zhouzhengjun
/
lora_openjourney_v4
Lora & openjourney V4
- Public
- 18.8K runs
-
A100 (80GB)
Prediction
zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6IDxcxwedpiojc7dagrj6acsrrrcuStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- "768"
- height
- "768"
- prompt
- portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k
- lora_urls
- https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors
- scheduler
- K_EULER_ANCESTRAL
- lora_scales
- 0.6
- num_outputs
- 1
- guidance_scale
- 9.08
- negative_prompt
- prompt_strength
- 0.9
- num_inference_steps
- 50
{ "width": "768", "height": "768", "prompt": "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 9.08, "negative_prompt": "", "prompt_strength": 0.9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", { input: { width: "768", height: "768", prompt: "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", lora_urls: "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", scheduler: "K_EULER_ANCESTRAL", lora_scales: "0.6", num_outputs: 1, guidance_scale: 9.08, negative_prompt: "", prompt_strength: 0.9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", input={ "width": "768", "height": "768", "prompt": "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 9.08, "negative_prompt": "", "prompt_strength": 0.9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", "input": { "width": "768", "height": "768", "prompt": "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 9.08, "negative_prompt": "", "prompt_strength": 0.9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6 \ -i 'width="768"' \ -i 'height="768"' \ -i 'prompt="portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k"' \ -i 'lora_urls="https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scales="0.6"' \ -i 'num_outputs=1' \ -i 'guidance_scale=9.08' \ -i 'negative_prompt=""' \ -i 'prompt_strength=0.9' \ -i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": "768", "height": "768", "prompt": "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 9.08, "negative_prompt": "", "prompt_strength": 0.9, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-04-20T10:54:30.422208Z", "created_at": "2023-04-20T10:54:23.050962Z", "data_removed": false, "error": null, "id": "xcxwedpiojc7dagrj6acsrrrcu", "input": { "width": "768", "height": "768", "prompt": "portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 9.08, "negative_prompt": "", "prompt_strength": 0.9, "num_inference_steps": 50 }, "logs": "Using seed: 36207\nGenerating image of 768 x 768 with prompt: portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k\nThe requested LoRAs are loaded.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:06, 7.52it/s]\n 4%|▍ | 2/50 [00:00<00:05, 8.02it/s]\n 6%|▌ | 3/50 [00:00<00:05, 8.19it/s]\n 8%|▊ | 4/50 [00:00<00:05, 8.28it/s]\n 10%|█ | 5/50 [00:00<00:05, 8.27it/s]\n 12%|█▏ | 6/50 [00:00<00:05, 8.31it/s]\n 14%|█▍ | 7/50 [00:00<00:05, 8.31it/s]\n 16%|█▌ | 8/50 [00:00<00:05, 8.30it/s]\n 18%|█▊ | 9/50 [00:01<00:04, 8.32it/s]\n 20%|██ | 10/50 [00:01<00:04, 8.26it/s]\n 22%|██▏ | 11/50 [00:01<00:04, 8.25it/s]\n 24%|██▍ | 12/50 [00:01<00:04, 8.29it/s]\n 26%|██▌ | 13/50 [00:01<00:04, 8.32it/s]\n 28%|██▊ | 14/50 [00:01<00:04, 8.31it/s]\n 30%|███ | 15/50 [00:01<00:04, 8.28it/s]\n 32%|███▏ | 16/50 [00:01<00:04, 8.25it/s]\n 34%|███▍ | 17/50 [00:02<00:03, 8.28it/s]\n 36%|███▌ | 18/50 [00:02<00:03, 8.30it/s]\n 38%|███▊ | 19/50 [00:02<00:03, 8.33it/s]\n 40%|████ | 20/50 [00:02<00:03, 