02, 7.45it/s]\n16it [00:02, 7.46it/s]\n17it [00:02, 7.47it/s]\n18it [00:02, 7.46it/s]\n19it [00:02, 7.47it/s]\n20it [00:02, 7.48it/s]\n21it [00:02, 7.48it/s]\n22it [00:02, 7.49it/s]\n23it [00:03, 7.48it/s]\n24it [00:03, 7.47it/s]\n25it [00:03, 7.46it/s]\n26it [00:03, 7.44it/s]\n27it [00:03, 7.43it/s]\n28it [00:03, 7.44it/s]\n29it [00:03, 7.45it/s]\n30it [00:04, 7.45it/s]\n31it [00:04, 7.46it/s]\n32it [00:04, 7.47it/s]\n33it [00:04, 7.47it/s]\n34it [00:04, 7.47it/s]\n35it [00:04, 7.46it/s]\n36it [00:04, 7.46it/s]\n37it [00:04, 7.47it/s]\n38it [00:05, 7.47it/s]\n39it [00:05, 7.46it/s]\n40it [00:05, 7.47it/s]\n41it [00:05, 7.46it/s]\n41it [00:05, 7.47it/s]\n0it [00:00, ?it/s]\n1it [00:00, 7.60it/s]\n2it [00:00, 7.50it/s]\n3it [00:00, 7.48it/s]\n4it [00:00, 7.47it/s]\n5it [00:00, 7.47it/s]\n6it [00:00, 7.48it/s]\n7it [00:00, 7.47it/s]\n8it [00:01, 7.47it/s]\n9it [00:01, 7.44it/s]\n10it [00:01, 7.45it/s]\n11it [00:01, 7.44it/s]\n12it [00:01, 7.44it/s]\n13it [00:01, 7.45it/s]\n14it [00:01, 7.44it/s]\n15it [00:02, 7.46it/s]\n16it [00:02, 7.45it/s]\n17it [00:02, 7.46it/s]\n18it [00:02, 7.44it/s]\n19it [00:02, 7.43it/s]\n20it [00:02, 7.42it/s]\n21it [00:02, 7.42it/s]\n22it [00:02, 7.43it/s]\n23it [00:03, 7.45it/s]\n24it [00:03, 7.44it/s]\n25it [00:03, 7.44it/s]\n26it [00:03, 7.45it/s]\n27it [00:03, 7.45it/s]\n28it [00:03, 7.45it/s]\n29it [00:03, 7.44it/s]\n30it [00:04, 7.42it/s]\n31it [00:04, 7.43it/s]\n32it [00:04, 7.44it/s]\n33it [00:04, 7.43it/s]\n34it [00:04, 7.44it/s]\n35it [00:04, 7.45it/s]\n36it [00:04, 7.46it/s]\n37it [00:04, 7.47it/s]\n38it [00:05, 7.46it/s]\n39it [00:05, 7.45it/s]\n40it [00:05, 7.44it/s]\n41it [00:05, 7.43it/s]\n41it [00:05, 7.45it/s]\nTotal safe images: 4 out of 4",
"metrics": {
"predict_time": 27.614942868,
"total_time": 28.479034
},
"output": [
"https://replicate.delivery/xezq/XqbIQc4vWZrYGlVS3zat83QQTwuv13S6iPMqWpnuuQeJua9JA/out-0.png",
"https://replicate.delivery/xezq/LZEnfFBS9PSbRqIautKjlxgZeDkHY7UEaFaXVt3lHk7Tc16TA/out-1.png",
"https://replicate.delivery/xezq/09LtfmIOgX2iIK8jIsA7aN3DKpA1spsVD56WjHQkUEoJua9JA/out-2.png",
"https://replicate.delivery/xezq/yGb0b0RtebwvfUw4rT7ZhelTpfszDfeqrN9cdDB3SXlfJua9JA/out-3.png"
],
"started_at": "2024-12-14T15:32:07.946092Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-zlmp3mvzd7nfdjtjybxykrhlco7o3kiujwrtnqblq6rvh564a2wq",
"get": "https://api.replicate.com/v1/predictions/aqsp0xk559rme0ckrq68rh6xe4",
"cancel": "https://api.replicate.com/v1/predictions/aqsp0xk559rme0ckrq68rh6xe4/cancel"
},
"version": "5f6bfb817ddae4f4423f0730e1ea04dca771ea57fbe65306c26a39526d9bfffb"
}
