Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
vkolagotla /bapubomma_ai:572fa336
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff",
{
input: {
width: 512,
height: 512,
prompt: "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.9,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations",
prompt_strength: 0.8,
num_inference_steps: 100
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff",
input={
"width": 512,
"height": 512,
"prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.9,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run vkolagotla/bapubomma_ai using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "vkolagotla/bapubomma_ai:572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff",
"input": {
"width": 512,
"height": 512,
"prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.9,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-12-17T07:17:13.477652Z",
"created_at": "2023-12-17T07:16:58.358438Z",
"data_removed": false,
"error": null,
"id": "haqoqs3brqbojoglkjjdrulvpa",
"input": {
"width": 512,
"height": 512,
"prompt": "bapubomma, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.9,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "face and body deformities, abnormal human structure, abnormal shapes and structures, non-artistic illustrations",
"prompt_strength": 0.8,
"num_inference_steps": 100
},
"logs": "Using seed: 40362\nEnsuring enough disk space...\nFree disk space: 1477234606080\nDownloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.263s (707 MB/s)\\nExtracted 186 MB in 0.056s (3.3 GB/s)\\n'\nDownloaded weights in 0.39598512649536133 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces\ntxt2img mode\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:17, 5.57it/s]\n 2%|▏ | 2/100 [00:00<00:13, 7.42it/s]\n 3%|▎ | 3/100 [00:00<00:11, 8.36it/s]\n 4%|▍ | 4/100 [00:00<00:10, 8.91it/s]\n 5%|▌ | 5/100 [00:00<00:10, 9.25it/s]\n 6%|▌ | 6/100 [00:00<00:10, 9.28it/s]\n 7%|▋ | 7/100 [00:00<00:10, 9.28it/s]\n 8%|▊ | 8/100 [00:00<00:09, 9.23it/s]\n 9%|▉ | 9/100 [00:01<00:09, 9.24it/s]\n 10%|█ | 10/100 [00:01<00:09, 9.21it/s]\n 11%|█ | 11/100 [00:01<00:09, 9.20it/s]\n 12%|█▏ | 12/100 [00:01<00:09, 9.38it/s]\n 13%|█▎ | 13/100 [00:01<00:09, 9.55it/s]\n 14%|█▍ | 14/100 [00:01<00:08, 9.66it/s]\n 15%|█▌ | 15/100 [00:01<00:08, 9.75it/s]\n 16%|█▌ | 16/100 [00:01<00:08, 9.72it/s]\n 17%|█▋ | 17/100 [00:01<00:08, 9.77it/s]\n 18%|█▊ | 18/100 [00:01<00:08, 9.80it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.81it/s]\n 20%|██ | 20/100 [00:02<00:08, 9.82it/s]\n 21%|██ | 21/100 [00:02<00:08, 9.86it/s]\n 22%|██▏ | 22/100 [00:02<00:07, 9.84it/s]\n 23%|██▎ | 23/100 [00:02<00:07, 9.77it/s]\n 24%|██▍ | 24/100 [00:02<00:07, 9.60it/s]\n 25%|██▌ | 25/100 [00:02<00:07, 9.50it/s]\n 26%|██▌ | 26/100 [00:02<00:07, 9.42it/s]\n 27%|██▋ | 27/100 [00:02<00:07, 9.53it/s]\n 28%|██▊ | 28/100 [00:02<00:07, 9.56it/s]\n 29%|██▉ | 29/100 [00:03<00:07, 9.62it/s]\n 30%|███ | 30/100 [00:03<00:07, 9.67it/s]\n 31%|███ | 31/100 [00:03<00:07, 9.73it/s]\n 32%|███▏ | 32/100 [00:03<00:07, 9.65it/s]\n 33%|███▎ | 33/100 [00:03<00:07, 9.28it/s]\n 34%|███▍ | 34/100 [00:03<00:07, 9.22it/s]\n 35%|███▌ | 35/100 [00:03<00:07, 9.16it/s]\n 36%|███▌ | 36/100 [00:03<00:06, 9.16it/s]\n 37%|███▋ | 37/100 [00:03<00:06, 9.14it/s]\n 38%|███▊ | 38/100 [00:04<00:06, 9.18it/s]\n 