zsxkib / moore-animateanyone
Unofficial Re-Trained AnimateAnyone (Image + DWPose Video β Animated Video of Image)
Prediction
zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2ID4e6ffnlb636eue2tlbed6zfizuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 25, "motion_sequence": "https://replicate.delivery/pbxt/KFWQJTPDhFou0smS93XVLMlyVQIedFa2GiP4C1gfTaW5GnQF/anyone-video-5_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWQJsyppeXHrUBQnwo5PS4eaAFe0utu15cvH5TUSrKz3hOR/anyone-10.png" }
Install Replicateβs Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", { input: { width: 512, height: 768, length: 128, guidance_scale: 3.5, sampling_steps: 25, motion_sequence: "https://replicate.delivery/pbxt/KFWQJTPDhFou0smS93XVLMlyVQIedFa2GiP4C1gfTaW5GnQF/anyone-video-5_kps.mp4", reference_image: "https://replicate.delivery/pbxt/KFWQJsyppeXHrUBQnwo5PS4eaAFe0utu15cvH5TUSrKz3hOR/anyone-10.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicateβs Python client library:pip install replicate
Import the client:import replicate
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", input={ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 25, "motion_sequence": "https://replicate.delivery/pbxt/KFWQJTPDhFou0smS93XVLMlyVQIedFa2GiP4C1gfTaW5GnQF/anyone-video-5_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWQJsyppeXHrUBQnwo5PS4eaAFe0utu15cvH5TUSrKz3hOR/anyone-10.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 25, "motion_sequence": "https://replicate.delivery/pbxt/KFWQJTPDhFou0smS93XVLMlyVQIedFa2GiP4C1gfTaW5GnQF/anyone-video-5_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWQJsyppeXHrUBQnwo5PS4eaAFe0utu15cvH5TUSrKz3hOR/anyone-10.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
Output
{ "completed_at": "2024-01-18T19:55:17.196823Z", "created_at": "2024-01-18T19:45:37.512459Z", "data_removed": false, "error": null, "id": "4e6ffnlb636eue2tlbed6zfizu", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 25, "motion_sequence": "https://replicate.delivery/pbxt/KFWQJTPDhFou0smS93XVLMlyVQIedFa2GiP4C1gfTaW5GnQF/anyone-video-5_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWQJsyppeXHrUBQnwo5PS4eaAFe0utu15cvH5TUSrKz3hOR/anyone-10.png" }, "logs": "Using seed: 22384\nSome weights of the model checkpoint were not used when initializing UNet2DConditionModel:\n['conv_norm_out.weight, conv_norm_out.bias, conv_out.weight, conv_out.bias']\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\nreturn self.fget.__get__(instance, owner)()\n/src/src/pipelines/pipeline_pose2vid_long.py:406: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet3DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet3DConditionModel's config object instead, e.g. 'unet.config.in_channels'.\nnum_channels_latents = self.denoising_unet.in_channels\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|β | 1/25 [00:15<06:16, 15.70s/it]\n 8%|β | 2/25 [00:31<06:00, 15.68s/it]\n 12%|ββ | 3/25 [00:47<05:45, 15.70s/it]\n 16%|ββ | 4/25 [01:02<05:30, 15.72s/it]\n 20%|ββ | 5/25 [01:18<05:14, 15.74s/it]\n 24%|βββ | 6/25 [01:34<04:59, 15.77s/it]\n 28%|βββ | 7/25 [01:50<04:44, 15.78s/it]\n 32%|ββββ | 8/25 [02:06<04:28, 15.80s/it]\n 36%|ββββ | 9/25 [02:21<04:13, 15.82s/it]\n 40%|ββββ | 10/25 [02:37<03:57, 15.83s/it]\n 44%|βββββ | 11/25 [02:53<03:41, 15.84s/it]\n 48%|βββββ | 12/25 [03:09<03:26, 15.85s/it]\n 52%|ββββββ | 13/25 [03:25<03:10, 15.86s/it]\n 56%|ββββββ | 14/25 [03:41<02:54, 15.86s/it]\n 60%|ββββββ | 15/25 [03:57<02:38, 15.86s/it]\n 64%|βββββββ | 16/25 [04:12<02:22, 15.86s/it]\n 68%|βββββββ | 17/25 [04:28<02:06, 15.87s/it]\n 72%|ββββββββ | 18/25 [04:44<01:51, 15.87s/it]\n 76%|ββββββββ | 19/25 [05:00<01:35, 15.87s/it]\n 80%|ββββββββ | 20/25 [05:16<01:19, 15.87s/it]\n 84%|βββββββββ | 21/25 [05:32<01:03, 15.87s/it]\n 88%|βββββββββ | 22/25 [05:48<00:47, 15.87s/it]\n 92%|ββββββββββ| 23/25 [06:04<00:31, 15.87s/it]\n 96%|ββββββββββ| 24/25 [06:19<00:15, 15.87s/it]\n100%|ββββββββββ| 25/25 [06:35<00:00, 15.87s/it]\n100%|ββββββββββ| 25/25 [06:35<00:00, 15.83s/it]\n 0%| | 0/128 [00:00<?, ?it/s]\n 3%|β | 4/128 [00:00<00:03, 39.03it/s]\n 6%|β | 8/128 [00:00<00:06, 17.15it/s]\n 9%|β | 11/128 [00:00<00:07, 14.88it/s]\n 10%|β | 13/128 [00:00<00:08, 14.10it/s]\n 12%|ββ | 15/128 [00:00<00:08, 13.57it/s]\n 13%|ββ | 17/128 [00:01<00:08, 13.20it/s]\n 15%|ββ | 19/128 [00:01<00:08, 12.94it/s]\n 16%|ββ | 21/128 [00:01<00:08, 12.75it/s]\n 18%|ββ | 23/128 [00:01<00:08, 12.63it/s]\n 20%|ββ | 25/128 [00:01<00:08, 12.52it/s]\n 21%|ββ | 27/128 [00:01<00:08, 12.46it/s]\n 23%|βββ | 29/128 [00:02<00:07, 12.42it/s]\n 24%|βββ | 31/128 [00:02<00:07, 12.40it/s]\n 26%|βββ | 33/128 [00:02<00:07, 12.38it/s]\n 27%|βββ | 35/128 [00:02<00:07, 12.37it/s]\n 29%|βββ | 37/128 [00:02<00:07, 12.37it/s]\n 30%|βββ | 39/128 [00:02<00:07, 12.35it/s]\n 32%|ββββ | 41/128 [00:03<00:07, 12.34it/s]\n 34%|ββββ | 43/128 [00:03<00:06, 12.33it/s]\n 35%|ββββ | 45/128 [00:03<00:06, 12.32it/s]\n 37%|ββββ | 47/128 [00:03<00:06, 12.33it/s]\n 38%|ββββ | 49/128 [00:03<00:06, 12.33it/s]\n 40%|ββββ | 51/128 [00:03<00:06, 12.33it/s]\n 41%|βββββ | 53/128 [00:04<00:06, 12.33it/s]\n 43%|βββββ | 55/128 [00:04<00:05, 12.34it/s]\n 45%|βββββ | 57/128 [00:04<00:05, 12.34it/s]\n 46%|βββββ | 59/128 [00:04<00:05, 12.33it/s]\n 48%|βββββ | 61/128 [00:04<00:05, 12.33it/s]\n 49%|βββββ | 63/128 [00:04<00:05, 12.33it/s]\n 51%|βββββ | 65/128 [00:05<00:05, 12.32it/s]\n 52%|ββββββ | 67/128 [00:05<00:04, 12.33it/s]\n 54%|ββββββ | 69/128 [00:05<00:04, 12.33it/s]\n 55%|ββββββ | 71/128 [00:05<00:04, 12.34it/s]\n 57%|ββββββ | 73/128 [00:05<00:04, 12.34it/s]\n 59%|ββββββ | 75/128 [00:05<00:04, 12.34it/s]\n 60%|ββββββ | 77/128 [00:06<00:04, 12.33it/s]\n 62%|βββββββ | 79/128 [00:06<00:03, 12.33it/s]\n 63%|βββββββ | 81/128 [00:06<00:03, 12.33it/s]\n 65%|βββββββ | 83/128 [00:06<00:03, 12.32it/s]\n 66%|βββββββ | 85/128 [00:06<00:03, 12.33it/s]\n 68%|βββββββ | 87/128 [00:06<00:03, 12.33it/s]\n 70%|βββββββ | 89/128 [00:06<00:03, 12.34it/s]\n 71%|βββββββ | 91/128 [00:07<00:02, 12.34it/s]\n 73%|ββββββββ | 93/128 [00:07<00:02, 12.34it/s]\n 74%|ββββββββ | 95/128 [00:07<00:02, 12.34it/s]\n 76%|ββββββββ | 97/128 [00:07<00:02, 12.34it/s]\n 77%|ββββββββ | 99/128 [00:07<00:02, 12.33it/s]\n 79%|ββββββββ | 101/128 [00:07<00:02, 12.32it/s]\n 80%|ββββββββ | 103/128 [00:08<00:02, 12.33it/s]\n 82%|βββββββββ | 105/128 [00:08<00:01, 12.33it/s]\n 84%|βββββββββ | 107/128 [00:08<00:01, 12.34it/s]\n 85%|βββββββββ | 109/128 [00:08<00:01, 12.34it/s]\n 87%|βββββββββ | 111/128 [00:08<00:01, 12.33it/s]\n 88%|βββββββββ | 113/128 [00:08<00:01, 12.33it/s]\n 90%|βββββββββ | 115/128 [00:09<00:01, 12.32it/s]\n 91%|ββββββββββ| 117/128 [00:09<00:00, 12.31it/s]\n 93%|ββββββββββ| 119/128 [00:09<00:00, 12.32it/s]\n 95%|ββββββββββ| 121/128 [00:09<00:00, 12.32it/s]\n 96%|ββββββββββ| 123/128 [00:09<00:00, 12.32it/s]\n 98%|ββββββββββ| 125/128 [00:09<00:00, 12.33it/s]\n 99%|ββββββββββ| 127/128 [00:10<00:00, 12.32it/s]\n100%|ββββββββββ| 128/128 [00:10<00:00, 12.60it/s]", "metrics": { "predict_time": 449.088264, "total_time": 579.684364 }, "output": "https://replicate.delivery/pbxt/aiZzJxBUfC14SSwYJ52eaWcdBGxGvIOuI8sblV4wptmkQzNSA/20240118T1955.mp4", "started_at": "2024-01-18T19:47:48.108559Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/4e6ffnlb636eue2tlbed6zfizu", "cancel": "https://api.replicate.com/v1/predictions/4e6ffnlb636eue2tlbed6zfizu/cancel" }, "version": "c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2" }
Generated inUsing seed: 22384 Some weights of the model checkpoint were not used when initializing UNet2DConditionModel: ['conv_norm_out.weight, conv_norm_out.bias, conv_out.weight, conv_out.bias'] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() return self.fget.__get__(instance, owner)() /src/src/pipelines/pipeline_pose2vid_long.py:406: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet3DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet3DConditionModel's config object instead, e.g. 'unet.config.in_channels'. num_channels_latents = self.denoising_unet.in_channels 0%| | 0/25 [00:00<?, ?it/s] 4%|β | 1/25 [00:15<06:16, 15.70s/it] 8%|β | 2/25 [00:31<06:00, 15.68s/it] 12%|ββ | 3/25 [00:47<05:45, 15.70s/it] 16%|ββ | 4/25 [01:02<05:30, 15.72s/it] 20%|ββ | 5/25 [01:18<05:14, 15.74s/it] 24%|βββ | 6/25 [01:34<04:59, 15.77s/it] 28%|βββ | 7/25 [01:50<04:44, 15.78s/it] 32%|ββββ | 8/25 [02:06<04:28, 15.80s/it] 36%|ββββ | 9/25 [02:21<04:13, 15.82s/it] 40%|ββββ | 10/25 [02:37<03:57, 15.83s/it] 44%|βββββ | 11/25 [02:53<03:41, 15.84s/it] 48%|βββββ | 12/25 [03:09<03:26, 15.85s/it] 52%|ββββββ | 13/25 [03:25<03:10, 15.86s/it] 56%|ββββββ | 14/25 [03:41<02:54, 15.86s/it] 60%|ββββββ | 15/25 [03:57<02:38, 15.86s/it] 64%|βββββββ | 16/25 [04:12<02:22, 15.86s/it] 68%|βββββββ | 17/25 [04:28<02:06, 15.87s/it] 72%|ββββββββ | 18/25 [04:44<01:51, 15.87s/it] 76%|ββββββββ | 19/25 [05:00<01:35, 15.87s/it] 80%|ββββββββ | 20/25 [05:16<01:19, 15.87s/it] 84%|βββββββββ | 21/25 [05:32<01:03, 15.87s/it] 88%|βββββββββ | 22/25 [05:48<00:47, 15.87s/it] 92%|ββββββββββ| 23/25 [06:04<00:31, 15.87s/it] 96%|ββββββββββ| 24/25 [06:19<00:15, 15.87s/it] 100%|ββββββββββ| 25/25 [06:35<00:00, 15.87s/it] 100%|ββββββββββ| 25/25 [06:35<00:00, 15.83s/it] 0%| | 0/128 [00:00<?, ?it/s] 3%|β | 4/128 [00:00<00:03, 39.03it/s] 6%|β | 8/128 [00:00<00:06, 17.15it/s] 9%|β | 11/128 [00:00<00:07, 14.88it/s] 10%|β | 13/128 [00:00<00:08, 14.10it/s] 12%|ββ | 15/128 [00:00<00:08, 13.57it/s] 13%|ββ | 17/128 [00:01<00:08, 13.20it/s] 15%|ββ | 19/128 [00:01<00:08, 12.94it/s] 16%|ββ | 21/128 [00:01<00:08, 12.75it/s] 18%|ββ | 23/128 [00:01<00:08, 12.63it/s] 20%|ββ | 25/128 [00:01<00:08, 12.52it/s] 21%|ββ | 27/128 [00:01<00:08, 12.46it/s] 23%|βββ | 29/128 [00:02<00:07, 12.42it/s] 24%|βββ | 31/128 [00:02<00:07, 12.40it/s] 26%|βββ | 33/128 [00:02<00:07, 12.38it/s] 27%|βββ | 35/128 [00:02<00:07, 12.37it/s] 29%|βββ | 37/128 [00:02<00:07, 12.37it/s] 30%|βββ | 39/128 [00:02<00:07, 12.35it/s] 32%|ββββ | 41/128 [00:03<00:07, 