8.33it/s]\n 42%|████▏ | 21/50 [00:02<00:03, 8.34it/s]\n 44%|████▍ | 22/50 [00:02<00:03, 8.35it/s]\n 46%|████▌ | 23/50 [00:02<00:03, 8.17it/s]\n 48%|████▊ | 24/50 [00:02<00:03, 8.10it/s]\n 50%|█████ | 25/50 [00:03<00:03, 8.16it/s]\n 52%|█████▏ | 26/50 [00:03<00:02, 8.19it/s]\n 54%|█████▍ | 27/50 [00:03<00:02, 8.22it/s]\n 56%|█████▌ | 28/50 [00:03<00:02, 8.25it/s]\n 58%|█████▊ | 29/50 [00:03<00:02, 8.28it/s]\n 60%|██████ | 30/50 [00:03<00:02, 8.29it/s]\n 62%|██████▏ | 31/50 [00:03<00:02, 8.31it/s]\n 64%|██████▍ | 32/50 [00:03<00:02, 8.29it/s]\n 66%|██████▌ | 33/50 [00:03<00:02, 8.32it/s]\n 68%|██████▊ | 34/50 [00:04<00:01, 8.33it/s]\n 70%|███████ | 35/50 [00:04<00:01, 8.33it/s]\n 72%|███████▏ | 36/50 [00:04<00:01, 8.36it/s]\n 74%|███████▍ | 37/50 [00:04<00:01, 8.37it/s]\n 76%|███████▌ | 38/50 [00:04<00:01, 8.39it/s]\n 78%|███████▊ | 39/50 [00:04<00:01, 8.38it/s]\n 80%|████████ | 40/50 [00:04<00:01, 8.26it/s]\n 82%|████████▏ | 41/50 [00:04<00:01, 8.06it/s]\n 84%|████████▍ | 42/50 [00:05<00:00, 8.03it/s]\n 86%|████████▌ | 43/50 [00:05<00:00, 8.14it/s]\n 88%|████████▊ | 44/50 [00:05<00:00, 8.16it/s]\n 90%|█████████ | 45/50 [00:05<00:00, 8.12it/s]\n 92%|█████████▏| 46/50 [00:05<00:00, 8.09it/s]\n 94%|█████████▍| 47/50 [00:05<00:00, 8.19it/s]\n 96%|█████████▌| 48/50 [00:05<00:00, 8.24it/s]\n 98%|█████████▊| 49/50 [00:05<00:00, 7.99it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.01it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.23it/s]", "metrics": { "predict_time": 7.27291, "total_time": 7.371246 }, "output": [ "https://replicate.delivery/pbxt/Uv3vNxXfeTo9Q0awbVkmcTIezfFF6mNOkJmu9k8xUPYUeldGC/out-0.png" ], "started_at": "2023-04-20T10:54:23.149298Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xcxwedpiojc7dagrj6acsrrrcu", "cancel": "https://api.replicate.com/v1/predictions/xcxwedpiojc7dagrj6acsrrrcu/cancel" }, "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6" }
Generated inUsing seed: 36207 Generating image of 768 x 768 with prompt: portrait of female elf <1>, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k The requested LoRAs are loaded. The config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. The config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:06, 7.52it/s] 4%|▍ | 2/50 [00:00<00:05, 8.02it/s] 6%|▌ | 3/50 [00:00<00:05, 8.19it/s] 8%|▊ | 4/50 [00:00<00:05, 8.28it/s] 10%|█ | 5/50 [00:00<00:05, 8.27it/s] 12%|█▏ | 6/50 [00:00<00:05, 8.31it/s] 14%|█▍ | 7/50 [00:00<00:05, 8.31it/s] 16%|█▌ | 8/50 [00:00<00:05, 8.30it/s] 18%|█▊ | 9/50 [00:01<00:04, 8.32it/s] 20%|██ | 10/50 [00:01<00:04, 8.26it/s] 22%|██▏ | 11/50 [00:01<00:04, 8.25it/s] 24%|██▍ | 12/50 [00:01<00:04, 8.29it/s] 26%|██▌ | 13/50 [00:01<00:04, 8.32it/s] 28%|██▊ | 14/50 [00:01<00:04, 8.31it/s] 30%|███ | 15/50 [00:01<00:04, 8.28it/s] 32%|███▏ | 16/50 [00:01<00:04, 8.25it/s] 34%|███▍ | 17/50 [00:02<00:03, 8.28it/s] 36%|███▌ | 18/50 [00:02<00:03, 8.30it/s] 38%|███▊ | 19/50 [00:02<00:03, 8.33it/s] 40%|████ | 20/50 [00:02<00:03, 8.33it/s] 42%|████▏ | 21/50 [00:02<00:03, 8.34it/s] 44%|████▍ | 22/50 [00:02<00:03, 8.35it/s] 46%|████▌ | 23/50 [00:02<00:03, 8.17it/s] 48%|████▊ | 24/50 [00:02<00:03, 8.10it/s] 50%|█████ | 25/50 [00:03<00:03, 8.16it/s] 52%|█████▏ | 26/50 [00:03<00:02, 8.19it/s] 54%|█████▍ | 27/50 [00:03<00:02, 8.22it/s] 56%|█████▌ | 28/50 [00:03<00:02, 8.25it/s] 58%|█████▊ | 29/50 [00:03<00:02, 8.28it/s] 60%|██████ | 30/50 [00:03<00:02, 8.29it/s] 62%|██████▏ | 31/50 [00:03<00:02, 8.31it/s] 64%|██████▍ | 32/50 [00:03<00:02, 8.29it/s] 66%|██████▌ | 33/50 [00:03<00:02, 8.32it/s] 68%|██████▊ | 34/50 [00:04<00:01, 8.33it/s] 70%|███████ | 35/50 [00:04<00:01, 8.33it/s] 72%|███████▏ | 36/50 [00:04<00:01, 8.36it/s] 74%|███████▍ | 37/50 [00:04<00:01, 8.37it/s] 76%|███████▌ | 38/50 [00:04<00:01, 8.39it/s] 78%|███████▊ | 39/50 [00:04<00:01, 8.38it/s] 80%|████████ | 40/50 [00:04<00:01, 8.26it/s] 82%|████████▏ | 41/50 [00:04<00:01, 8.06it/s] 84%|████████▍ | 42/50 [00:05<00:00, 8.03it/s] 86%|████████▌ | 43/50 [00:05<00:00, 8.14it/s] 88%|████████▊ | 44/50 [00:05<00:00, 8.16it/s] 90%|█████████ | 45/50 [00:05<00:00, 8.12it/s] 92%|█████████▏| 46/50 [00:05<00:00, 8.09it/s] 94%|█████████▍| 47/50 [00:05<00:00, 8.19it/s] 96%|█████████▌| 48/50 [00:05<00:00, 8.24it/s] 98%|█████████▊| 49/50 [00:05<00:00, 7.99it/s] 100%|██████████| 50/50 [00:06<00:00, 8.01it/s] 100%|██████████| 50/50 [00:06<00:00, 8.23it/s]
Prediction
zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6IDaup3l2wypzhzpo2kd2qf22bm54StatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,
- lora_urls
- https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors
- scheduler
- K_EULER_ANCESTRAL
- lora_scales
- 0.8
- num_outputs
- 1
- guidance_scale
- 6.84
- negative_prompt
- easynegative, bad-picture-chill-75v
- prompt_strength
- 0.61
- num_inference_steps
- 63
{ "image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", "width": 512, "height": 512, "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.8", "num_outputs": 1, "guidance_scale": 6.84, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.61, "num_inference_steps": 63 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", { input: { image: "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", width: 512, height: 512, prompt: "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", lora_urls: "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", scheduler: "K_EULER_ANCESTRAL", lora_scales: "0.8", num_outputs: 1, guidance_scale: 6.84, negative_prompt: "easynegative, bad-picture-chill-75v", prompt_strength: 0.61, num_inference_steps: 63 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", input={ "image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", "width": 512, "height": 512, "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.8", "num_outputs": 1, "guidance_scale": 6.84, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.61, "num_inference_steps": 63 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", "input": { "image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", "width": 512, "height": 512, "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.8", "num_outputs": 1, "guidance_scale": 6.84, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.61, "num_inference_steps": 63 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6 \ -i 'image="https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png"' \ -i 'width=512' \ -i 'height=512' \ -i 'prompt="(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,"' \ -i 'lora_urls="https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scales="0.8"' \ -i 'num_outputs=1' \ -i 'guidance_scale=6.84' \ -i 'negative_prompt="easynegative, bad-picture-chill-75v"' \ -i 'prompt_strength=0.61' \ -i 'num_inference_steps=63'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", "width": 512, "height": 512, "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.8", "num_outputs": 1, "guidance_scale": 