Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run swk23/windu using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"swk23/windu:65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847",
{
input: {
mask: "https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png",
image: "https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png",
model: "dev",
prompt: "windu sitting in a chair ",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "21:9",
output_format: "jpg",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run swk23/windu using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"swk23/windu:65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847",
input={
"mask": "https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png",
"image": "https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png",
"model": "dev",
"prompt": "windu sitting in a chair ",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "21:9",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
# To access the file URL:
print(output[0].url())
#=> "http://example.com"
# To write the file to disk:
with open("my-image.png", "wb") as file:
file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run swk23/windu using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "swk23/windu:65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847",
"input": {
"mask": "https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png",
"image": "https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png",
"model": "dev",
"prompt": "windu sitting in a chair ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "21:9",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/swk23/windu@sha256:65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847 \
-i 'mask="https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png"' \
-i 'image="https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png"' \
-i 'model="dev"' \
-i 'prompt="windu sitting in a chair "' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="21:9"' \
-i 'output_format="jpg"' \
-i 'guidance_scale=3' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/swk23/windu@sha256:65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "mask": "https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png", "image": "https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png", "model": "dev", "prompt": "windu sitting in a chair ", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "21:9", "output_format": "jpg", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2025-02-17T17:29:18.098190Z",
"created_at": "2025-02-17T17:29:05.542000Z",
"data_removed": false,
"error": null,
"id": "0za0krys0srm80cn2ktabjavcr",
"input": {
"mask": "https://replicate.delivery/pbxt/MW3Dyqdtn6JdKvOzr9qFJLdIzmivKKu25vFrWc1cXyJqL2Ru/test.png",
"image": "https://replicate.delivery/pbxt/MW3DzDSPvSGGCirpj7SByIOUEHcXJBBLSGvDe1PuUrpaPgbO/full.png",
"model": "dev",
"prompt": "windu sitting in a chair ",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "21:9",
"output_format": "jpg",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "free=28122040393728\nDownloading weights\n2025-02-17T17:29:09Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxb71_ofw/weights url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar\n2025-02-17T17:29:11Z | INFO | [ Complete ] dest=/tmp/tmpxb71_ofw/weights size=\"172 MB\" total_elapsed=1.324s url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar\nDownloaded weights in 1.35s\nLoaded LoRAs in 1.90s\nUsing seed: 5644\nPrompt: windu sitting in a chair\nInput image size: 1536x640\n[!] Resizing input image from 1536x640 to 1440x608\n[!] inpaint mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:19, 1.10it/s]\n 9%|▊ | 2/23 [00:01<00:10, 2.01it/s]\n 13%|█▎ | 3/23 [00:01<00:07, 2.71it/s]\n 17%|█▋ | 4/23 [00:01<00:05, 3.25it/s]\n 22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]\n 26%|██▌ | 6/23 [00:01<00:04, 3.95it/s]\n 30%|███ | 7/23 [00:02<00:03, 4.17it/s]\n 35%|███▍ | 8/23 [00:02<00:03, 4.32it/s]\n 39%|███▉ | 9/23 [00:02<00:03, 4.43it/s]\n 43%|████▎ | 10/23 [00:02<00:02, 4.51it/s]\n 48%|████▊ | 11/23 [00:03<00:02, 4.56it/s]\n 52%|█████▏ | 12/23 [00:03<00:02, 4.60it/s]\n 57%|█████▋ | 13/23 [00:03<00:02, 4.62it/s]\n 61%|██████ | 14/23 [00:03<00:01, 4.64it/s]\n 65%|██████▌ | 15/23 [00:03<00:01, 4.66it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 4.67it/s]\n 74%|███████▍ | 17/23 [00:04<00:01, 4.67it/s]\n 78%|███████▊ | 18/23 [00:04<00:01, 4.68it/s]\n 83%|████████▎ | 19/23 [00:04<00:00, 4.68it/s]\n 87%|████████▋ | 20/23 [00:04<00:00, 4.68it/s]\n 91%|█████████▏| 21/23 [00:05<00:00, 4.66it/s]\n 96%|█████████▌| 22/23 [00:05<00:00, 4.67it/s]\n100%|██████████| 23/23 [00:05<00:00, 4.95it/s]\n100%|██████████| 23/23 [00:05<00:00, 4.13it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 8.681173174,