2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2811.56it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2613.00it/s]
2024-12-14 15:32:08.184 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s
free=28649486286848
Downloading weights
2024-12-14T15:32:08Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp6a1n8yo5/weights url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar
2024-12-14T15:32:10Z | INFO | [ Complete ] dest=/tmp/tmp6a1n8yo5/weights size="172 MB" total_elapsed=2.158s url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar
Downloaded weights in 2.18s
2024-12-14 15:32:10.369 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/3b1473488bc6cf5f
2024-12-14 15:32:10.446 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2814.41it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2615.05it/s]
2024-12-14 15:32:10.563 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 54295
Image detected - settting to img2img mode
Input image size: 736x896
Input image size set to: 736x896
0it [00:00, ?it/s]
2it [00:00, 9.48it/s]
3it [00:00, 8.55it/s]
4it [00:00, 8.13it/s]
5it [00:00, 7.90it/s]
6it [00:00, 7.77it/s]
7it [00:00, 7.69it/s]
8it [00:01, 7.63it/s]
9it [00:01, 7.60it/s]
10it [00:01, 7.57it/s]
11it [00:01, 7.55it/s]
12it [00:01, 7.54it/s]
13it [00:01, 7.53it/s]
14it [00:01, 7.51it/s]
15it [00:01, 7.49it/s]
16it [00:02, 7.49it/s]
17it [00:02, 7.50it/s]
18it [00:02, 7.49it/s]
19it [00:02, 7.49it/s]
20it [00:02, 7.49it/s]
21it [00:02, 7.50it/s]
22it [00:02, 7.50it/s]
23it [00:03, 7.50it/s]
24it [00:03, 7.50it/s]
25it [00:03, 7.50it/s]
26it [00:03, 7.49it/s]
27it [00:03, 7.48it/s]
28it [00:03, 7.49it/s]
29it [00:03, 7.48it/s]
30it [00:03, 7.49it/s]
31it [00:04, 7.49it/s]
32it [00:04, 7.50it/s]
33it [00:04, 7.50it/s]
34it [00:04, 7.50it/s]
35it [00:04, 7.50it/s]
36it [00:04, 7.50it/s]
37it [00:04, 7.50it/s]
38it [00:05, 7.50it/s]
39it [00:05, 7.48it/s]
40it [00:05, 7.47it/s]
41it [00:05, 7.48it/s]
41it [00:05, 7.57it/s]
0it [00:00, ?it/s]
1it [00:00, 7.69it/s]
2it [00:00, 7.57it/s]
3it [00:00, 7.53it/s]
4it [00:00, 7.49it/s]
5it [00:00, 7.45it/s]
6it [00:00, 7.45it/s]
7it [00:00, 7.43it/s]
8it [00:01, 7.43it/s]
9it [00:01, 7.42it/s]
10it [00:01, 7.43it/s]
11it [00:01, 7.45it/s]
12it [00:01, 7.46it/s]
13it [00:01, 7.48it/s]
14it [00:01, 7.48it/s]
15it [00:02, 7.47it/s]
16it [00:02, 7.47it/s]
17it [00:02, 7.47it/s]
18it [00:02, 7.47it/s]
19it [00:02, 7.47it/s]
20it [00:02, 7.47it/s]
21it [00:02, 7.47it/s]
22it [00:02, 7.47it/s]
23it [00:03, 7.48it/s]
24it [00:03, 7.48it/s]
25it [00:03, 7.49it/s]
26it [00:03, 7.50it/s]
27it [00:03, 7.51it/s]
28it [00:03, 7.51it/s]