12.34it/s] 34%|ββββ | 43/128 [00:03<00:06, 12.33it/s] 35%|ββββ | 45/128 [00:03<00:06, 12.32it/s] 37%|ββββ | 47/128 [00:03<00:06, 12.33it/s] 38%|ββββ | 49/128 [00:03<00:06, 12.33it/s] 40%|ββββ | 51/128 [00:03<00:06, 12.33it/s] 41%|βββββ | 53/128 [00:04<00:06, 12.33it/s] 43%|βββββ | 55/128 [00:04<00:05, 12.34it/s] 45%|βββββ | 57/128 [00:04<00:05, 12.34it/s] 46%|βββββ | 59/128 [00:04<00:05, 12.33it/s] 48%|βββββ | 61/128 [00:04<00:05, 12.33it/s] 49%|βββββ | 63/128 [00:04<00:05, 12.33it/s] 51%|βββββ | 65/128 [00:05<00:05, 12.32it/s] 52%|ββββββ | 67/128 [00:05<00:04, 12.33it/s] 54%|ββββββ | 69/128 [00:05<00:04, 12.33it/s] 55%|ββββββ | 71/128 [00:05<00:04, 12.34it/s] 57%|ββββββ | 73/128 [00:05<00:04, 12.34it/s] 59%|ββββββ | 75/128 [00:05<00:04, 12.34it/s] 60%|ββββββ | 77/128 [00:06<00:04, 12.33it/s] 62%|βββββββ | 79/128 [00:06<00:03, 12.33it/s] 63%|βββββββ | 81/128 [00:06<00:03, 12.33it/s] 65%|βββββββ | 83/128 [00:06<00:03, 12.32it/s] 66%|βββββββ | 85/128 [00:06<00:03, 12.33it/s] 68%|βββββββ | 87/128 [00:06<00:03, 12.33it/s] 70%|βββββββ | 89/128 [00:06<00:03, 12.34it/s] 71%|βββββββ | 91/128 [00:07<00:02, 12.34it/s] 73%|ββββββββ | 93/128 [00:07<00:02, 12.34it/s] 74%|ββββββββ | 95/128 [00:07<00:02, 12.34it/s] 76%|ββββββββ | 97/128 [00:07<00:02, 12.34it/s] 77%|ββββββββ | 99/128 [00:07<00:02, 12.33it/s] 79%|ββββββββ | 101/128 [00:07<00:02, 12.32it/s] 80%|ββββββββ | 103/128 [00:08<00:02, 12.33it/s] 82%|βββββββββ | 105/128 [00:08<00:01, 12.33it/s] 84%|βββββββββ | 107/128 [00:08<00:01, 12.34it/s] 85%|βββββββββ | 109/128 [00:08<00:01, 12.34it/s] 87%|βββββββββ | 111/128 [00:08<00:01, 12.33it/s] 88%|βββββββββ | 113/128 [00:08<00:01, 12.33it/s] 90%|βββββββββ | 115/128 [00:09<00:01, 12.32it/s] 91%|ββββββββββ| 117/128 [00:09<00:00, 12.31it/s] 93%|ββββββββββ| 119/128 [00:09<00:00, 12.32it/s] 95%|ββββββββββ| 121/128 [00:09<00:00, 12.32it/s] 96%|ββββββββββ| 123/128 [00:09<00:00, 12.32it/s] 98%|ββββββββββ| 125/128 [00:09<00:00, 12.33it/s] 99%|ββββββββββ| 127/128 [00:10<00:00, 12.32it/s] 100%|ββββββββββ| 128/128 [00:10<00:00, 12.60it/s]
Prediction
zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2IDw6oass3b43qai6ipqpd7ppbdqqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 10, "motion_sequence": "https://replicate.delivery/pbxt/KFWavU9wN1HEHYBiG9wpPL6VJwZgzSl9vPmfKQvYDsY6LatD/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWavcx9wpKViDRbTmQxUcpiJl9toskNO8SZhKpUaNukmDPu/anyone-2.png" }
Install Replicateβs Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", { input: { width: 512, height: 768, length: 128, guidance_scale: 3.5, sampling_steps: 10, motion_sequence: "https://replicate.delivery/pbxt/KFWavU9wN1HEHYBiG9wpPL6VJwZgzSl9vPmfKQvYDsY6LatD/anyone-video-2_kps.mp4", reference_image: "https://replicate.delivery/pbxt/KFWavcx9wpKViDRbTmQxUcpiJl9toskNO8SZhKpUaNukmDPu/anyone-2.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicateβs Python client library:pip install replicate
Import the client:import replicate
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", input={ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 10, "motion_sequence": "https://replicate.delivery/pbxt/KFWavU9wN1HEHYBiG9wpPL6VJwZgzSl9vPmfKQvYDsY6LatD/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWavcx9wpKViDRbTmQxUcpiJl9toskNO8SZhKpUaNukmDPu/anyone-2.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 10, "motion_sequence": "https://replicate.delivery/pbxt/KFWavU9wN1HEHYBiG9wpPL6VJwZgzSl9vPmfKQvYDsY6LatD/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWavcx9wpKViDRbTmQxUcpiJl9toskNO8SZhKpUaNukmDPu/anyone-2.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