6.84, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.61, "num_inference_steps": 63 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-04-20T12:47:17.776590Z", "created_at": "2023-04-20T12:47:11.376315Z", "data_removed": false, "error": null, "id": "aup3l2wypzhzpo2kd2qf22bm54", "input": { "image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png", "width": 512, "height": 512, "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.8", "num_outputs": 1, "guidance_scale": 6.84, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.61, "num_inference_steps": 63 }, "logs": "Using seed: 53686\nGenerating image of 768 x 768 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,\nThe requested LoRAs are loaded.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,']\n 0%| | 0/38 [00:00<?, ?it/s]\n 3%|▎ | 1/38 [00:00<00:04, 8.40it/s]\n 5%|▌ | 2/38 [00:00<00:04, 8.36it/s]\n 8%|▊ | 3/38 [00:00<00:04, 8.34it/s]\n 11%|█ | 4/38 [00:00<00:04, 8.30it/s]\n 13%|█▎ | 5/38 [00:00<00:03, 8.33it/s]\n 16%|█▌ | 6/38 [00:00<00:03, 8.36it/s]\n 18%|█▊ | 7/38 [00:00<00:03, 8.37it/s]\n 21%|██ | 8/38 [00:00<00:03, 8.39it/s]\n 24%|██▎ | 9/38 [00:01<00:03, 8.40it/s]\n 26%|██▋ | 10/38 [00:01<00:03, 8.42it/s]\n 29%|██▉ | 11/38 [00:01<00:03, 8.40it/s]\n 32%|███▏ | 12/38 [00:01<00:03, 8.36it/s]\n 34%|███▍ | 13/38 [00:01<00:03, 8.33it/s]\n 37%|███▋ | 14/38 [00:01<00:02, 8.37it/s]\n 39%|███▉ | 15/38 [00:01<00:02, 8.38it/s]\n 42%|████▏ | 16/38 [00:01<00:02, 8.40it/s]\n 45%|████▍ | 17/38 [00:02<00:02, 8.40it/s]\n 47%|████▋ | 18/38 [00:02<00:02, 8.42it/s]\n 50%|█████ | 19/38 [00:02<00:02, 8.41it/s]\n 53%|█████▎ | 20/38 [00:02<00:02, 8.41it/s]\n 55%|█████▌ | 21/38 [00:02<00:02, 8.25it/s]\n 58%|█████▊ | 22/38 [00:02<00:01, 8.29it/s]\n 61%|██████ | 23/38 [00:02<00:01, 8.30it/s]\n 63%|██████▎ | 24/38 [00:02<00:01, 8.29it/s]\n 66%|██████▌ | 25/38 [00:02<00:01, 8.32it/s]\n 68%|██████▊ | 26/38 [00:03<00:01, 8.34it/s]\n 71%|███████ | 27/38 [00:03<00:01, 8.35it/s]\n 74%|███████▎ | 28/38 [00:03<00:01, 8.32it/s]\n 76%|███████▋ | 29/38 [00:03<00:01, 8.31it/s]\n 79%|███████▉ | 30/38 [00:03<00:00, 8.32it/s]\n 82%|████████▏ | 31/38 [00:03<00:00, 8.36it/s]\n 84%|████████▍ | 32/38 [00:03<00:00, 8.37it/s]\n 87%|████████▋ | 33/38 [00:03<00:00, 8.29it/s]\n 89%|████████▉ | 34/38 [00:04<00:00, 8.34it/s]\n 92%|█████████▏| 35/38 [00:04<00:00, 8.36it/s]\n 95%|█████████▍| 36/38 [00:04<00:00, 8.38it/s]\n 97%|█████████▋| 37/38 [00:04<00:00, 8.39it/s]\n100%|██████████| 38/38 [00:04<00:00, 8.36it/s]\n100%|██████████| 38/38 [00:04<00:00, 8.35it/s]", "metrics": { "predict_time": 6.287369, "total_time": 6.400275 }, "output": [ "https://replicate.delivery/pbxt/OLlKnknFr7onAt10wTA8QpfVikRUIfwGg3fV5hrQulGqycnhA/out-0.png" ], "started_at": "2023-04-20T12:47:11.489221Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/aup3l2wypzhzpo2kd2qf22bm54", "cancel": "https://api.replicate.com/v1/predictions/aup3l2wypzhzpo2kd2qf22bm54/cancel" }, "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6" }
Generated inUsing seed: 53686 Generating image of 768 x 768 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress, The requested LoRAs are loaded. The config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. The config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,'] 0%| | 0/38 [00:00<?, ?it/s] 3%|▎ | 1/38 [00:00<00:04, 8.40it/s] 5%|▌ | 2/38 [00:00<00:04, 8.36it/s] 8%|▊ | 3/38 [00:00<00:04, 8.34it/s] 11%|█ | 4/38 [00:00<00:04, 8.30it/s] 13%|█▎ | 5/38 [00:00<00:03, 8.33it/s] 16%|█▌ | 6/38 [00:00<00:03, 