sakemin / shroomie-diffusion
SDXL model Fine-tuned on Shroomie the dog, as text_token 'SHRMI'.
- Public
- 143 runs
-
L40S
- SDXL fine-tune
Prediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6IDapavgstbdz3d7hmafw2sx3pqw4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- 1789
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog sitting on a first class seat in 747 airplane
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 4
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dog harness, bad anatomy, dog leash
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "seed": 1789, "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { seed: 1789, width: 1024, height: 1024, prompt: "SHRMI dog sitting on a first class seat in 747 airplane", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 4, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dog harness, bad anatomy, dog leash", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "seed": 1789, "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "seed": 1789, "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-26T08:39:40.588537Z", "created_at": "2023-11-26T08:38:38.319503Z", "data_removed": false, "error": null, "id": "apavgstbdz3d7hmafw2sx3pqw4", "input": { "seed": 1789, "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 1789\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1> dog sitting on a first class seat in 747 airplane\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:51, 1.06s/it]\n 4%|▍ | 2/50 [00:02<00:51, 1.06s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.06s/it]\n 8%|▊ | 4/50 [00:04<00:48, 1.06s/it]\n 10%|█ | 5/50 [00:05<00:47, 1.06s/it]\n 12%|█▏ | 6/50 [00:06<00:46, 1.07s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.07s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.06s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.07s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.07s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.07s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it]\n 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it]\n 28%|██▊ | 14/50 [00:14<00:38, 1.06s/it]\n 30%|███ | 15/50 [00:15<00:37, 1.06s/it]\n 32%|███▏ | 16/50 [00:17<00:36, 1.06s/it]\n 34%|███▍ | 17/50 [00:18<00:35, 1.07s/it]\n 36%|███▌ | 18/50 [00:19<00:34, 1.07s/it]\n 38%|███▊ | 19/50 [00:20<00:33, 1.07s/it]\n 40%|████ | 20/50 [00:21<00:32, 1.07s/it]\n 42%|████▏ | 21/50 [00:22<00:30, 1.07s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.07s/it]\n 46%|████▌ | 23/50 [00:24<00:28, 1.07s/it]\n 48%|████▊ | 24/50 [00:25<00:27, 1.07s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.07s/it]\n 52%|█████▏ | 26/50 [00:27<00:25, 1.07s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it]\n 60%|██████ | 30/50 [00:32<00:21, 1.07s/it]\n 62%|██████▏ | 31/50 [00:33<00:20, 1.07s/it]\n 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.07s/it]\n 72%|███████▏ | 36/50 [00:38<00:14, 1.07s/it]\n 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it]\n 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it]\n 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it]\n 80%|████████ | 40/50 [00:42<00:10, 1.07s/it]\n 82%|████████▏ | 41/50 [00:43<00:09, 1.07s/it]\n 84%|████████▍ | 42/50 [00:44<00:08, 1.07s/it]\n 86%|████████▌ | 43/50 [00:45<00:07, 1.07s/it]\n 88%|████████▊ | 44/50 [00:47<00:06, 1.07s/it]\n 90%|█████████ | 45/50 [00:48<00:05, 1.07s/it]\n 92%|█████████▏| 46/50 [00:49<00:04, 1.07s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it]\n 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]", "metrics": { "predict_time": 59.86537, "total_time": 62.269034 }, "output": [ "https://replicate.delivery/pbxt/9dkNwn7dMiKSL1EU6aiviSXXSzrqywCUkqJfh04IU3olsFeRA/out-0.png", "https://replicate.delivery/pbxt/UPQufr2OKGR8UitWyG40YomaV7i22eB9byZ6WaLiq7ALZL8RA/out-1.png", "https://replicate.delivery/pbxt/YwBIt2ZBm457Oxpk4exUW1q7lpDse9DRXHhjJTybzKhMZL8RA/out-2.png", "https://replicate.delivery/pbxt/sn2suhhOfExiLydYwIU6bffvlqs8dkAQuBO7XLbLanKYyW4jA/out-3.png" ], "started_at": "2023-11-26T08:38:40.723167Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/apavgstbdz3d7hmafw2sx3pqw4", "cancel": "https://api.replicate.com/v1/predictions/apavgstbdz3d7hmafw2sx3pqw4/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inUsing seed: 1789 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1> dog sitting on a first class seat in 747 airplane txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:51, 