Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
philz1337x /controlnet-deliberate:57d86bd7
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run philz1337x/controlnet-deliberate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"philz1337x/controlnet-deliberate:57d86bd78018d138449fda45bfcafb8b10888379a600034cc2c7186faab98c66",
{
input: {
eta: 0,
seed: -67,
image: "https://replicate.delivery/pbxt/IW3cOsyRN9tZv2fRDZa8XmtQJ9ni2f1mm14dQyhKgHjGQfuN/Nofretete_Neues_Museum.jpg",
scale: 9,
prompt: "RAW photo, portrait photo of 30 y.o woman queen, pale skin, slim body, (high detailed skin:1.2), background ocean, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
weight: 0.6,
a_prompt: "best quality, extremely detailed",
n_prompt: "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
ddim_steps: 20,
num_samples: "1",
low_threshold: 100,
high_threshold: 200,
image_resolution: "512",
detect_resolution: 512
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run philz1337x/controlnet-deliberate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"philz1337x/controlnet-deliberate:57d86bd78018d138449fda45bfcafb8b10888379a600034cc2c7186faab98c66",
input={
"eta": 0,
"seed": -67,
"image": "https://replicate.delivery/pbxt/IW3cOsyRN9tZv2fRDZa8XmtQJ9ni2f1mm14dQyhKgHjGQfuN/Nofretete_Neues_Museum.jpg",
"scale": 9,
"prompt": "RAW photo, portrait photo of 30 y.o woman queen, pale skin, slim body, (high detailed skin:1.2), background ocean, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
"weight": 0.6,
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512",
"detect_resolution": 512
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run philz1337x/controlnet-deliberate using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "57d86bd78018d138449fda45bfcafb8b10888379a600034cc2c7186faab98c66",
"input": {
"eta": 0,
"seed": -67,
"image": "https://replicate.delivery/pbxt/IW3cOsyRN9tZv2fRDZa8XmtQJ9ni2f1mm14dQyhKgHjGQfuN/Nofretete_Neues_Museum.jpg",
"scale": 9,
"prompt": "RAW photo, portrait photo of 30 y.o woman queen, pale skin, slim body, (high detailed skin:1.2), background ocean, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
"weight": 0.6,
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512",
"detect_resolution": 512
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-03-22T01:39:22.553294Z",
"created_at": "2023-03-22T01:39:15.403386Z",
"data_removed": false,
"error": null,
"id": "7siltbdylnbghgqbxffj4tkkmm",
"input": {
"seed": -67,
"image": "https://replicate.delivery/pbxt/IW3cOsyRN9tZv2fRDZa8XmtQJ9ni2f1mm14dQyhKgHjGQfuN/Nofretete_Neues_Museum.jpg",
"scale": 9,
"prompt": "RAW photo, portrait photo of 30 y.o woman queen, pale skin, slim body, (high detailed skin:1.2), background ocean, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3",
"weight": 0.6,
"a_prompt": "best quality, extremely detailed",
"n_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"ddim_steps": 20,
"num_samples": "1",
"low_threshold": 100,
"high_threshold": 200,
"image_resolution": "512",
"detect_resolution": 512
},