8.36it/s] 18%|█▊ | 7/38 [00:00<00:03, 8.37it/s] 21%|██ | 8/38 [00:00<00:03, 8.39it/s] 24%|██▎ | 9/38 [00:01<00:03, 8.40it/s] 26%|██▋ | 10/38 [00:01<00:03, 8.42it/s] 29%|██▉ | 11/38 [00:01<00:03, 8.40it/s] 32%|███▏ | 12/38 [00:01<00:03, 8.36it/s] 34%|███▍ | 13/38 [00:01<00:03, 8.33it/s] 37%|███▋ | 14/38 [00:01<00:02, 8.37it/s] 39%|███▉ | 15/38 [00:01<00:02, 8.38it/s] 42%|████▏ | 16/38 [00:01<00:02, 8.40it/s] 45%|████▍ | 17/38 [00:02<00:02, 8.40it/s] 47%|████▋ | 18/38 [00:02<00:02, 8.42it/s] 50%|█████ | 19/38 [00:02<00:02, 8.41it/s] 53%|█████▎ | 20/38 [00:02<00:02, 8.41it/s] 55%|█████▌ | 21/38 [00:02<00:02, 8.25it/s] 58%|█████▊ | 22/38 [00:02<00:01, 8.29it/s] 61%|██████ | 23/38 [00:02<00:01, 8.30it/s] 63%|██████▎ | 24/38 [00:02<00:01, 8.29it/s] 66%|██████▌ | 25/38 [00:02<00:01, 8.32it/s] 68%|██████▊ | 26/38 [00:03<00:01, 8.34it/s] 71%|███████ | 27/38 [00:03<00:01, 8.35it/s] 74%|███████▎ | 28/38 [00:03<00:01, 8.32it/s] 76%|███████▋ | 29/38 [00:03<00:01, 8.31it/s] 79%|███████▉ | 30/38 [00:03<00:00, 8.32it/s] 82%|████████▏ | 31/38 [00:03<00:00, 8.36it/s] 84%|████████▍ | 32/38 [00:03<00:00, 8.37it/s] 87%|████████▋ | 33/38 [00:03<00:00, 8.29it/s] 89%|████████▉ | 34/38 [00:04<00:00, 8.34it/s] 92%|█████████▏| 35/38 [00:04<00:00, 8.36it/s] 95%|█████████▍| 36/38 [00:04<00:00, 8.38it/s] 97%|█████████▋| 37/38 [00:04<00:00, 8.39it/s] 100%|██████████| 38/38 [00:04<00:00, 8.36it/s] 100%|██████████| 38/38 [00:04<00:00, 8.35it/s]
Prediction
zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6IDxbwykzzdrzaczdkydodvcqmkkaStatusSucceededSourceWebHardware–Total durationCreatedInput
- width
- "512"
- height
- "512"
- prompt
- (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,
- lora_urls
- https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors
- scheduler
- K_EULER_ANCESTRAL
- lora_scales
- 0.6
- num_outputs
- 1
- guidance_scale
- 3.25
- negative_prompt
- easynegative, bad-picture-chill-75v
- prompt_strength
- 0.9
- num_inference_steps
- 31
{ "width": "512", "height": "512", "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 3.25, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.9, "num_inference_steps": 31 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", { input: { width: "512", height: "512", prompt: "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", lora_urls: "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", scheduler: "K_EULER_ANCESTRAL", lora_scales: "0.6", num_outputs: 1, guidance_scale: 3.25, negative_prompt: "easynegative, bad-picture-chill-75v", prompt_strength: 0.9, num_inference_steps: 31 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", input={ "width": "512", "height": "512", "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 3.25, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.9, "num_inference_steps": 31 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6", "input": { "width": "512", "height": "512", "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 3.25, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.9, "num_inference_steps": 31 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6 \ -i 'width="512"' \ -i 'height="512"' \ -i 'prompt="(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,"' \ -i 'lora_urls="https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors"' \ -i 'scheduler="K_EULER_ANCESTRAL"' \ -i 'lora_scales="0.6"' \ -i 'num_outputs=1' \ -i 'guidance_scale=3.25' \ -i 'negative_prompt="easynegative, bad-picture-chill-75v"' \ -i 