1.06s/it] 4%|▍ | 2/50 [00:02<00:51, 1.06s/it] 6%|▌ | 3/50 [00:03<00:49, 1.06s/it] 8%|▊ | 4/50 [00:04<00:48, 1.06s/it] 10%|█ | 5/50 [00:05<00:47, 1.06s/it] 12%|█▏ | 6/50 [00:06<00:46, 1.07s/it] 14%|█▍ | 7/50 [00:07<00:45, 1.07s/it] 16%|█▌ | 8/50 [00:08<00:44, 1.06s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.07s/it] 20%|██ | 10/50 [00:10<00:42, 1.07s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.07s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it] 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it] 28%|██▊ | 14/50 [00:14<00:38, 1.06s/it] 30%|███ | 15/50 [00:15<00:37, 1.06s/it] 32%|███▏ | 16/50 [00:17<00:36, 1.06s/it] 34%|███▍ | 17/50 [00:18<00:35, 1.07s/it] 36%|███▌ | 18/50 [00:19<00:34, 1.07s/it] 38%|███▊ | 19/50 [00:20<00:33, 1.07s/it] 40%|████ | 20/50 [00:21<00:32, 1.07s/it] 42%|████▏ | 21/50 [00:22<00:30, 1.07s/it] 44%|████▍ | 22/50 [00:23<00:29, 1.07s/it] 46%|████▌ | 23/50 [00:24<00:28, 1.07s/it] 48%|████▊ | 24/50 [00:25<00:27, 1.07s/it] 50%|█████ | 25/50 [00:26<00:26, 1.07s/it] 52%|█████▏ | 26/50 [00:27<00:25, 1.07s/it] 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it] 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it] 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it] 60%|██████ | 30/50 [00:32<00:21, 1.07s/it] 62%|██████▏ | 31/50 [00:33<00:20, 1.07s/it] 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it] 70%|███████ | 35/50 [00:37<00:16, 1.07s/it] 72%|███████▏ | 36/50 [00:38<00:14, 1.07s/it] 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it] 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it] 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it] 80%|████████ | 40/50 [00:42<00:10, 1.07s/it] 82%|████████▏ | 41/50 [00:43<00:09, 1.07s/it] 84%|████████▍ | 42/50 [00:44<00:08, 1.07s/it] 86%|████████▌ | 43/50 [00:45<00:07, 1.07s/it] 88%|████████▊ | 44/50 [00:47<00:06, 1.07s/it] 90%|█████████ | 45/50 [00:48<00:05, 1.07s/it] 92%|█████████▏| 46/50 [00:49<00:04, 1.07s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it] 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it]
Prediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6ID7457delbog5rcoh33ndd75bdreStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 4
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 4, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-26T08:52:53.348569Z", "created_at": "2023-11-26T08:51:48.724462Z", "data_removed": false, "error": null, "id": "7457delbog5rcoh33ndd75bdre", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness, bad anatomy, dog leash, dog collar, poorly generated limbs", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 41209\nEnsuring enough disk space...\nFree disk space: 1636803436544\nDownloading weights: https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.126s (1.5 GB/s)\\nExtracted 186 MB in 0.064s (2.9 GB/s)\\n'\nDownloaded weights in 0.34587955474853516 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1> dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:52, 1.07s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.06s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.06s/it]\n 8%|▊ | 4/50 [00:04<00:48, 1.06s/it]\n 10%|█ | 5/50 [00:05<00:47, 1.06s/it]\n 12%|█▏ | 6/50 [00:06<00:46, 1.06s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.06s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.06s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.06s/it]\n 20%|██ | 10/50 [00:10<00:42, 1.06s/it]\n 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it]\n 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it]\n 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it]\n 28%|██▊ | 14/50 [00:14<00:38, 1.06s/it]\n 30%|███ | 15/50 [00:15<00:37, 1.06s/it]\n 32%|███▏ | 16/50 [00:16<00:36, 1.06s/it]\n 34%|███▍ | 17/50 [00:18<00:35, 1.06s/it]\n 36%|███▌ | 18/50 [00:19<00:34, 1.06s/it]\n 38%|███▊ | 19/50 [00:20<00:32, 1.06s/it]\n 40%|████ | 20/50 [00:21<00:31, 1.06s/it]\n 42%|████▏ | 21/50 [00:22<00:30, 1.06s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.06s/it]\n 46%|████▌ | 23/50 [00:24<00:28, 1.06s/it]\n 48%|████▊ | 24/50 [00:25<00:27, 1.06s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.06s/it]\n 52%|█████▏ | 26/50 [00:27<00:25, 1.06s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it]\n 60%|██████ | 30/50 [00:31<00:21, 1.07s/it]\n 62%|██████▏ | 31/50 [00:32<00:20, 1.07s/it]\n 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it]\n 