Output
{ "completed_at": "2024-01-18T20:01:12.925631Z", "created_at": "2024-01-18T19:56:49.898528Z", "data_removed": false, "error": null, "id": "w6oass3b43qai6ipqpd7ppbdqq", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 10, "motion_sequence": "https://replicate.delivery/pbxt/KFWavU9wN1HEHYBiG9wpPL6VJwZgzSl9vPmfKQvYDsY6LatD/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWavcx9wpKViDRbTmQxUcpiJl9toskNO8SZhKpUaNukmDPu/anyone-2.png" }, "logs": "Using seed: 36146\nSome weights of the model checkpoint were not used when initializing UNet2DConditionModel:\n['conv_norm_out.weight, conv_norm_out.bias, conv_out.weight, conv_out.bias']\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\nreturn self.fget.__get__(instance, owner)()\n/src/src/pipelines/pipeline_pose2vid_long.py:406: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet3DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet3DConditionModel's config object instead, e.g. 'unet.config.in_channels'.\nnum_channels_latents = self.denoising_unet.in_channels\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|β | 1/10 [00:15<02:21, 15.69s/it]\n 20%|ββ | 2/10 [00:31<02:05, 15.67s/it]\n 30%|βββ | 3/10 [00:47<01:49, 15.70s/it]\n 40%|ββββ | 4/10 [01:02<01:34, 15.72s/it]\n 50%|βββββ | 5/10 [01:18<01:18, 15.74s/it]\n 60%|ββββββ | 6/10 [01:34<01:03, 15.77s/it]\n 70%|βββββββ | 7/10 [01:50<00:47, 15.79s/it]\n 80%|ββββββββ | 8/10 [02:06<00:31, 15.81s/it]\n 90%|βββββββββ | 9/10 [02:21<00:15, 15.82s/it]\n100%|ββββββββββ| 10/10 [02:37<00:00, 15.83s/it]\n100%|ββββββββββ| 10/10 [02:37<00:00, 15.78s/it]\n 0%| | 0/128 [00:00<?, ?it/s]\n 4%|β | 5/128 [00:00<00:04, 29.52it/s]\n 6%|β | 8/128 [00:00<00:06, 17.97it/s]\n 8%|β | 10/128 [00:00<00:07, 15.78it/s]\n 9%|β | 12/128 [00:00<00:07, 14.54it/s]\n 11%|β | 14/128 [00:00<00:08, 13.79it/s]\n 12%|ββ | 16/128 [00:01<00:08, 13.31it/s]\n 14%|ββ | 18/128 [00:01<00:08, 12.99it/s]\n 16%|ββ | 20/128 [00:01<00:08, 12.78it/s]\n 17%|ββ | 22/128 [00:01<00:08, 12.63it/s]\n 19%|ββ | 24/128 [00:01<00:08, 12.54it/s]\n 20%|ββ | 26/128 [00:01<00:08, 12.48it/s]\n 22%|βββ | 28/128 [00:02<00:08, 12.44it/s]\n 23%|βββ | 30/128 [00:02<00:07, 12.40it/s]\n 25%|βββ | 32/128 [00:02<00:07, 12.37it/s]\n 27%|βββ | 34/128 [00:02<00:07, 12.36it/s]\n 28%|βββ | 36/128 [00:02<00:07, 12.34it/s]\n 30%|βββ | 38/128 [00:02<00:07, 12.34it/s]\n 31%|ββββ | 40/128 [00:03<00:07, 12.34it/s]\n 33%|ββββ | 42/128 [00:03<00:06, 12.34it/s]\n 34%|ββββ | 44/128 [00:03<00:06, 12.34it/s]\n 36%|ββββ | 46/128 [00:03<00:06, 12.34it/s]\n 38%|ββββ | 48/128 [00:03<00:06, 12.34it/s]\n 39%|ββββ | 50/128 [00:03<00:06, 12.32it/s]\n 41%|ββββ | 52/128 [00:03<00:06, 12.32it/s]\n 42%|βββββ | 54/128 [00:04<00:06, 12.32it/s]\n 44%|βββββ | 56/128 [00:04<00:05, 12.32it/s]\n 45%|βββββ | 58/128 [00:04<00:05, 12.33it/s]\n 47%|βββββ | 60/128 [00:04<00:05, 12.33it/s]\n 48%|βββββ | 62/128 [00:04<00:05, 12.32it/s]\n 50%|βββββ | 64/128 [00:04<00:05, 12.32it/s]\n 52%|ββββββ | 66/128 [00:05<00:05, 12.32it/s]\n 53%|ββββββ | 