You're looking at a specific version of this model. Jump to the model overview.

nightmareai /majesty-diffusion:ff97d797

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
clip_prompt
string
The portrait of a Majestic Princess, trending on artstation
Prompt for CLIP guidance
latent_prompt
string
The portrait of a Majestic Princess, trending on artstation
Prompt for latent diffusion
height
None
256
Output height (output will be scaled up 1.5x with default settings)
width
None
256
Output width (output will be scaled up 1.5x with default settings)
init_image
string
Initial image
init_mask
string
A mask same width and height as the original image with the color black indicating where to inpaint
init_scale
integer
1000
Controls how much the init image should influence the final result. Experiment with values around 1000
init_brightness
number
0
Init image brightness
latent_scale
integer
12
The `latent_diffusion_guidance_scale` will determine how much the `latent_prompts` affect the image. Lower help with text interpretation, higher help with composition. Try values between 0-15. If you see too much text, lower it
clip_perceptors
string
### Preloaded with image [clip - mlfoundations - ViT-B-16--openai] [clip - mlfoundations - ViT-L-14--openai] [clip - mlfoundations - ViT-B-32--laion2b_e16] ### Download on demand #[clip - mlfoundations - ViT-B-32--openai], #[clip - mlfoundations - RN50x4--openai] #[clip - mlfoundations - RN50x64--openai] #[clip - mlfoundations - RN50x16--openai] #[clip - mlfoundations - ViT-L-14--laion400m_e32] #[clip - mlfoundations - ViT-L-14-336--openai] #[clip - mlfoundations - ViT-B-16--laion400m_e32] #[clip - mlfoundations - ViT-B-16-plus-240--laion400m_e32] #[clip - sajjjadayobi - clipfa] #[clip - navervision - kelip_ViT-B/32] #[cloob - crowsonkb - cloob_laion_400m_vit_b_16_32_epochs]
List of CLIP perceptor models to load, one per line. More models will consume more memory. Uses https://github.com/dmarx/Multi-Modal-Comparators.
clip_scale
integer
16000
CLIP guidance scale
aesthetic_loss_scale
integer
400
Aesthetic loss scale
starting_timestep
number
0.9
Starting timestep
model
None
finetuned
Latent diffusion model (ongo and erlich may need to download, taking extra time)
custom_schedule
string
[ [50, 1000, 8], "gfpgan:1.5", "scale:.9", "noise:.55", [5,300,4] ]
Custom schedules, one per line. See the Majestic Guide for documentation.
latent_negatives
string
Negative prompts for Latent Diffusion
output_steps
None
10
Steps between outputs, 0 to disable progressive output. Minor speed impact.
advanced_settings
string
[advanced_settings] #Add CLIP Guidance and all the flavors or just run normal Latent Diffusion use_cond_fn = True #Cut settings clamp_index = [2.4, 2.1] cut_overview = [8]*500 + [4]*500 cut_innercut = [0]*500 + [4]*500 cut_ic_pow = 0.2 cut_icgray_p = [0.1]*300 + [0]*1000 cutn_batches = 1 cut_blur_n = [0] * 300 + [0] * 1000 cut_blur_kernel = 3 range_index = [0]*200+[5e4]*400+[0]*1000 active_function = 'softsign' ths_method = 'softsign' tv_scales = [600] * 1 + [50] * 1 + [0] * 2 #Apply symmetric loss (force simmetry to your results) symmetric_loss_scale = 0 #Latent Diffusion Advanced Settings #Use when latent upscale to correct satuation problem scale_div = 1 #Magnify grad before clamping by how many times opt_mag_mul = 20 opt_plms = False opt_ddim_eta = 1.3 opt_eta_end = 1.1 opt_temperature = 0.98 #Grad advanced settings grad_center = False #Lower value result in more coherent and detailed result, higher value makes it focus on more dominent concept grad_scale=0.25 score_modifier = True threshold_percentile = 0.85 threshold = 1 var_index = [2]*300+[0]*700 var_range = 0.5 mean_index = [0]*400+[0]*600 mean_range = 0.75 #Init image advanced settings init_rotate=False mask_rotate=False init_magnitude = 0.15 #More settings RGB_min = -0.95 RGB_max = 0.95 #How to pad the image with cut_overview padargs = {'mode': 'constant', 'value': -1} flip_aug=False #Experimental aesthetic embeddings, work only with OpenAI ViT-B/32 and ViT-L/14 experimental_aesthetic_embeddings = True #How much you want this to influence your result experimental_aesthetic_embeddings_weight = 0.3 #9 are good aesthetic embeddings, 0 are bad ones experimental_aesthetic_embeddings_score = 8 # For fun dont change except if you really know what your are doing grad_blur = False compress_steps = 200 compress_factor = 0.1 punish_steps = 200 punish_factor = 0.5
Advanced settings (can override values above)

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array',
 'x-cog-array-type': 'iterator'}