39%|███▉ | 39/100 [00:04<00:06, 9.20it/s]\n 40%|████ | 40/100 [00:04<00:06, 9.21it/s]\n 41%|████ | 41/100 [00:04<00:06, 9.24it/s]\n 42%|████▏ | 42/100 [00:04<00:06, 9.28it/s]\n 43%|████▎ | 43/100 [00:04<00:06, 9.29it/s]\n 44%|████▍ | 44/100 [00:04<00:06, 9.23it/s]\n 45%|████▌ | 45/100 [00:04<00:06, 8.87it/s]\n 46%|████▌ | 46/100 [00:04<00:06, 8.93it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 9.02it/s]\n 48%|████▊ | 48/100 [00:05<00:05, 9.10it/s]\n 49%|████▉ | 49/100 [00:05<00:05, 9.15it/s]\n 50%|█████ | 50/100 [00:05<00:05, 9.27it/s]\n 51%|█████ | 51/100 [00:05<00:05, 8.96it/s]\n 52%|█████▏ | 52/100 [00:05<00:05, 9.04it/s]\n 53%|█████▎ | 53/100 [00:05<00:05, 9.01it/s]\n 54%|█████▍ | 54/100 [00:05<00:05, 9.07it/s]\n 55%|█████▌ | 55/100 [00:05<00:04, 9.05it/s]\n 56%|█████▌ | 56/100 [00:06<00:04, 9.05it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 9.08it/s]\n 58%|█████▊ | 58/100 [00:06<00:04, 9.08it/s]\n 59%|█████▉ | 59/100 [00:06<00:04, 9.11it/s]\n 60%|██████ | 60/100 [00:06<00:04, 9.14it/s]\n 61%|██████ | 61/100 [00:06<00:04, 9.09it/s]\n 62%|██████▏ | 62/100 [00:06<00:04, 9.10it/s]\n 63%|██████▎ | 63/100 [00:06<00:04, 9.12it/s]\n 64%|██████▍ | 64/100 [00:06<00:03, 9.17it/s]\n 65%|██████▌ | 65/100 [00:07<00:03, 9.21it/s]\n 66%|██████▌ | 66/100 [00:07<00:03, 9.23it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 9.25it/s]\n 68%|██████▊ | 68/100 [00:07<00:03, 9.26it/s]\n 69%|██████▉ | 69/100 [00:07<00:03, 9.27it/s]\n 70%|███████ | 70/100 [00:07<00:03, 9.26it/s]\n 71%|███████ | 71/100 [00:07<00:03, 9.33it/s]\n 72%|███████▏ | 72/100 [00:07<00:02, 9.47it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 9.60it/s]\n 74%|███████▍ | 74/100 [00:07<00:02, 9.70it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 9.76it/s]\n 76%|███████▌ | 76/100 [00:08<00:02, 9.83it/s]\n 78%|███████▊ | 78/100 [00:08<00:02, 9.94it/s]\n 80%|████████ | 80/100 [00:08<00:02, 9.98it/s]\n 81%|████████ | 81/100 [00:08<00:01, 9.97it/s]\n 82%|████████▏ | 82/100 [00:08<00:01, 9.96it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 9.96it/s]\n 84%|████████▍ | 84/100 [00:08<00:01, 9.97it/s]\n 86%|████████▌ | 86/100 [00:09<00:01, 9.99it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 9.99it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 10.01it/s]\n 90%|█████████ | 90/100 [00:09<00:01, 9.93it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 9.83it/s]\n 92%|█████████▏| 92/100 [00:09<00:00, 9.84it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 9.83it/s]\n 94%|█████████▍| 94/100 [00:09<00:00, 9.86it/s]\n 96%|█████████▌| 96/100 [00:10<00:00, 9.92it/s]\n 98%|█████████▊| 98/100 [00:10<00:00, 9.98it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 9.96it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.89it/s]\n100%|██████████| 100/100 [00:10<00:00, 9.44it/s]",
"metrics": {
"predict_time": 12.734555,
"total_time": 15.119214
},
"output": [
"https://replicate.delivery/pbxt/NpjykDkHxPo5Hx6BwTQSaWiHtOgkOBv7dOdc7tDk1AHekiBJA/out-0.png"
],
"started_at": "2023-12-17T07:17:00.743097Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/haqoqs3brqbojoglkjjdrulvpa",
"cancel": "https://api.replicate.com/v1/predictions/haqoqs3brqbojoglkjjdrulvpa/cancel"
},
"version": "572fa33614e484e0d9f7707707d5e1f04f00c968b733c8609647d9a2d9a523ff"
}
Using seed: 40362
Ensuring enough disk space...