68/128 [00:05<00:04, 12.31it/s]\n 55%|ββββββ | 70/128 [00:05<00:04, 12.30it/s]\n 56%|ββββββ | 72/128 [00:05<00:04, 12.30it/s]\n 58%|ββββββ | 74/128 [00:05<00:04, 12.31it/s]\n 59%|ββββββ | 76/128 [00:05<00:04, 12.32it/s]\n 61%|ββββββ | 78/128 [00:06<00:04, 12.33it/s]\n 62%|βββββββ | 80/128 [00:06<00:03, 12.33it/s]\n 64%|βββββββ | 82/128 [00:06<00:03, 12.33it/s]\n 66%|βββββββ | 84/128 [00:06<00:03, 12.32it/s]\n 67%|βββββββ | 86/128 [00:06<00:03, 12.31it/s]\n 69%|βββββββ | 88/128 [00:06<00:03, 12.32it/s]\n 70%|βββββββ | 90/128 [00:07<00:03, 12.32it/s]\n 72%|ββββββββ | 92/128 [00:07<00:02, 12.32it/s]\n 73%|ββββββββ | 94/128 [00:07<00:02, 12.32it/s]\n 75%|ββββββββ | 96/128 [00:07<00:02, 12.33it/s]\n 77%|ββββββββ | 98/128 [00:07<00:02, 12.33it/s]\n 78%|ββββββββ | 100/128 [00:07<00:02, 12.32it/s]\n 80%|ββββββββ | 102/128 [00:08<00:02, 12.32it/s]\n 81%|βββββββββ | 104/128 [00:08<00:01, 12.31it/s]\n 83%|βββββββββ | 106/128 [00:08<00:01, 12.31it/s]\n 84%|βββββββββ | 108/128 [00:08<00:01, 12.32it/s]\n 86%|βββββββββ | 110/128 [00:08<00:01, 12.33it/s]\n 88%|βββββββββ | 112/128 [00:08<00:01, 12.34it/s]\n 89%|βββββββββ | 114/128 [00:09<00:01, 12.34it/s]\n 91%|βββββββββ | 116/128 [00:09<00:00, 12.33it/s]\n 92%|ββββββββββ| 118/128 [00:09<00:00, 12.32it/s]\n 94%|ββββββββββ| 120/128 [00:09<00:00, 12.32it/s]\n 95%|ββββββββββ| 122/128 [00:09<00:00, 12.32it/s]\n 97%|ββββββββββ| 124/128 [00:09<00:00, 12.33it/s]\n 98%|ββββββββββ| 126/128 [00:09<00:00, 12.33it/s]\n100%|ββββββββββ| 128/128 [00:10<00:00, 12.33it/s]\n100%|ββββββββββ| 128/128 [00:10<00:00, 12.61it/s]", "metrics": { "predict_time": 195.519423, "total_time": 263.027103 }, "output": "https://replicate.delivery/pbxt/QWgDhgdLwwIwJRhR6kuit3DmeLk6OZMApDRZ6e6dU1QIWzNSA/20240118T2001.mp4", "started_at": "2024-01-18T19:57:57.406208Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/w6oass3b43qai6ipqpd7ppbdqq", "cancel": "https://api.replicate.com/v1/predictions/w6oass3b43qai6ipqpd7ppbdqq/cancel" }, "version": "c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2" }
Generated inUsing seed: 36146 Some weights of the model checkpoint were not used when initializing UNet2DConditionModel: ['conv_norm_out.weight, conv_norm_out.bias, conv_out.weight, conv_out.bias'] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torch/_utils.py:776: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() return self.fget.__get__(instance, owner)() /src/src/pipelines/pipeline_pose2vid_long.py:406: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet3DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet3DConditionModel's config object instead, e.g. 'unet.config.in_channels'. num_channels_latents = self.denoising_unet.in_channels 0%| | 0/10 [00:00<?, ?it/s] 10%|β | 1/10 [00:15<02:21, 15.69s/it] 20%|ββ | 2/10 [00:31<02:05, 15.67s/it] 30%|βββ | 3/10 [00:47<01:49, 15.70s/it] 40%|ββββ | 4/10 [01:02<01:34, 15.72s/it] 50%|βββββ | 5/10 [01:18<01:18, 15.74s/it] 60%|ββββββ | 6/10 [01:34<01:03, 15.77s/it] 70%|βββββββ | 7/10 [01:50<00:47, 15.79s/it] 80%|ββββββββ | 8/10 [02:06<00:31, 15.81s/it] 90%|βββββββββ | 9/10 [02:21<00:15, 15.82s/it] 100%|ββββββββββ| 10/10 [02:37<00:00, 15.83s/it] 100%|ββββββββββ| 10/10 [02:37<00:00, 15.78s/it] 0%| | 0/128 [00:00<?, ?it/s] 4%|β | 5/128 [00:00<00:04, 29.52it/s] 6%|β | 8/128 [00:00<00:06, 17.97it/s] 