Default: "1:1"
Default: 0.8
Default: "dev"
Default: 1
Default: 28
Default: 3
Default: "webp"
Default: 80
This model’s safety checker can’t be disabled when running on the website. Learn more about platform safety on Replicate.
Default: false
Default: "1"
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run s-clementc/manon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "s-clementc/manon:d2e544bbbfb02b788d2d605bf5961fe664b8ead085d4182aeac2e8d039c05f56", { input: { model: "dev", prompt: "An ultra realistic image of Manon smiling looking at the camera", go_fast: false, lora_scale: 1, megapixels: "1", num_outputs: 4, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 100, prompt_strength: 0.8, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
import replicate
output = replicate.run( "s-clementc/manon:d2e544bbbfb02b788d2d605bf5961fe664b8ead085d4182aeac2e8d039c05f56", input={ "model": "dev", "prompt": "An ultra realistic image of Manon smiling looking at the camera", "go_fast": False, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 100, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "s-clementc/manon:d2e544bbbfb02b788d2d605bf5961fe664b8ead085d4182aeac2e8d039c05f56", "input": { "model": "dev", "prompt": "An ultra realistic image of Manon smiling looking at the camera", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 100, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
{ "completed_at": "2024-08-30T14:24:22.357661Z", "created_at": "2024-08-30T14:23:23.521000Z", "data_removed": false, "error": null, "id": "b7yp0sv1g5rm40chmenr6yt73w", "input": { "model": "dev", "prompt": "An ultra realistic image of Manon smiling looking at the camera", "lora_scale": 1, "num_outputs": 4, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 100, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 12667\nPrompt: An ultra realistic image of Manon smiling looking at the camera\ntxt2img mode\nUsing dev model\nfree=9628293607424\nDownloading weights\n2024-08-30T14:23:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprlki_wru/weights url=https://replicate.delivery/yhqm/iMVDLgIfRn3RZiwr3me81i2qbR5pPsSqoBFhoGN5jwJ5M4XTA/trained_model.tar\n2024-08-30T14:23:27Z | INFO | [ Complete ] dest=/tmp/tmprlki_wru/weights size=\"172 MB\" total_elapsed=3.631s url=https://replicate.delivery/yhqm/iMVDLgIfRn3RZiwr3me81i2qbR5pPsSqoBFhoGN5jwJ5M4XTA/trained_model.tar\nDownloaded weights in 3.67s\nLoaded LoRAs in 26.75s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:01<00:30, 1.13s/it]\n 7%|▋ | 2/28 [00:01<00:24, 1.07it/s]\n 11%|█ | 3/28 [00:02<00:24, 1.02it/s]\n 14%|█▍ | 4/28 [00:03<00:23, 1.00it/s]\n 18%|█▊ | 5/28 [00:05<00:23, 1.01s/it]\n 21%|██▏ | 6/28 [00:06<00:22, 1.02s/it]\n 25%|██▌ | 7/28 [00:07<00:21, 1.02s/it]\n 29%|██▊ | 8/28 [00:08<00:20, 1.02s/it]\n 32%|███▏ | 9/28 [00:09<00:19, 1.03s/it]\n 36%|███▌ | 10/28 [00:10<00:18, 1.03s/it]\n 39%|███▉ | 11/28 [00:11<00:17, 1.03s/it]\n 43%|████▎ | 12/28 [00:12<00:16, 1.04s/it]\n 46%|████▋ | 13/28 [00:13<00:15, 1.04s/it]\n 50%|█████ | 14/28 [00:14<00:14, 1.04s/it]\n 54%|█████▎ | 15/28 [00:15<00:13, 1.04s/it]\n 57%|█████▋ | 16/28 [00:16<00:12, 1.04s/it]\n 61%|██████ | 17/28 [00:17<00:11, 1.04s/it]\n 64%|██████▍ | 18/28 [00:18<00:10, 1.04s/it]\n 68%|██████▊ | 19/28 [00:19<00:09, 1.04s/it]\n 71%|███████▏ | 20/28 [00:20<00:08, 1.04s/it]\n 