lucataco/flux-rf-inversion

Cog implementation of Diffusers Flux RFInversion Pipeline

Shiba stable diffusion model

bigcode/tiny_starcoder_py

lmsys/vicuna-13b-v1.3

lmsys/vicuna-7b-v1.3

Salesforce/codegen2-1B

Salesforce/xgen-7b-8k-base

Realistic Vision V3.0 with VAE

Realistic Vision V4.0

CLIP Interrogator (for faster inference)
A working wsrglow model

RiversHaveWings Stable Diffusion Upscaler

Real-ESRGAN with optional face correction and adjustable upscale (for larger images)
Animate Your Personalized Text-to-Image Diffusion Models

Segments an audio recording based on who is speaking (on A100)

Meta's Llama 2 7b Chat - GPTQ

Meta's Llama 2 13b Chat - GPTQ

Stability AI's FreeWilly2

Implementation of Realistic Vision v5.1 with VAE

Practical face restoration algorithm for *old photos* or *AI-generated faces* (for larger images)

SDXL v1.0 - A text-to-image generative AI model that creates beautiful images
Prediction
lucataco/flux-rf-inversion:5062c593200af97cb6a9271cb5a569bfd60ecbf3f66332adca983a7cff610810IDxfvr2b5gd9rmc0cm2mvajhbdw0StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- eta
- 0.9
- prompt
- Portrait of a tiger
- output_format
- webp
- stop_timestep
- 0.38
- output_quality
- 80
- start_timestep
- 0
- inversion_gamma
- 0.5
- num_inference_steps
- 28
{ "eta": 0.9, "image": "https://replicate.delivery/pbxt/MEQINqlsMs9i61oNXzOnsbsB5jV72H3u3ZWZUseGLSBfoZAC/cat.png", "prompt": "Portrait of a tiger", "output_format": "webp", "stop_timestep": 0.38, "output_quality": 80, "start_timestep": 0, "inversion_gamma": 0.5, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run lucataco/flux-rf-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "lucataco/flux-rf-inversion:5062c593200af97cb6a9271cb5a569bfd60ecbf3f66332adca983a7cff610810", { input: { eta: 0.9, image: "https://replicate.delivery/pbxt/MEQINqlsMs9i61oNXzOnsbsB5jV72H3u3ZWZUseGLSBfoZAC/cat.png", prompt: "Portrait of a tiger", output_format: "webp", stop_timestep: 0.38, output_quality: 80, start_timestep: 0, inversion_gamma: 0.5, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run lucataco/flux-rf-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "lucataco/flux-rf-inversion:5062c593200af97cb6a9271cb5a569bfd60ecbf3f66332adca983a7cff610810", input={ "eta": 0.9, "image": "https://replicate.delivery/pbxt/MEQINqlsMs9i61oNXzOnsbsB5jV72H3u3ZWZUseGLSBfoZAC/cat.png", "prompt": "Portrait of a tiger", "output_format": "webp", "stop_timestep": 0.38, "output_quality": 80, "start_timestep": 0, "inversion_gamma": 0.5, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run lucataco/flux-rf-inversion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "lucataco/flux-rf-inversion:5062c593200af97cb6a9271cb5a569bfd60ecbf3f66332adca983a7cff610810", "input": { "eta": 0.9, "image": "https://replicate.delivery/pbxt/MEQINqlsMs9i61oNXzOnsbsB5jV72H3u3ZWZUseGLSBfoZAC/cat.png", "prompt": "Portrait of a tiger", "output_format": "webp", "stop_timestep": 0.38, "output_quality": 80, "start_timestep": 0, "inversion_gamma": 0.5, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-12-30T01:38:46.687423Z", "created_at": "2024-12-30T01:38:13.226000Z", "data_removed": false, "error": null, "id": "xfvr2b5gd9rmc0cm2mvajhbdw0", "input": { "eta": 