'prompt_strength=0.9' \ -i 'num_inference_steps=31'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/zhouzhengjun/lora_openjourney_v4@sha256:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": "512", "height": "512", "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 3.25, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.9, "num_inference_steps": 31 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-04-20T10:51:38.537121Z", "created_at": "2023-04-20T10:51:34.616238Z", "data_removed": false, "error": null, "id": "xbwykzzdrzaczdkydodvcqmkka", "input": { "width": "512", "height": "512", "prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,", "lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors", "scheduler": "K_EULER_ANCESTRAL", "lora_scales": "0.6", "num_outputs": 1, "guidance_scale": 3.25, "negative_prompt": "easynegative, bad-picture-chill-75v", "prompt_strength": 0.9, "num_inference_steps": 31 }, "logs": "Using seed: 8651\nGenerating image of 512 x 512 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,\nThe requested LoRAs are loaded.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,']\n 0%| | 0/31 [00:00<?, ?it/s]\n 6%|▋ | 2/31 [00:00<00:02, 11.13it/s]\n 13%|█▎ | 4/31 [00:00<00:02, 11.14it/s]\n 19%|█▉ | 6/31 [00:00<00:02, 11.23it/s]\n 26%|██▌ | 8/31 [00:00<00:02, 11.25it/s]\n 32%|███▏ | 10/31 [00:00<00:01, 11.30it/s]\n 39%|███▊ | 12/31 [00:01<00:01, 11.33it/s]\n 45%|████▌ | 14/31 [00:01<00:01, 11.02it/s]\n 52%|█████▏ | 16/31 [00:01<00:01, 11.10it/s]\n 58%|█████▊ | 18/31 [00:01<00:01, 11.18it/s]\n 65%|██████▍ | 20/31 [00:01<00:00, 11.23it/s]\n 71%|███████ | 22/31 [00:01<00:00, 11.22it/s]\n 77%|███████▋ | 24/31 [00:02<00:00, 11.21it/s]\n 84%|████████▍ | 26/31 [00:02<00:00, 11.11it/s]\n 90%|█████████ | 28/31 [00:02<00:00, 11.04it/s]\n 97%|█████████▋| 30/31 [00:02<00:00, 11.11it/s]\n100%|██████████| 31/31 [00:02<00:00, 11.16it/s]", "metrics": { "predict_time": 3.802227, "total_time": 3.920883 }, "output": [ "https://replicate.delivery/pbxt/xSvYgfGIXEzHOK2fUfIkksiIhanhqOm5xDt3TJQ1VkCyZZnhA/out-0.png" ], "started_at": "2023-04-20T10:51:34.734894Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xbwykzzdrzaczdkydodvcqmkka", "cancel": "https://api.replicate.com/v1/predictions/xbwykzzdrzaczdkydodvcqmkka/cancel" }, "version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6" }
Generated inUsing seed: 8651 Generating image of 512 x 512 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress, The requested LoRAs are loaded. The config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. The config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file. The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,'] 0%| | 0/31 [00:00<?, ?it/s] 6%|▋ | 2/31 [00:00<00:02, 11.13it/s] 13%|█▎ | 4/31 [00:00<00:02, 11.14it/s] 19%|█▉ | 6/31 [00:00<00:02, 11.23it/s] 26%|██▌ | 8/31 [00:00<00:02, 11.25it/s] 32%|███▏ | 10/31 [00:00<00:01, 11.30it/s] 39%|███▊ | 12/31 [00:01<00:01, 11.33it/s] 45%|████▌ | 14/31 [00:01<00:01, 11.02it/s] 52%|█████▏ | 16/31 [00:01<00:01, 11.10it/s] 58%|█████▊ | 18/31 [00:01<00:01, 11.18it/s] 65%|██████▍ | 20/31 [00:01<00:00, 11.23it/s] 71%|███████ | 22/31 [00:01<00:00, 11.22it/s] 77%|███████▋ | 24/31 [00:02<00:00, 11.21it/s] 84%|████████▍ | 26/31 [00:02<00:00, 11.11it/s] 90%|█████████ | 28/31 [00:02<00:00, 11.04it/s] 97%|█████████▋| 30/31 [00:02<00:00, 11.11it/s] 100%|██████████| 31/31 [00:02<00:00, 11.16it/s]
Want to make some of these yourself?
Run this model