75%|███████▌ | 21/28 [00:21<00:07, 1.04s/it]\n 79%|███████▊ | 22/28 [00:22<00:06, 1.04s/it]\n 82%|████████▏ | 23/28 [00:23<00:05, 1.04s/it]\n 86%|████████▌ | 24/28 [00:24<00:04, 1.04s/it]\n 89%|████████▉ | 25/28 [00:25<00:03, 1.04s/it]\n 93%|█████████▎| 26/28 [00:26<00:02, 1.04s/it]\n 96%|█████████▋| 27/28 [00:27<00:01, 1.04s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.04s/it]\n100%|██████████| 28/28 [00:28<00:00, 1.03s/it]", "metrics": { "predict_time": 58.824586755, "total_time": 58.836661 }, "output": [ "https://replicate.delivery/yhqm/caKMoBRBE5JdNJcCWe9KeNTtB7rDKigA6YWbeaJ8fa0WBifaC/out-0.webp", "https://replicate.delivery/yhqm/0iuOAtfme3mfIJJFhIfkcAeeGe19IuV3eHsm4INNG14bVg4XTA/out-1.webp", "https://replicate.delivery/yhqm/ZT5eJS4OBb2zACJfENBnehAayMXPsOk4bFKG2oAAOf4YBifaC/out-2.webp", "https://replicate.delivery/yhqm/iDG9AttfUuxCECIvH5sekDnr9FPIZq2lHdOLGxw8BTPWg4XTA/out-3.webp" ], "started_at": "2024-08-30T14:23:23.533074Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/b7yp0sv1g5rm40chmenr6yt73w", "cancel": "https://api.replicate.com/v1/predictions/b7yp0sv1g5rm40chmenr6yt73w/cancel" }, "version": "d2e544bbbfb02b788d2d605bf5961fe664b8ead085d4182aeac2e8d039c05f56" }
Using seed: 12667 Prompt: An ultra realistic image of Manon smiling looking at the camera txt2img mode Using dev model free=9628293607424 Downloading weights 2024-08-30T14:23:23Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmprlki_wru/weights url=https://replicate.delivery/yhqm/iMVDLgIfRn3RZiwr3me81i2qbR5pPsSqoBFhoGN5jwJ5M4XTA/trained_model.tar 2024-08-30T14:23:27Z | INFO | [ Complete ] dest=/tmp/tmprlki_wru/weights size="172 MB" total_elapsed=3.631s url=https://replicate.delivery/yhqm/iMVDLgIfRn3RZiwr3me81i2qbR5pPsSqoBFhoGN5jwJ5M4XTA/trained_model.tar Downloaded weights in 3.67s Loaded LoRAs in 26.75s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:01<00:30, 1.13s/it] 7%|▋ | 2/28 [00:01<00:24, 1.07it/s] 11%|█ | 3/28 [00:02<00:24, 1.02it/s] 14%|█▍ | 4/28 [00:03<00:23, 1.00it/s] 18%|█▊ | 5/28 [00:05<00:23, 1.01s/it] 21%|██▏ | 6/28 [00:06<00:22, 1.02s/it] 25%|██▌ | 7/28 [00:07<00:21, 1.02s/it] 29%|██▊ | 8/28 [00:08<00:20, 1.02s/it] 32%|███▏ | 9/28 [00:09<00:19, 1.03s/it] 36%|███▌ | 10/28 [00:10<00:18, 1.03s/it] 39%|███▉ | 11/28 [00:11<00:17, 1.03s/it] 43%|████▎ | 12/28 [00:12<00:16, 1.04s/it] 46%|████▋ | 13/28 [00:13<00:15, 1.04s/it] 50%|█████ | 14/28 [00:14<00:14, 1.04s/it] 54%|█████▎ | 15/28 [00:15<00:13, 1.04s/it] 57%|█████▋ | 16/28 [00:16<00:12, 1.04s/it] 61%|██████ | 17/28 [00:17<00:11, 1.04s/it] 64%|██████▍ | 18/28 [00:18<00:10, 1.04s/it] 68%|██████▊ | 19/28 [00:19<00:09, 1.04s/it] 71%|███████▏ | 20/28 [00:20<00:08, 1.04s/it] 75%|███████▌ | 21/28 [00:21<00:07, 1.04s/it] 79%|███████▊ | 22/28 [00:22<00:06, 1.04s/it] 82%|████████▏ | 23/28 [00:23<00:05, 1.04s/it] 86%|████████▌ | 24/28 [00:24<00:04, 1.04s/it] 89%|████████▉ | 25/28 [00:25<00:03, 1.04s/it] 93%|█████████▎| 26/28 [00:26<00:02, 1.04s/it] 96%|█████████▋| 27/28 [00:27<00:01, 1.04s/it] 100%|██████████| 28/28 [00:28<00:00, 1.04s/it] 100%|██████████| 28/28 [00:28<00:00, 1.03s/it]
View more examples
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is booted and ready for API calls.
This model runs on H100 hardware which costs $0.001525 per second
Choose a file from your machine
Hint: you can also drag files onto the input