29it [00:03, 7.50it/s]
30it [00:04, 7.50it/s]
31it [00:04, 7.48it/s]
32it [00:04, 7.48it/s]
33it [00:04, 7.49it/s]
34it [00:04, 7.48it/s]
35it [00:04, 7.48it/s]
36it [00:04, 7.49it/s]
37it [00:04, 7.49it/s]
38it [00:05, 7.50it/s]
39it [00:05, 7.50it/s]
40it [00:05, 7.49it/s]
41it [00:05, 7.50it/s]
41it [00:05, 7.48it/s]
0it [00:00, ?it/s]
1it [00:00, 7.68it/s]
2it [00:00, 7.57it/s]
3it [00:00, 7.54it/s]
4it [00:00, 7.51it/s]
5it [00:00, 7.49it/s]
6it [00:00, 7.48it/s]
7it [00:00, 7.48it/s]
8it [00:01, 7.46it/s]
9it [00:01, 7.44it/s]
10it [00:01, 7.43it/s]
11it [00:01, 7.43it/s]
12it [00:01, 7.44it/s]
13it [00:01, 7.44it/s]
14it [00:01, 7.44it/s]
15it [00:02, 7.45it/s]
16it [00:02, 7.46it/s]
17it [00:02, 7.47it/s]
18it [00:02, 7.46it/s]
19it [00:02, 7.47it/s]
20it [00:02, 7.48it/s]
21it [00:02, 7.48it/s]
22it [00:02, 7.49it/s]
23it [00:03, 7.48it/s]
24it [00:03, 7.47it/s]
25it [00:03, 7.46it/s]
26it [00:03, 7.44it/s]
27it [00:03, 7.43it/s]
28it [00:03, 7.44it/s]
29it [00:03, 7.45it/s]
30it [00:04, 7.45it/s]
31it [00:04, 7.46it/s]
32it [00:04, 7.47it/s]
33it [00:04, 7.47it/s]
34it [00:04, 7.47it/s]
35it [00:04, 7.46it/s]
36it [00:04, 7.46it/s]
37it [00:04, 7.47it/s]
38it [00:05, 7.47it/s]
39it [00:05, 7.46it/s]
40it [00:05, 7.47it/s]
41it [00:05, 7.46it/s]
41it [00:05, 7.47it/s]
0it [00:00, ?it/s]
1it [00:00, 7.60it/s]
2it [00:00, 7.50it/s]
3it [00:00, 7.48it/s]
4it [00:00, 7.47it/s]
5it [00:00, 7.47it/s]
6it [00:00, 7.48it/s]
7it [00:00, 7.47it/s]
8it [00:01, 7.47it/s]
9it [00:01, 7.44it/s]
10it [00:01, 7.45it/s]
11it [00:01, 7.44it/s]
12it [00:01, 7.44it/s]
13it [00:01, 7.45it/s]
14it [00:01, 7.44it/s]
15it [00:02, 7.46it/s]
16it [00:02, 7.45it/s]
17it [00:02, 7.46it/s]
18it [00:02, 7.44it/s]
19it [00:02, 7.43it/s]
20it [00:02, 7.42it/s]
21it [00:02, 7.42it/s]
22it [00:02, 7.43it/s]
23it [00:03, 7.45it/s]
24it [00:03, 7.44it/s]
25it [00:03, 7.44it/s]
26it [00:03, 7.45it/s]
27it [00:03, 7.45it/s]
28it [00:03, 7.45it/s]
29it [00:03, 7.44it/s]
30it [00:04, 7.42it/s]
31it [00:04, 7.43it/s]
32it [00:04, 7.44it/s]
33it [00:04, 7.43it/s]
34it [00:04, 7.44it/s]
35it [00:04, 7.45it/s]
36it [00:04, 7.46it/s]
37it [00:04, 7.47it/s]
38it [00:05, 7.46it/s]
39it [00:05, 7.45it/s]
40it [00:05, 7.44it/s]
41it [00:05, 7.43it/s]
41it [00:05, 7.45it/s]
Total safe images: 4 out of 4
This model costs approximately $0.034 to run on Replicate, or 29 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia H100 GPU hardware. Predictions typically complete within 23 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.034 to run on Replicate, but this varies depending on your inputs. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 15:32:08.067 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2811.56it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2613.00it/s]