0.9, "image": "https://replicate.delivery/pbxt/MEQINqlsMs9i61oNXzOnsbsB5jV72H3u3ZWZUseGLSBfoZAC/cat.png", "prompt": "Portrait of a tiger", "output_format": "webp", "stop_timestep": 0.38, "output_quality": 80, "start_timestep": 0, "inversion_gamma": 0.5, "num_inference_steps": 28 }, "logs": "Using seed: 14818\nPrompt: Portrait of a tiger\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.76it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.06it/s]\n 11%|█ | 3/28 [00:01<00:13, 1.91it/s]\n 14%|█▍ | 4/28 [00:02<00:13, 1.84it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.81it/s]\n 21%|██▏ | 6/28 [00:03<00:12, 1.78it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.77it/s]\n 29%|██▊ | 8/28 [00:04<00:11, 1.76it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.76it/s]\n 36%|███▌ | 10/28 [00:05<00:10, 1.75it/s]\n 39%|███▉ | 11/28 [00:06<00:09, 1.74it/s]\n 43%|████▎ | 12/28 [00:06<00:09, 1.74it/s]\n 46%|████▋ | 13/28 [00:07<00:08, 1.74it/s]\n 50%|█████ | 14/28 [00:07<00:08, 1.73it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.73it/s]\n 57%|█████▋ | 16/28 [00:08<00:06, 1.73it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.73it/s]\n 64%|██████▍ | 18/28 [00:10<00:05, 1.73it/s]\n 68%|██████▊ | 19/28 [00:10<00:05, 1.73it/s]\n 71%|███████▏ | 20/28 [00:11<00:04, 1.73it/s]\n 75%|███████▌ | 21/28 [00:11<00:04, 1.73it/s]\n 79%|███████▊ | 22/28 [00:12<00:03, 1.72it/s]\n 82%|████████▏ | 23/28 [00:13<00:02, 1.72it/s]\n 86%|████████▌ | 24/28 [00:13<00:02, 1.72it/s]\n 89%|████████▉ | 25/28 [00:14<00:01, 1.72it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.73it/s]\n 96%|█████████▋| 27/28 [00:15<00:00, 1.73it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.73it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.76it/s]\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:09, 2.74it/s]\n 7%|▋ | 2/28 [00:00<00:12, 2.04it/s]\n 11%|█ | 3/28 [00:01<00:13, 1.89it/s]\n 14%|█▍ | 4/28 [00:02<00:13, 1.83it/s]\n 18%|█▊ | 5/28 [00:02<00:12, 1.79it/s]\n 21%|██▏ | 6/28 [00:03<00:12, 1.77it/s]\n 25%|██▌ | 7/28 [00:03<00:11, 1.75it/s]\n 29%|██▊ | 8/28 [00:04<00:11, 1.75it/s]\n 32%|███▏ | 9/28 [00:04<00:10, 1.74it/s]\n 36%|███▌ | 10/28 [00:05<00:10, 1.74it/s]\n 39%|███▉ | 11/28 [00:06<00:09, 1.74it/s]\n 43%|████▎ | 12/28 [00:06<00:09, 1.74it/s]\n 46%|████▋ | 13/28 [00:07<00:08, 1.74it/s]\n 50%|█████ | 14/28 [00:07<00:08, 1.74it/s]\n 54%|█████▎ | 15/28 [00:08<00:07, 1.74it/s]\n 57%|█████▋ | 16/28 [00:09<00:06, 1.73it/s]\n 61%|██████ | 17/28 [00:09<00:06, 1.73it/s]\n 64%|██████▍ | 18/28 [00:10<00:05, 1.73it/s]\n 68%|██████▊ | 19/28 [00:10<00:05, 1.73it/s]\n 71%|███████▏ | 20/28 [00:11<00:04, 1.73it/s]\n 75%|███████▌ | 21/28 [00:11<00:04, 1.73it/s]\n 79%|███████▊ | 22/28 [00:12<00:03, 1.73it/s]\n 82%|████████▏ | 23/28 [00:13<00:02, 1.73it/s]\n 86%|████████▌ | 24/28 [00:13<00:02, 1.73it/s]\n 89%|████████▉ | 25/28 [00:14<00:01, 1.73it/s]\n 93%|█████████▎| 26/28 [00:14<00:01, 1.73it/s]\n 96%|█████████▋| 27/28 [00:15<00:00, 1.73it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.72it/s]\n100%|██████████| 28/28 [00:15<00:00, 1.75it/s]", "metrics": { "predict_time": 33.454139486, "total_time": 33.461423 }, "output": [ "https://replicate.delivery/xezq/nYz9ze8blnzlPqQLzjQsjfaWerQ8GNss1feUVukxy3t20VffJA/out-0.webp" ], "started_at": "2024-12-30T01:38:13.233284Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-5aqjqox7cptppiehzz4zxzme6o6bnhi2nf2hhb2ukpjdzobc6k5a", "get": "https://api.replicate.com/v1/predictions/xfvr2b5gd9rmc0cm2mvajhbdw0", "cancel": "https://api.replicate.com/v1/predictions/xfvr2b5gd9rmc0cm2mvajhbdw0/cancel" }, "version": "5062c593200af97cb6a9271cb5a569bfd60ecbf3f66332adca983a7cff610810" }
Generated inUsing seed: 14818 Prompt: Portrait of a tiger 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.76it/s] 7%|▋ | 2/28 [00:00<00:12, 2.06it/s] 11%|█ | 3/28 [00:01<00:13, 1.91it/s] 14%|█▍ | 4/28 [00:02<00:13, 1.84it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.81it/s] 21%|██▏ | 6/28 [00:03<00:12, 1.78it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.77it/s] 29%|██▊ | 8/28 [00:04<00:11, 1.76it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.76it/s] 36%|███▌ | 10/28 [00:05<00:10, 1.75it/s] 39%|███▉ | 11/28 [00:06<00:09, 1.74it/s] 43%|████▎ | 12/28 [00:06<00:09, 1.74it/s] 46%|████▋ | 13/28 [00:07<00:08, 1.74it/s] 50%|█████ | 14/28 [00:07<00:08, 1.73it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.73it/s] 57%|█████▋ | 16/28 [00:08<00:06, 1.73it/s] 61%|██████ | 17/28 [00:09<00:06, 1.73it/s] 64%|██████▍ | 18/28 [00:10<00:05, 1.73it/s] 68%|██████▊ | 19/28 [00:10<00:05, 1.73it/s] 71%|███████▏ | 20/28 [00:11<00:04, 1.73it/s] 75%|███████▌ | 21/28 [00:11<00:04, 1.73it/s] 79%|███████▊ | 22/28 [00:12<00:03, 1.72it/s] 82%|████████▏ | 23/28 [00:13<00:02, 1.72it/s] 86%|████████▌ | 24/28 [00:13<00:02, 1.72it/s] 89%|████████▉ | 25/28 [00:14<00:01, 1.72it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.73it/s] 96%|█████████▋| 27/28 [00:15<00:00, 1.73it/s] 100%|██████████| 28/28 [00:15<00:00, 1.73it/s] 100%|██████████| 28/28 [00:15<00:00, 1.76it/s] 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:09, 2.74it/s] 7%|▋ | 2/28 [00:00<00:12, 2.04it/s] 11%|█ | 3/28 [00:01<00:13, 1.89it/s] 14%|█▍ | 4/28 [00:02<00:13, 1.83it/s] 18%|█▊ | 5/28 [00:02<00:12, 1.79it/s] 21%|██▏ | 6/28 [00:03<00:12, 1.77it/s] 25%|██▌ | 7/28 [00:03<00:11, 1.75it/s] 29%|██▊ | 8/28 [00:04<00:11, 1.75it/s] 32%|███▏ | 9/28 [00:04<00:10, 1.74it/s] 36%|███▌ | 10/28 [00:05<00:10, 1.74it/s] 39%|███▉ | 11/28 [00:06<00:09, 1.74it/s] 43%|████▎ | 12/28 [00:06<00:09, 1.74it/s] 46%|████▋ | 13/28 [00:07<00:08, 1.74it/s] 50%|█████ | 14/28 [00:07<00:08, 1.74it/s] 54%|█████▎ | 15/28 [00:08<00:07, 1.74it/s] 57%|█████▋ | 16/28 [00:09<00:06, 1.73it/s] 61%|██████ | 17/28 [00:09<00:06, 1.73it/s] 64%|██████▍ | 18/28 [00:10<00:05, 1.73it/s] 68%|██████▊ | 19/28 [00:10<00:05, 1.73it/s] 71%|███████▏ | 20/28 [00:11<00:04, 1.73it/s] 75%|███████▌ | 21/28 [00:11<00:04, 1.73it/s] 79%|███████▊ | 22/28 [00:12<00:03, 1.73it/s] 82%|████████▏ | 23/28 [00:13<00:02, 1.73it/s] 86%|████████▌ | 24/28 [00:13<00:02, 1.73it/s] 89%|████████▉ | 25/28 [00:14<00:01, 1.73it/s] 93%|█████████▎| 26/28 [00:14<00:01, 1.73it/s] 96%|█████████▋| 27/28 [00:15<00:00, 1.73it/s] 100%|██████████| 28/28 [00:15<00:00, 1.72it/s] 100%|██████████| 28/28 [00:15<00:00, 1.75it/s]
Want to make some of these yourself?
Run this model