Free disk space: 1477234606080
Downloading weights: https://replicate.delivery/pbxt/4m43wxvIE94eW6gIeYCIUIoC8wfJ0ZDCiw3gFzloQnShx5CkA/trained_model.tar
b'Downloaded 186 MB bytes in 0.263s (707 MB/s)\nExtracted 186 MB in 0.056s (3.3 GB/s)\n'
Downloaded weights in 0.39598512649536133 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: <s0><s1>, artistic illustration, two brothers walking together in a beautiful south Swiss village, beautiful village, river, clear faces
txt2img mode
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:17, 5.57it/s]
2%|▏ | 2/100 [00:00<00:13, 7.42it/s]
3%|▎ | 3/100 [00:00<00:11, 8.36it/s]
4%|▍ | 4/100 [00:00<00:10, 8.91it/s]
5%|▌ | 5/100 [00:00<00:10, 9.25it/s]
6%|▌ | 6/100 [00:00<00:10, 9.28it/s]
7%|▋ | 7/100 [00:00<00:10, 9.28it/s]
8%|▊ | 8/100 [00:00<00:09, 9.23it/s]
9%|▉ | 9/100 [00:01<00:09, 9.24it/s]
10%|█ | 10/100 [00:01<00:09, 9.21it/s]
11%|█ | 11/100 [00:01<00:09, 9.20it/s]
12%|█▏ | 12/100 [00:01<00:09, 9.38it/s]
13%|█▎ | 13/100 [00:01<00:09, 9.55it/s]
14%|█▍ | 14/100 [00:01<00:08, 9.66it/s]
15%|█▌ | 15/100 [00:01<00:08, 9.75it/s]
16%|█▌ | 16/100 [00:01<00:08, 9.72it/s]
17%|█▋ | 17/100 [00:01<00:08, 9.77it/s]
18%|█▊ | 18/100 [00:01<00:08, 9.80it/s]
19%|█▉ | 19/100 [00:02<00:08, 9.81it/s]
20%|██ | 20/100 [00:02<00:08, 9.82it/s]
21%|██ | 21/100 [00:02<00:08, 9.86it/s]
22%|██▏ | 22/100 [00:02<00:07, 9.84it/s]
23%|██▎ | 23/100 [00:02<00:07, 9.77it/s]
24%|██▍ | 24/100 [00:02<00:07, 9.60it/s]
25%|██▌ | 25/100 [00:02<00:07, 9.50it/s]
26%|██▌ | 26/100 [00:02<00:07, 9.42it/s]
27%|██▋ | 27/100 [00:02<00:07, 9.53it/s]
28%|██▊ | 28/100 [00:02<00:07, 9.56it/s]
29%|██▉ | 29/100 [00:03<00:07, 9.62it/s]
30%|███ | 30/100 [00:03<00:07, 9.67it/s]
31%|███ | 31/100 [00:03<00:07, 9.73it/s]
32%|███▏ | 32/100 [00:03<00:07, 9.65it/s]
33%|███▎ | 33/100 [00:03<00:07, 9.28it/s]
34%|███▍ | 34/100 [00:03<00:07, 9.22it/s]
35%|███▌ | 35/100 [00:03<00:07, 9.16it/s]
36%|███▌ | 36/100 [00:03<00:06, 9.16it/s]
37%|███▋ | 37/100 [00:03<00:06, 9.14it/s]
38%|███▊ | 38/100 [00:04<00:06, 9.18it/s]
39%|███▉ | 39/100 [00:04<00:06, 9.20it/s]
40%|████ | 40/100 [00:04<00:06, 9.21it/s]
41%|████ | 41/100 [00:04<00:06, 9.24it/s]
42%|████▏ | 42/100 [00:04<00:06, 9.28it/s]
43%|████▎ | 43/100 [00:04<00:06, 9.29it/s]
44%|████▍ | 44/100 [00:04<00:06, 9.23it/s]