2024-12-14 15:32:08.184 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.12s
free=28649486286848
Downloading weights
2024-12-14T15:32:08Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmp6a1n8yo5/weights url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar
2024-12-14T15:32:10Z | INFO | [ Complete ] dest=/tmp/tmp6a1n8yo5/weights size="172 MB" total_elapsed=2.158s url=https://replicate.delivery/yhqm/BG3zE6pGnqojI199jhDFH5f9Zjg4bYXoObN2fSU4eGsFfrtOB/trained_model.tar
Downloaded weights in 2.18s
2024-12-14 15:32:10.369 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/3b1473488bc6cf5f
2024-12-14 15:32:10.446 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2024-12-14 15:32:10.446 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 93%|█████████▎| 282/304 [00:00<00:00, 2814.41it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2615.05it/s]
2024-12-14 15:32:10.563 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.19s
Using seed: 54295
Image detected - settting to img2img mode
Input image size: 736x896
Input image size set to: 736x896
0it [00:00, ?it/s]
2it [00:00, 9.48it/s]
3it [00:00, 8.55it/s]
4it [00:00, 8.13it/s]
5it [00:00, 7.90it/s]
6it [00:00, 7.77it/s]
7it [00:00, 7.69it/s]
8it [00:01, 7.63it/s]
9it [00:01, 7.60it/s]
10it [00:01, 7.57it/s]
11it [00:01, 7.55it/s]
12it [00:01, 7.54it/s]
13it [00:01, 7.53it/s]
14it [00:01, 7.51it/s]
15it [00:01, 7.49it/s]
16it [00:02, 7.49it/s]
17it [00:02, 7.50it/s]
18it [00:02, 7.49it/s]
19it [00:02, 7.49it/s]
20it [00:02, 7.49it/s]
21it [00:02, 7.50it/s]
22it [00:02, 7.50it/s]
23it [00:03, 7.50it/s]
24it [00:03, 7.50it/s]
25it [00:03, 7.50it/s]
26it [00:03, 7.49it/s]
27it [00:03, 7.48it/s]
28it [00:03, 7.49it/s]
29it [00:03, 7.48it/s]
30it [00:03, 7.49it/s]
31it [00:04, 7.49it/s]
32it [00:04, 7.50it/s]
33it [00:04, 7.50it/s]
34it [00:04, 7.50it/s]
35it [00:04, 7.50it/s]
36it [00:04, 7.50it/s]
37it [00:04, 7.50it/s]
38it [00:05, 7.50it/s]
39it [00:05, 7.48it/s]
40it [00:05, 7.47it/s]
41it [00:05, 7.48it/s]
41it [00:05, 7.57it/s]
0it [00:00, ?it/s]
1it [00:00, 7.69it/s]
2it [00:00, 7.57it/s]
3it [00:00, 7.53it/s]
4it [00:00, 7.49it/s]
5it [00:00, 7.45it/s]
6it [00:00, 7.45it/s]
7it [00:00, 7.43it/s]
8it [00:01, 7.43it/s]
9it [00:01, 7.42it/s]
10it [00:01, 7.43it/s]
11it [00:01, 7.45it/s]
12it [00:01, 7.46it/s]
13it [00:01, 7.48it/s]
14it [00:01, 7.48it/s]
15it [00:02, 7.47it/s]
