You're looking at a specific version of this model. Jump to the model overview.

philz1337x /clarity-upscaler:803dc4af

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
image
string
input image
prompt
string
masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>
Prompt
negative_prompt
string
(worst quality, low quality, normal quality:2) JuggernautNegative-neg
Negative Prompt
scale_factor
number
2
Scale factor
dynamic
number
6

Min: 1

Max: 50

HDR, try from 3 - 9
creativity
number
0.35

Max: 1

Creativity, try from 0.3 - 0.9
resemblance
number
0.6
Resemblance, try from 0.3 - 1.6
tiling_width
integer (enum)
112

Options:

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256

Fractality, set lower tile width for a high Fractality
tiling_height
integer (enum)
144

Options:

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256

Fractality, set lower tile height for a high Fractality
sd_model
string (enum)
juggernaut_reborn.safetensors [338b85bc4f]

Options:

epicrealism_naturalSinRC1VAE.safetensors [84d76a0328], juggernaut_reborn.safetensors [338b85bc4f], juggernaut_final.safetensors

Stable Diffusion model checkpoint
scheduler
string (enum)
DPM++ 3M SDE Karras

Options:

DPM++ 2M Karras, DPM++ SDE Karras, DPM++ 2M SDE Exponential, DPM++ 2M SDE Karras, Euler a, Euler, LMS, Heun, DPM2, DPM2 a, DPM++ 2S a, DPM++ 2M, DPM++ SDE, DPM++ 2M SDE, DPM++ 2M SDE Heun, DPM++ 2M SDE Heun Karras, DPM++ 2M SDE Heun Exponential, DPM++ 3M SDE, DPM++ 3M SDE Karras, DPM++ 3M SDE Exponential, DPM fast, DPM adaptive, LMS Karras, DPM2 Karras, DPM2 a Karras, DPM++ 2S a Karras, Restart, DDIM, PLMS, UniPC

scheduler
num_inference_steps
integer
18

Min: 1

Max: 100

Number of denoising steps
seed
integer
1337
Random seed. Leave blank to randomize the seed

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'items': {'format': 'uri', 'type': 'string'},
 'title': 'Output',
 'type': 'array'}