45%|████▌ | 45/100 [00:04<00:06, 8.87it/s]
46%|████▌ | 46/100 [00:04<00:06, 8.93it/s]
47%|████▋ | 47/100 [00:05<00:05, 9.02it/s]
48%|████▊ | 48/100 [00:05<00:05, 9.10it/s]
49%|████▉ | 49/100 [00:05<00:05, 9.15it/s]
50%|█████ | 50/100 [00:05<00:05, 9.27it/s]
51%|█████ | 51/100 [00:05<00:05, 8.96it/s]
52%|█████▏ | 52/100 [00:05<00:05, 9.04it/s]
53%|█████▎ | 53/100 [00:05<00:05, 9.01it/s]
54%|█████▍ | 54/100 [00:05<00:05, 9.07it/s]
55%|█████▌ | 55/100 [00:05<00:04, 9.05it/s]
56%|█████▌ | 56/100 [00:06<00:04, 9.05it/s]
57%|█████▋ | 57/100 [00:06<00:04, 9.08it/s]
58%|█████▊ | 58/100 [00:06<00:04, 9.08it/s]
59%|█████▉ | 59/100 [00:06<00:04, 9.11it/s]
60%|██████ | 60/100 [00:06<00:04, 9.14it/s]
61%|██████ | 61/100 [00:06<00:04, 9.09it/s]
62%|██████▏ | 62/100 [00:06<00:04, 9.10it/s]
63%|██████▎ | 63/100 [00:06<00:04, 9.12it/s]
64%|██████▍ | 64/100 [00:06<00:03, 9.17it/s]
65%|██████▌ | 65/100 [00:07<00:03, 9.21it/s]
66%|██████▌ | 66/100 [00:07<00:03, 9.23it/s]
67%|██████▋ | 67/100 [00:07<00:03, 9.25it/s]
68%|██████▊ | 68/100 [00:07<00:03, 9.26it/s]
69%|██████▉ | 69/100 [00:07<00:03, 9.27it/s]
70%|███████ | 70/100 [00:07<00:03, 9.26it/s]
71%|███████ | 71/100 [00:07<00:03, 9.33it/s]
72%|███████▏ | 72/100 [00:07<00:02, 9.47it/s]
73%|███████▎ | 73/100 [00:07<00:02, 9.60it/s]
74%|███████▍ | 74/100 [00:07<00:02, 9.70it/s]
75%|███████▌ | 75/100 [00:08<00:02, 9.76it/s]
76%|███████▌ | 76/100 [00:08<00:02, 9.83it/s]
78%|███████▊ | 78/100 [00:08<00:02, 9.94it/s]
80%|████████ | 80/100 [00:08<00:02, 9.98it/s]
81%|████████ | 81/100 [00:08<00:01, 9.97it/s]
82%|████████▏ | 82/100 [00:08<00:01, 9.96it/s]
83%|████████▎ | 83/100 [00:08<00:01, 9.96it/s]
84%|████████▍ | 84/100 [00:08<00:01, 9.97it/s]
86%|████████▌ | 86/100 [00:09<00:01, 9.99it/s]
87%|████████▋ | 87/100 [00:09<00:01, 9.99it/s]
89%|████████▉ | 89/100 [00:09<00:01, 10.01it/s]
90%|█████████ | 90/100 [00:09<00:01, 9.93it/s]
91%|█████████ | 91/100 [00:09<00:00, 9.83it/s]
92%|█████████▏| 92/100 [00:09<00:00, 9.84it/s]
93%|█████████▎| 93/100 [00:09<00:00, 9.83it/s]
94%|█████████▍| 94/100 [00:09<00:00, 9.86it/s]
96%|█████████▌| 96/100 [00:10<00:00, 9.92it/s]
98%|█████████▊| 98/100 [00:10<00:00, 9.98it/s]
99%|█████████▉| 99/100 [00:10<00:00, 9.96it/s]
100%|██████████| 100/100 [00:10<00:00, 9.89it/s]
100%|██████████| 100/100 [00:10<00:00, 9.44it/s]