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it]\n 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it]\n 70%|███████ | 35/50 [00:37<00:16, 1.07s/it]\n 72%|███████▏ | 36/50 [00:38<00:14, 1.07s/it]\n 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it]\n 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it]\n 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it]\n 80%|████████ | 40/50 [00:42<00:10, 1.07s/it]\n 82%|████████▏ | 41/50 [00:43<00:09, 1.07s/it]\n 84%|████████▍ | 42/50 [00:44<00:08, 1.07s/it]\n 86%|████████▌ | 43/50 [00:45<00:07, 1.07s/it]\n 88%|████████▊ | 44/50 [00:46<00:06, 1.07s/it]\n 90%|█████████ | 45/50 [00:47<00:05, 1.07s/it]\n 92%|█████████▏| 46/50 [00:48<00:04, 1.07s/it]\n 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it]\n 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it]\n 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]\n100%|██████████| 50/50 [00:53<00:00, 1.07s/it]", "metrics": { "predict_time": 61.304232, "total_time": 64.624107 }, "output": [ "https://replicate.delivery/pbxt/hXZpN5zovR6KFlfCmaspZE6f2nAg4bIjj6N40Lk3f1DFLX4jA/out-0.png", "https://replicate.delivery/pbxt/Rdla5lHQeUx6DK5sLS1e9MKFamWU6yGtnGXyzjukslFklL8RA/out-1.png", "https://replicate.delivery/pbxt/MKDDtrhulZ5jIhOnB5cerH9vBBDAhAdYiONJ27fWnRfJLX4jA/out-2.png", "https://replicate.delivery/pbxt/GgkIi0HlipK7B9jjtn8YsjKKnrpJ96bAOt4zZvUfvcmyyFeRA/out-3.png" ], "started_at": "2023-11-26T08:51:52.044337Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7457delbog5rcoh33ndd75bdre", "cancel": "https://api.replicate.com/v1/predictions/7457delbog5rcoh33ndd75bdre/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inUsing seed: 41209 Ensuring enough disk space... Free disk space: 1636803436544 Downloading weights: https://pbxt.replicate.delivery/i2HfjZWkJC1yIqHPDaPHOx9eJsqFqZ2tnWMgn5FFd9evSGWjA/trained_model.tar b'Downloaded 186 MB bytes in 0.126s (1.5 GB/s)\nExtracted 186 MB in 0.064s (2.9 GB/s)\n' Downloaded weights in 0.34587955474853516 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: <s0><s1> dog sitting on a first class seat in 747 airplane, eating airplane food, wearing neck pillow++, sunset outside windows txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:01<00:52, 1.07s/it] 4%|▍ | 2/50 [00:02<00:50, 1.06s/it] 6%|▌ | 3/50 [00:03<00:49, 1.06s/it] 8%|▊ | 4/50 [00:04<00:48, 1.06s/it] 10%|█ | 5/50 [00:05<00:47, 1.06s/it] 12%|█▏ | 6/50 [00:06<00:46, 1.06s/it] 14%|█▍ | 7/50 [00:07<00:45, 1.06s/it] 16%|█▌ | 8/50 [00:08<00:44, 1.06s/it] 18%|█▊ | 9/50 [00:09<00:43, 1.06s/it] 20%|██ | 10/50 [00:10<00:42, 1.06s/it] 22%|██▏ | 11/50 [00:11<00:41, 1.06s/it] 24%|██▍ | 12/50 [00:12<00:40, 1.06s/it] 26%|██▌ | 13/50 [00:13<00:39, 1.06s/it] 28%|██▊ | 14/50 [00:14<00:38, 1.06s/it] 30%|███ | 15/50 [00:15<00:37, 1.06s/it] 32%|███▏ | 16/50 [00:16<00:36, 1.06s/it] 34%|███▍ | 17/50 [00:18<00:35, 1.06s/it] 36%|███▌ | 18/50 [00:19<00:34, 1.06s/it] 38%|███▊ | 19/50 [00:20<00:32, 1.06s/it] 40%|████ | 20/50 [00:21<00:31, 1.06s/it] 42%|████▏ | 21/50 [00:22<00:30, 1.06s/it] 44%|████▍ | 22/50 [00:23<00:29, 1.06s/it] 46%|████▌ | 23/50 [00:24<00:28, 1.06s/it] 48%|████▊ | 24/50 [00:25<00:27, 1.06s/it] 50%|█████ | 25/50 [00:26<00:26, 1.06s/it] 52%|█████▏ | 26/50 [00:27<00:25, 1.06s/it] 54%|█████▍ | 27/50 [00:28<00:24, 1.07s/it] 56%|█████▌ | 28/50 [00:29<00:23, 1.07s/it] 58%|█████▊ | 29/50 [00:30<00:22, 1.07s/it] 60%|██████ | 30/50 [00:31<00:21, 1.07s/it] 62%|██████▏ | 31/50 [00:32<00:20, 1.07s/it] 64%|██████▍ | 32/50 [00:34<00:19, 1.07s/it] 66%|██████▌ | 33/50 [00:35<00:18, 1.07s/it] 68%|██████▊ | 34/50 [00:36<00:17, 1.07s/it] 70%|███████ | 35/50 [00:37<00:16, 1.07s/it] 72%|███████▏ | 36/50 [00:38<00:14, 1.07s/it] 74%|███████▍ | 37/50 [00:39<00:13, 1.07s/it] 76%|███████▌ | 38/50 [00:40<00:12, 1.07s/it] 78%|███████▊ | 39/50 [00:41<00:11, 1.07s/it] 80%|████████ | 40/50 [00:42<00:10, 1.07s/it] 82%|████████▏ | 41/50 [00:43<00:09, 1.07s/it] 84%|████████▍ | 42/50 [00:44<00:08, 1.07s/it] 86%|████████▌ | 43/50 [00:45<00:07, 1.07s/it] 88%|████████▊ | 44/50 [00:46<00:06, 1.07s/it] 90%|█████████ | 45/50 [00:47<00:05, 1.07s/it] 92%|█████████▏| 46/50 [00:48<00:04, 1.07s/it] 94%|█████████▍| 47/50 [00:50<00:03, 1.07s/it] 96%|█████████▌| 48/50 [00:51<00:02, 1.07s/it] 98%|█████████▊| 49/50 [00:52<00:01, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it] 100%|██████████| 50/50 [00:53<00:00, 1.07s/it]
Prediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6IDebupeslbsywzcckrz74uitr4baStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog eating banana
