✋ This model is not published yet.
You can claim this model if you're @lhoyer on GitHub. Contact us.
lhoyer
/
hrda
image semantic segmentation
Prediction
lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64ModelIDona3uh7fivej7f5ojgbmfdzdyiStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", { input: { opacity: 0.75, input_image: "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", input={ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64 \ -i 'opacity=0.75' \ -i 'input_image="https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-06-03T06:36:12.516642Z", "created_at": "2022-06-03T06:33:53.884113Z", "data_removed": false, "error": null, "id": "ona3uh7fivej7f5ojgbmfdzdyi", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/29eefb43-84e0-4f82-b75d-9f07cf90ba8b/16th-Street-Mall-CO-1.jpg" }, "logs": "2022-06-03 06:36:07,376 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torch/nn/functional.py:3103: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details.\n warnings.warn(\"The default behavior for interpolate/upsample with float scale_factor changed \"", "metrics": { "predict_time": 14.364986, "total_time": 138.632529 }, "output": "https://replicate.delivery/mgxm/8dd7b5a9-187a-4191-b723-5dd49540fc76/output.png", "started_at": "2022-06-03T06:35:58.151656Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ona3uh7fivej7f5ojgbmfdzdyi", "cancel": "https://api.replicate.com/v1/predictions/ona3uh7fivej7f5ojgbmfdzdyi/cancel" }, "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64" }
Generated in2022-06-03 06:36:07,376 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val /root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torch/nn/functional.py:3103: UserWarning: The default behavior for interpolate/upsample with float scale_factor changed in 1.6.0 to align with other frameworks/libraries, and now uses scale_factor directly, instead of relying on the computed output size. If you wish to restore the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. warnings.warn("The default behavior for interpolate/upsample with float scale_factor changed "
Prediction
lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64ModelIDoc2rzbzxorgtdjtkcnt6uwmibaStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", { input: { opacity: 0.75, input_image: "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", input={ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64 \ -i 'opacity=0.75' \ -i 'input_image="https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-06-03T06:39:59.048640Z", "created_at": "2022-06-03T06:39:53.402665Z", "data_removed": false, "error": null, "id": "oc2rzbzxorgtdjtkcnt6uwmiba", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/b68974ef-c17b-4d02-a769-d2fd5b2a2e79/google1.png" }, "logs": "2022-06-03 06:39:53,674 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val", "metrics": { "predict_time": 5.491347, "total_time": 5.645975 }, "output": "https://replicate.delivery/mgxm/de008454-2707-410f-9e15-ce75ec4dcc46/output.png", "started_at": "2022-06-03T06:39:53.557293Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/oc2rzbzxorgtdjtkcnt6uwmiba", "cancel": "https://api.replicate.com/v1/predictions/oc2rzbzxorgtdjtkcnt6uwmiba/cancel" }, "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64" }
Generated in2022-06-03 06:39:53,674 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val
Prediction
lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64ModelIDfgw5jfqoorhhpoiq4m73zl3uvaStatusSucceededSourceWebHardware–Total durationCreatedInput
{ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", { input: { opacity: 0.75, input_image: "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lhoyer/hrda:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", input={ "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run lhoyer/hrda using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64 \ -i 'opacity=0.75' \ -i 'input_image="https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lhoyer/hrda@sha256:5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2022-06-03T06:40:44.356602Z", "created_at": "2022-06-03T06:40:40.126039Z", "data_removed": false, "error": null, "id": "fgw5jfqoorhhpoiq4m73zl3uva", "input": { "opacity": 0.75, "input_image": "https://replicate.delivery/mgxm/1dd57a9b-00c1-4d71-a69f-80c47ca6679c/frankfurt1.png" }, "logs": "2022-06-03 06:40:40,390 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val", "metrics": { "predict_time": 4.106642, "total_time": 4.230563 }, "output": "https://replicate.delivery/mgxm/1ed345c5-8337-48e9-bfcf-bc0b9a0b9c18/output.png", "started_at": "2022-06-03T06:40:40.249960Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fgw5jfqoorhhpoiq4m73zl3uva", "cancel": "https://api.replicate.com/v1/predictions/fgw5jfqoorhhpoiq4m73zl3uva/cancel" }, "version": "5a260c83723c8e79a87a9cba90f5c00e84193bb1c251e327f9beb467e4fa5b64" }
Generated in2022-06-03 06:40:40,390 - mmseg - INFO - Loaded 1 images from data/dummy_cityscapes/leftImg8bit/val
Want to make some of these yourself?
Run this model