"total_time": 12.55619
},
"output": [
"https://replicate.delivery/xezq/NKc9yAJafxSf50I4hqASrl83NcSqxTRDmD1oeQI6TGRdfIBRB/out-0.jpg"
],
"started_at": "2025-02-17T17:29:09.417017Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-nsrnjhks7kabyl7wgzyz5zqimyefejh6pkiajvcluqx24h3ccaqa",
"get": "https://api.replicate.com/v1/predictions/0za0krys0srm80cn2ktabjavcr",
"cancel": "https://api.replicate.com/v1/predictions/0za0krys0srm80cn2ktabjavcr/cancel"
},
"version": "65f4bf32a31353e76b48659846fba61ecb49445c20a0d365f9a83fd151193847"
}
free=28122040393728
Downloading weights
2025-02-17T17:29:09Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxb71_ofw/weights url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar
2025-02-17T17:29:11Z | INFO | [ Complete ] dest=/tmp/tmpxb71_ofw/weights size="172 MB" total_elapsed=1.324s url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar
Downloaded weights in 1.35s
Loaded LoRAs in 1.90s
Using seed: 5644
Prompt: windu sitting in a chair
Input image size: 1536x640
[!] Resizing input image from 1536x640 to 1440x608
[!] inpaint mode
0%| | 0/23 [00:00<?, ?it/s]
4%|▍ | 1/23 [00:00<00:19, 1.10it/s]
9%|▊ | 2/23 [00:01<00:10, 2.01it/s]
13%|█▎ | 3/23 [00:01<00:07, 2.71it/s]
17%|█▋ | 4/23 [00:01<00:05, 3.25it/s]
22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]
26%|██▌ | 6/23 [00:01<00:04, 3.95it/s]
30%|███ | 7/23 [00:02<00:03, 4.17it/s]
35%|███▍ | 8/23 [00:02<00:03, 4.32it/s]
39%|███▉ | 9/23 [00:02<00:03, 4.43it/s]
43%|████▎ | 10/23 [00:02<00:02, 4.51it/s]
48%|████▊ | 11/23 [00:03<00:02, 4.56it/s]
52%|█████▏ | 12/23 [00:03<00:02, 4.60it/s]
57%|█████▋ | 13/23 [00:03<00:02, 4.62it/s]
61%|██████ | 14/23 [00:03<00:01, 4.64it/s]
65%|██████▌ | 15/23 [00:03<00:01, 4.66it/s]
70%|██████▉ | 16/23 [00:04<00:01, 4.67it/s]
74%|███████▍ | 17/23 [00:04<00:01, 4.67it/s]
78%|███████▊ | 18/23 [00:04<00:01, 4.68it/s]
83%|████████▎ | 19/23 [00:04<00:00, 4.68it/s]
87%|████████▋ | 20/23 [00:04<00:00, 4.68it/s]
91%|█████████▏| 21/23 [00:05<00:00, 4.66it/s]
96%|█████████▌| 22/23 [00:05<00:00, 4.67it/s]
100%|██████████| 23/23 [00:05<00:00, 4.95it/s]
100%|██████████| 23/23 [00:05<00:00, 4.13it/s]
Total safe images: 1 out of 1
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is booted and ready for API calls.
This model runs on H100 hardware which costs $0.001525 per second
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
free=28122040393728
Downloading weights
2025-02-17T17:29:09Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpxb71_ofw/weights url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar
2025-02-17T17:29:11Z | INFO | [ Complete ] dest=/tmp/tmpxb71_ofw/weights size="172 MB" total_elapsed=1.324s url=https://replicate.delivery/xezq/elmrBIPtlCyRYaRsePplNWBGJOrcq6QlPv2pAFje42I50xynA/trained_model.tar
Downloaded weights in 1.35s
Loaded LoRAs in 1.90s
Using seed: 5644
Prompt: windu sitting in a chair
Input image size: 1536x640
[!] Resizing input image from 1536x640 to 1440x608
[!] inpaint mode
0%| | 0/23 [00:00<?, ?it/s]
4%|▍ | 1/23 [00:00<00:19, 1.10it/s]
9%|▊ | 2/23 [00:01<00:10, 2.01it/s]
13%|█▎ | 3/23 [00:01<00:07, 2.71it/s]
17%|█▋ | 4/23 [00:01<00:05, 3.25it/s]
22%|██▏ | 5/23 [00:01<00:04, 3.66it/s]
26%|██▌ | 6/23 [00:01<00:04, 3.95it/s]
30%|███ | 7/23 [00:02<00:03, 4.17it/s]
35%|███▍ | 8/23 [00:02<00:03, 4.32it/s]
39%|███▉ | 9/23 [00:02<00:03, 4.43it/s]
43%|████▎ | 10/23 [00:02<00:02, 4.51it/s]
48%|████▊ | 11/23 [00:03<00:02, 4.56it/s]
52%|█████▏ | 12/23 [00:03<00:02, 4.60it/s]
57%|█████▋ | 13/23 [00:03<00:02, 4.62it/s]
61%|██████ | 14/23 [00:03<00:01, 4.64it/s]
65%|██████▌ | 15/23 [00:03<00:01, 4.66it/s]
70%|██████▉ | 16/23 [00:04<00:01, 4.67it/s]
74%|███████▍ | 17/23 [00:04<00:01, 4.67it/s]
78%|███████▊ | 18/23 [00:04<00:01, 4.68it/s]
83%|████████▎ | 19/23 [00:04<00:00, 4.68it/s]
87%|████████▋ | 20/23 [00:04<00:00, 4.68it/s]
91%|█████████▏| 21/23 [00:05<00:00, 4.66it/s]
96%|█████████▌| 22/23 [00:05<00:00, 4.67it/s]
100%|██████████| 23/23 [00:05<00:00, 4.95it/s]
100%|██████████| 23/23 [00:05<00:00, 4.13it/s]
Total safe images: 1 out of 1