8%|β | 10/128 [00:00<00:07, 15.78it/s] 9%|β | 12/128 [00:00<00:07, 14.54it/s] 11%|β | 14/128 [00:00<00:08, 13.79it/s] 12%|ββ | 16/128 [00:01<00:08, 13.31it/s] 14%|ββ | 18/128 [00:01<00:08, 12.99it/s] 16%|ββ | 20/128 [00:01<00:08, 12.78it/s] 17%|ββ | 22/128 [00:01<00:08, 12.63it/s] 19%|ββ | 24/128 [00:01<00:08, 12.54it/s] 20%|ββ | 26/128 [00:01<00:08, 12.48it/s] 22%|βββ | 28/128 [00:02<00:08, 12.44it/s] 23%|βββ | 30/128 [00:02<00:07, 12.40it/s] 25%|βββ | 32/128 [00:02<00:07, 12.37it/s] 27%|βββ | 34/128 [00:02<00:07, 12.36it/s] 28%|βββ | 36/128 [00:02<00:07, 12.34it/s] 30%|βββ | 38/128 [00:02<00:07, 12.34it/s] 31%|ββββ | 40/128 [00:03<00:07, 12.34it/s] 33%|ββββ | 42/128 [00:03<00:06, 12.34it/s] 34%|ββββ | 44/128 [00:03<00:06, 12.34it/s] 36%|ββββ | 46/128 [00:03<00:06, 12.34it/s] 38%|ββββ | 48/128 [00:03<00:06, 12.34it/s] 39%|ββββ | 50/128 [00:03<00:06, 12.32it/s] 41%|ββββ | 52/128 [00:03<00:06, 12.32it/s] 42%|βββββ | 54/128 [00:04<00:06, 12.32it/s] 44%|βββββ | 56/128 [00:04<00:05, 12.32it/s] 45%|βββββ | 58/128 [00:04<00:05, 12.33it/s] 47%|βββββ | 60/128 [00:04<00:05, 12.33it/s] 48%|βββββ | 62/128 [00:04<00:05, 12.32it/s] 50%|βββββ | 64/128 [00:04<00:05, 12.32it/s] 52%|ββββββ | 66/128 [00:05<00:05, 12.32it/s] 53%|ββββββ | 68/128 [00:05<00:04, 12.31it/s] 55%|ββββββ | 70/128 [00:05<00:04, 12.30it/s] 56%|ββββββ | 72/128 [00:05<00:04, 12.30it/s] 58%|ββββββ | 74/128 [00:05<00:04, 12.31it/s] 59%|ββββββ | 76/128 [00:05<00:04, 12.32it/s] 61%|ββββββ | 78/128 [00:06<00:04, 12.33it/s] 62%|βββββββ | 80/128 [00:06<00:03, 12.33it/s] 64%|βββββββ | 82/128 [00:06<00:03, 12.33it/s] 66%|βββββββ | 84/128 [00:06<00:03, 12.32it/s] 67%|βββββββ | 86/128 [00:06<00:03, 12.31it/s] 69%|βββββββ | 88/128 [00:06<00:03, 12.32it/s] 70%|βββββββ | 90/128 [00:07<00:03, 12.32it/s] 72%|ββββββββ | 92/128 [00:07<00:02, 12.32it/s] 73%|ββββββββ | 94/128 [00:07<00:02, 12.32it/s] 75%|ββββββββ | 96/128 [00:07<00:02, 12.33it/s] 77%|ββββββββ | 98/128 [00:07<00:02, 12.33it/s] 78%|ββββββββ | 100/128 [00:07<00:02, 12.32it/s] 80%|ββββββββ | 102/128 [00:08<00:02, 12.32it/s] 81%|βββββββββ | 104/128 [00:08<00:01, 12.31it/s] 83%|βββββββββ | 106/128 [00:08<00:01, 12.31it/s] 84%|βββββββββ | 108/128 [00:08<00:01, 12.32it/s] 86%|βββββββββ | 110/128 [00:08<00:01, 12.33it/s] 88%|βββββββββ | 112/128 [00:08<00:01, 12.34it/s] 89%|βββββββββ | 114/128 [00:09<00:01, 12.34it/s] 91%|βββββββββ | 116/128 [00:09<00:00, 12.33it/s] 92%|ββββββββββ| 118/128 [00:09<00:00, 12.32it/s] 94%|ββββββββββ| 120/128 [00:09<00:00, 12.32it/s] 95%|ββββββββββ| 122/128 [00:09<00:00, 12.32it/s] 97%|ββββββββββ| 124/128 [00:09<00:00, 12.33it/s] 98%|ββββββββββ| 126/128 [00:09<00:00, 12.33it/s] 100%|ββββββββββ| 128/128 [00:10<00:00, 12.33it/s] 100%|ββββββββββ| 128/128 [00:10<00:00, 12.61it/s]
Prediction
zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2IDpjr4xntbk7hetovahfsv474o3iStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
{ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 50, "motion_sequence": "https://replicate.delivery/pbxt/KFWiTCptFa0zbnNMGwsRtUQBtx38ttv6TQwuBZGLfgKWAYHZ/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWiSo2bKmo2poY6QStNcJMaHy90LlkLggSlPb20iTpvD4UL/anyone-2.png" }