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.74
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.72
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI dog eating banana", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI dog eating banana", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.74, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.72, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI dog eating banana", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog eating banana", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:49:41.341383Z", "created_at": "2023-10-05T10:49:24.503813Z", "data_removed": false, "error": null, "id": "ebupeslbsywzcckrz74uitr4ba", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog eating banana", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 15.618602, "total_time": 16.83757 }, "output": [ "https://pbxt.replicate.delivery/zMnh6adlkXrQAdEFI1q1IdQqBTZgw81JUtQebTSnUKJiNi1IA/out-0.png" ], "started_at": "2023-10-05T10:49:25.722781Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ebupeslbsywzcckrz74uitr4ba", "cancel": "https://api.replicate.com/v1/predictions/ebupeslbsywzcckrz74uitr4ba/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inPrediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6ID5omlg7dbnwy3rzkoby7zedu2haStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog swimming in outer space
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- dog harness
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI dog swimming in outer space", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI dog swimming in outer space", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "dog harness", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI dog swimming in outer space", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "dog harness", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog swimming in outer space", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:59:55.090700Z", "created_at": "2023-10-05T10:59:38.310409Z", "data_removed": false, "error": null, "id": "5omlg7dbnwy3rzkoby7zedu2ha", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog swimming in outer space", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "dog harness", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 15.508015, "total_time": 16.780291 }, "output": [ "https://pbxt.replicate.delivery/7GJsezg1v6TXQCNaZskLZ2UEDZlrgVyi1KVdWhrtX2LVSi1IA/out-0.png" ], "started_at": "2023-10-05T10:59:39.582685Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5omlg7dbnwy3rzkoby7zedu2ha", "cancel": "https://api.replicate.com/v1/predictions/5omlg7dbnwy3rzkoby7zedu2ha/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inPrediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6IDfsdtpidbcmpo25nkutxfmgvtayStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog in howl's moving castle
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.74
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.72
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI dog in howl's moving castle", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI dog in howl's moving castle", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.74, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.72, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI dog in howl's moving castle", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog in howl\'s moving castle", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:16:38.919010Z", "created_at": "2023-10-05T10:16:23.913467Z", "data_removed": false, "error": null, "id": "fsdtpidbcmpo25nkutxfmgvtay", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog in howl's moving castle", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 15.118255, "total_time": 15.005543 }, "output": [ "https://pbxt.replicate.delivery/GFNnAgWGDC6IKNPPMorsJler4jhtx2UG0HJiJ95AGiNDeDrRA/out-0.png" ], "started_at": "2023-10-05T10:16:23.800755Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fsdtpidbcmpo25nkutxfmgvtay", "cancel": "https://api.replicate.com/v1/predictions/fsdtpidbcmpo25nkutxfmgvtay/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inPrediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6IDurdnjblbzak4ttxauip7mjnzyiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI dog in breath of the wild
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.74
