You're looking at a specific version of this model. Jump to the model overview.

romanfurman6 /whisperx-multi-chunk:e66b360c

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
audio_urls
array
Array of audio file URLs (chunks of one video in temporal order)
chunk_duration_seconds
number
Duration of each chunk in seconds (used for timestamp calculation, auto-detected if None)
language
string
ISO code of the language spoken in the audio, specify None to perform language detection
language_detection_min_prob
number
0
If language is not specified, then the language will be detected recursively on different parts of the file until it reaches the given probability
language_detection_max_tries
integer
5
If language is not specified, then the language will be detected following the logic of language_detection_min_prob parameter, but will stop after the given max retries. If max retries is reached, the most probable language is kept.
initial_prompt
string
Optional text to provide as a prompt for the first window
batch_size
integer
64
Parallelization of input audio transcription
temperature
number
0
Temperature to use for sampling
vad_onset
number
0.5
VAD onset
vad_offset
number
0.363
VAD offset
align_output
boolean
False
Aligns whisper output to get accurate word-level timestamps
diarization
boolean
False
Assign speaker ID labels
huggingface_access_token
string
To enable diarization, please enter your HuggingFace token (read). You need to accept the user agreement for the models specified in the README.
min_speakers
integer
Minimum number of speakers if diarization is activated (leave blank if unknown)
max_speakers
integer
Maximum number of speakers if diarization is activated (leave blank if unknown)
debug
boolean
False
Print out compute/inference times and memory usage information

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'properties': {'detected_language': {'title': 'Detected Language',
                                      'type': 'string'},
                'processing_time': {'title': 'Processing Time',
                                    'type': 'number'},
                'segments': {'title': 'Segments'},
                'total_chunks': {'title': 'Total Chunks', 'type': 'integer'}},
 'required': ['segments',
              'detected_language',
              'total_chunks',
              'processing_time'],
 'title': 'Output',
 'type': 'object'}