"logs": "this is the weight value: 0.6\nthis is the control value: tensor([[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]],\n[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]],\n[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]],\n...,\n[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]],\n[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]],\n[[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.],\n...,\n[0., 0., 0.],\n[0., 0., 0.],\n[0., 0., 0.]]], device='cuda:0')\nGlobal seed set to 3536601535\nData shape for DDIM sampling is (1, 4, 96, 64), eta 0.0\nRunning DDIM Sampling with 20 timesteps\nDDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s]\nDDIM Sampler: 5%|▌ | 1/20 [00:00<00:05, 3.37it/s]\nDDIM Sampler: 10%|█ | 2/20 [00:00<00:05, 3.57it/s]\nDDIM Sampler: 15%|█▌ | 3/20 [00:00<00:04, 3.65it/s]\nDDIM Sampler: 20%|██ | 4/20 [00:01<00:04, 3.68it/s]\nDDIM Sampler: 25%|██▌ | 5/20 [00:01<00:04, 3.71it/s]\nDDIM Sampler: 30%|███ | 6/20 [00:01<00:03, 3.71it/s]\nDDIM Sampler: 35%|███▌ | 7/20 [00:01<00:03, 3.72it/s]\nDDIM Sampler: 40%|████ | 8/20 [00:02<00:03, 3.73it/s]\nDDIM Sampler: 45%|████▌ | 9/20 [00:02<00:02, 3.73it/s]\nDDIM Sampler: 50%|█████ | 10/20 [00:02<00:02, 3.73it/s]\nDDIM Sampler: 55%|█████▌ | 11/20 [00:02<00:02, 3.73it/s]\nDDIM Sampler: 60%|██████ | 12/20 [00:03<00:02, 3.73it/s]\nDDIM Sampler: 65%|██████▌ | 13/20 [00:03<00:01, 3.74it/s]\nDDIM Sampler: 70%|███████ | 14/20 [00:03<00:01, 3.74it/s]\nDDIM Sampler: 75%|███████▌ | 15/20 [00:04<00:01, 3.74it/s]\nDDIM Sampler: 80%|████████ | 16/20 [00:04<00:01, 3.74it/s]\nDDIM Sampler: 85%|████████▌ | 17/20 [00:04<00:00, 3.74it/s]\nDDIM Sampler: 90%|█████████ | 18/20 [00:04<00:00, 3.74it/s]\nDDIM Sampler: 95%|█████████▌| 19/20 [00:05<00:00, 3.74it/s]\nDDIM Sampler: 100%|██████████| 20/20 [00:05<00:00, 3.75it/s]\nDDIM Sampler: 100%|██████████| 20/20 [00:05<00:00, 3.72it/s]",
"metrics": {
"predict_time": 7.07353,
"total_time": 7.149908
},
"output": [
"https://replicate.delivery/pbxt/cxCQfEx0yFwXQqgef7ePwxISiOu3Bi9g0qA1MjkY32ikkDoCB/output_0.png",
"https://replicate.delivery/pbxt/0RfnrNN7i50qLqJtwmOn2HDOwQO0cEKMABPBf76qECGJ5AqQA/output_1.png"
],
"started_at": "2023-03-22T01:39:15.479764Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/7siltbdylnbghgqbxffj4tkkmm",
"cancel": "https://api.replicate.com/v1/predictions/7siltbdylnbghgqbxffj4tkkmm/cancel"
},
"version": "57d86bd78018d138449fda45bfcafb8b10888379a600034cc2c7186faab98c66"
}
this is the weight value: 0.6
this is the control value: tensor([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
...,
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]], device='cuda:0')
Global seed set to 3536601535
Data shape for DDIM sampling is (1, 4, 96, 64), eta 0.0
Running DDIM Sampling with 20 timesteps
DDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s]
DDIM Sampler: 5%|▌ | 1/20 [00:00<00:05, 3.37it/s]
DDIM Sampler: 10%|█ | 2/20 [00:00<00:05, 3.57it/s]
DDIM Sampler: 15%|█▌ | 3/20 [00:00<00:04, 3.65it/s]
DDIM Sampler: 20%|██ | 4/20 [00:01<00:04, 3.68it/s]
DDIM Sampler: 25%|██▌ | 5/20 [00:01<00:04, 3.71it/s]
DDIM Sampler: 30%|███ | 6/20 [00:01<00:03, 3.71it/s]
DDIM Sampler: 35%|███▌ | 7/20 [00:01<00:03, 3.72it/s]
DDIM Sampler: 40%|████ | 8/20 [00:02<00:03, 3.73it/s]
DDIM Sampler: 45%|████▌ | 9/20 [00:02<00:02, 3.73it/s]
DDIM Sampler: 50%|█████ | 10/20 [00:02<00:02, 3.73it/s]
DDIM Sampler: 55%|█████▌ | 11/20 [00:02<00:02, 3.73it/s]
DDIM Sampler: 60%|██████ | 12/20 [00:03<00:02, 3.73it/s]
DDIM Sampler: 65%|██████▌ | 13/20 [00:03<00:01, 3.74it/s]
DDIM Sampler: 70%|███████ | 14/20 [00:03<00:01, 3.74it/s]
DDIM Sampler: 75%|███████▌ | 15/20 [00:04<00:01, 3.74it/s]
DDIM Sampler: 80%|████████ | 16/20 [00:04<00:01, 3.74it/s]
DDIM Sampler: 85%|████████▌ | 17/20 [00:04<00:00, 3.74it/s]
DDIM Sampler: 90%|█████████ | 18/20 [00:04<00:00, 3.74it/s]
DDIM Sampler: 95%|█████████▌| 19/20 [00:05<00:00, 3.74it/s]
DDIM Sampler: 100%|██████████| 20/20 [00:05<00:00, 3.75it/s]
DDIM Sampler: 100%|██████████| 20/20 [00:05<00:00, 3.72it/s]