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.72
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI dog in breath of the wild", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI dog in breath of the wild", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.74, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.72, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI dog in breath of the wild", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog in breath of the wild", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:17:45.704513Z", "created_at": "2023-10-05T10:17:30.709097Z", "data_removed": false, "error": null, "id": "urdnjblbzak4ttxauip7mjnzyi", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI dog in breath of the wild", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 15.090138, "total_time": 14.995416 }, "output": [ "https://pbxt.replicate.delivery/CKZQVZ8ib2p4MJZ4YvfkBr3Ah51hvSuSdffWEaafPxHm0PsGB/out-0.png" ], "started_at": "2023-10-05T10:17:30.614375Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/urdnjblbzak4ttxauip7mjnzyi", "cancel": "https://api.replicate.com/v1/predictions/urdnjblbzak4ttxauip7mjnzyi/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inPrediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6IDiysn573bv7wmssgivwkmgo7nxaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI bear
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.74
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.72
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI bear", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI bear", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.74, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.72, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI bear", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI bear", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:13:44.464817Z", "created_at": "2023-10-05T10:13:29.227182Z", "data_removed": false, "error": null, "id": "iysn573bv7wmssgivwkmgo7nxa", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI bear", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 15.278405, "total_time": 15.237635 }, "output": [ "https://pbxt.replicate.delivery/G1VYkWMrzxr2P1cccOM73kXsFrRt7HboCVaHI413juxVeh1IA/out-0.png" ], "started_at": "2023-10-05T10:13:29.186412Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/iysn573bv7wmssgivwkmgo7nxa", "cancel": "https://api.replicate.com/v1/predictions/iysn573bv7wmssgivwkmgo7nxa/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated inPrediction
sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6ID3wl5yqdb7zqcvi2ytz5s3l6o5iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- SHRMI whippet
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.74
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.72
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "SHRMI whippet", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", { input: { width: 1024, height: 1024, prompt: "SHRMI whippet", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.74, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.72, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", input={ "width": 1024, "height": 1024, "prompt": "SHRMI whippet", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run sakemin/shroomie-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "sakemin/shroomie-diffusion:2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI whippet", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-05T10:06:05.870552Z", "created_at": "2023-10-05T10:05:48.473162Z", "data_removed": false, "error": null, "id": "3wl5yqdb7zqcvi2ytz5s3l6o5i", "input": { "width": 1024, "height": 1024, "prompt": "SHRMI whippet", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.74, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.72, "num_inference_steps": 50 }, "logs": null, "metrics": { "predict_time": 16.011449, "total_time": 17.39739 }, "output": [ "https://pbxt.replicate.delivery/GbwqXUzCCkLCBpLfhNaAVrnp6k1bg9zgpcpBcNUe3SrNyDrRA/out-0.png" ], "started_at": "2023-10-05T10:05:49.859103Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3wl5yqdb7zqcvi2ytz5s3l6o5i", "cancel": "https://api.replicate.com/v1/predictions/3wl5yqdb7zqcvi2ytz5s3l6o5i/cancel" }, "version": "2c6eec71acf4ab33faaab1d72effbb41d5811efa7b27ab505df0dbe1efcdeee6" }
Generated in
Want to make some of these yourself?
Run this model