16it [00:02, 7.47it/s]
17it [00:02, 7.47it/s]
18it [00:02, 7.47it/s]
19it [00:02, 7.47it/s]
20it [00:02, 7.47it/s]
21it [00:02, 7.47it/s]
22it [00:02, 7.47it/s]
23it [00:03, 7.48it/s]
24it [00:03, 7.48it/s]
25it [00:03, 7.49it/s]
26it [00:03, 7.50it/s]
27it [00:03, 7.51it/s]
28it [00:03, 7.51it/s]
29it [00:03, 7.50it/s]
30it [00:04, 7.50it/s]
31it [00:04, 7.48it/s]
32it [00:04, 7.48it/s]
33it [00:04, 7.49it/s]
34it [00:04, 7.48it/s]
35it [00:04, 7.48it/s]
36it [00:04, 7.49it/s]
37it [00:04, 7.49it/s]
38it [00:05, 7.50it/s]
39it [00:05, 7.50it/s]
40it [00:05, 7.49it/s]
41it [00:05, 7.50it/s]
41it [00:05, 7.48it/s]
0it [00:00, ?it/s]
1it [00:00, 7.68it/s]
2it [00:00, 7.57it/s]
3it [00:00, 7.54it/s]
4it [00:00, 7.51it/s]
5it [00:00, 7.49it/s]
6it [00:00, 7.48it/s]
7it [00:00, 7.48it/s]
8it [00:01, 7.46it/s]
9it [00:01, 7.44it/s]
10it [00:01, 7.43it/s]
11it [00:01, 7.43it/s]
12it [00:01, 7.44it/s]
13it [00:01, 7.44it/s]
14it [00:01, 7.44it/s]
15it [00:02, 7.45it/s]
16it [00:02, 7.46it/s]
17it [00:02, 7.47it/s]
18it [00:02, 7.46it/s]
19it [00:02, 7.47it/s]
20it [00:02, 7.48it/s]
21it [00:02, 7.48it/s]
22it [00:02, 7.49it/s]
23it [00:03, 7.48it/s]
24it [00:03, 7.47it/s]
25it [00:03, 7.46it/s]
26it [00:03, 7.44it/s]
27it [00:03, 7.43it/s]
28it [00:03, 7.44it/s]
29it [00:03, 7.45it/s]
30it [00:04, 7.45it/s]
31it [00:04, 7.46it/s]
32it [00:04, 7.47it/s]
33it [00:04, 7.47it/s]
34it [00:04, 7.47it/s]
35it [00:04, 7.46it/s]
36it [00:04, 7.46it/s]
37it [00:04, 7.47it/s]
38it [00:05, 7.47it/s]
39it [00:05, 7.46it/s]
40it [00:05, 7.47it/s]
41it [00:05, 7.46it/s]
41it [00:05, 7.47it/s]
0it [00:00, ?it/s]
1it [00:00, 7.60it/s]
2it [00:00, 7.50it/s]
3it [00:00, 7.48it/s]
4it [00:00, 7.47it/s]
5it [00:00, 7.47it/s]
6it [00:00, 7.48it/s]
7it [00:00, 7.47it/s]
8it [00:01, 7.47it/s]
9it [00:01, 7.44it/s]
10it [00:01, 7.45it/s]
11it [00:01, 7.44it/s]
12it [00:01, 7.44it/s]
13it [00:01, 7.45it/s]
14it [00:01, 7.44it/s]
15it [00:02, 7.46it/s]
16it [00:02, 7.45it/s]
17it [00:02, 7.46it/s]
18it [00:02, 7.44it/s]
19it [00:02, 7.43it/s]
20it [00:02, 7.42it/s]
21it [00:02, 7.42it/s]
22it [00:02, 7.43it/s]
23it [00:03, 7.45it/s]
24it [00:03, 7.44it/s]
25it [00:03, 7.44it/s]
26it [00:03, 7.45it/s]
27it [00:03, 7.45it/s]
28it [00:03, 7.45it/s]
29it [00:03, 7.44it/s]
30it [00:04, 7.42it/s]
31it [00:04, 7.43it/s]
32it [00:04, 7.44it/s]
33it [00:04, 7.43it/s]
34it [00:04, 7.44it/s]
35it [00:04, 7.45it/s]
36it [00:04, 7.46it/s]
37it [00:04, 7.47it/s]
38it [00:05, 7.46it/s]
39it [00:05, 7.45it/s]
40it [00:05, 7.44it/s]
41it [00:05, 7.43it/s]
41it [00:05, 7.45it/s]
Total safe images: 4 out of 4