You're looking at a specific version of this model. Jump to the model overview.

lucataco /stable-diffusion-3.5-large-lora-trainer:cd6419a5

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
input_images
string
A zip file containing the images that will be used for training.
instance_prompt
string
Frog, yarn art style
Instance prompt to trigger the image generation
resolution
integer (enum)
768

Options:

512, 768, 1024

The resolution for input images, all the images in the train/validation dataset will be resized to this
max_train_steps
integer
700

Min: 100

Max: 6000

Total number of training steps to perform
rank
integer
16

Min: 4

Max: 64

The dimension of the LoRA
train_batch_size
integer
1

Min: 1

Max: 8

Batch size for the training dataloader
gradient_accumulation_steps
integer
1

Min: 1

Max: 8

Number of updates steps to accumulate before performing a backward/update pass
optimizer
string (enum)
AdamW

Options:

AdamW, prodigy

The optimizer type to use
learning_rate
number
0.0001

Min: 0.0001

Max: 1

Initial learning rate to use (1.0 for Prodigy)
lr_scheduler
string (enum)
constant

Options:

linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup

'The scheduler type to use
checkpointing_steps
integer

Min: 100

Max: 6000

Save a checkpoint of the training state every X updates
seed
integer
Seed for reproducibility
backend
string (enum)
no

Options:

no, eager, aot_eager, inductor, nvfuser, aot_nvfuser, aot_cudagraphs, ofi, fx2trt, onnxrt, ipex

Dynamo Backend
hf_token
string
Huggingface token (optional) with write access to upload to Hugging Face
hub_model_id
string
Huggingface model location for upload. Requires a HF token with write permissions. Ex: lucataco/flux-qsd
wandb_api_key
string
Weights and Biases API key, if you'd like to log training progress to W&B.

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}