Install Replicateβs Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", { input: { width: 512, height: 768, length: 128, guidance_scale: 3.5, sampling_steps: 50, motion_sequence: "https://replicate.delivery/pbxt/KFWiTCptFa0zbnNMGwsRtUQBtx38ttv6TQwuBZGLfgKWAYHZ/anyone-video-2_kps.mp4", reference_image: "https://replicate.delivery/pbxt/KFWiSo2bKmo2poY6QStNcJMaHy90LlkLggSlPb20iTpvD4UL/anyone-2.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicateβs Python client library:pip install replicate
Import the client:import replicate
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", input={ "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 50, "motion_sequence": "https://replicate.delivery/pbxt/KFWiTCptFa0zbnNMGwsRtUQBtx38ttv6TQwuBZGLfgKWAYHZ/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWiSo2bKmo2poY6QStNcJMaHy90LlkLggSlPb20iTpvD4UL/anyone-2.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run zsxkib/moore-animateanyone using Replicateβs API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "zsxkib/moore-animateanyone:c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 50, "motion_sequence": "https://replicate.delivery/pbxt/KFWiTCptFa0zbnNMGwsRtUQBtx38ttv6TQwuBZGLfgKWAYHZ/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWiSo2bKmo2poY6QStNcJMaHy90LlkLggSlPb20iTpvD4UL/anyone-2.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicateβs HTTP API reference docs.
Output
{ "completed_at": "2024-01-18T20:18:15.038682Z", "created_at": "2024-01-18T20:04:46.499260Z", "data_removed": false, "error": null, "id": "pjr4xntbk7hetovahfsv474o3i", "input": { "width": 512, "height": 768, "length": 128, "guidance_scale": 3.5, "sampling_steps": 50, "motion_sequence": "https://replicate.delivery/pbxt/KFWiTCptFa0zbnNMGwsRtUQBtx38ttv6TQwuBZGLfgKWAYHZ/anyone-video-2_kps.mp4", "reference_image": "https://replicate.delivery/pbxt/KFWiSo2bKmo2poY6QStNcJMaHy90LlkLggSlPb20iTpvD4UL/anyone-2.png" }, "logs": "Using seed: 43447\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|β | 1/50 [00:15<12:50, 15.73s/it]\n 4%|β | 2/50 [00:31<12:34, 15.71s/it]\n 6%|β | 3/50 [00:47<12:18, 15.72s/it]\n 8%|β | 4/50 [01:02<12:03, 15.73s/it]\n 10%|β | 5/50 [01:18<11:48, 15.75s/it]\n 12%|ββ | 6/50 [01:34<11:33, 15.77s/it]\n 14%|ββ | 7/50 [01:50<11:18, 15.79s/it]\n 16%|ββ | 8/50 [02:06<11:03, 15.80s/it]\n 18%|ββ | 9/50 [02:22<10:48, 15.82s/it]\n 20%|ββ | 10/50 [02:37<10:33, 15.83s/it]\n 22%|βββ | 11/50 [02:53<10:17, 15.84s/it]\n 24%|βββ | 12/50 [03:09<10:02, 15.85s/it]\n 26%|βββ | 13/50 [03:25<09:46, 15.86s/it]\n 28%|βββ | 14/50 [03:41<09:31, 15.86s/it]\n 30%|βββ | 15/50 [03:57<09:15, 15.87s/it]\n 32%|ββββ | 16/50 [04:13<08:59, 15.87s/it]\n 34%|ββββ | 17/50 [04:28<08:43, 15.87s/it]\n 36%|ββββ | 18/50 [04:44<08:27, 15.87s/it]\n 38%|ββββ | 19/50 [05:00<08:11, 15.87s/it]\n 40%|ββββ | 20/50 [05:16<07:56, 15.87s/it]\n 42%|βββββ | 21/50 [05:32<07:40, 15.87s/it]\n 44%|βββββ | 22/50 [05:48<07:24, 15.87s/it]\n 46%|βββββ | 23/50 [06:04<07:08, 15.87s/it]\n 48%|βββββ | 24/50 [06:20<06:52, 15.87s/it]\n 50%|βββββ | 25/50 [06:35<06:36, 15.87s/it]\n 52%|ββββββ | 26/50 [06:51<06:21, 15.88s/it]\n 54%|ββββββ | 27/50 [07:07<06:05, 15.88s/it]\n 56%|ββββββ | 28/50 [07:23<05:49, 15.88s/it]\n 58%|ββββββ | 29/50 [07:39<05:33, 15.88s/it]\n 60%|ββββββ | 30/50 [07:55<05:17, 15.88s/it]\n 62%|βββββββ | 31/50 [08:11<05:01, 15.88s/it]\n 64%|βββββββ | 32/50 [08:27<04:45, 15.87s/it]\n 66%|βββββββ | 33/50 [08:42<04:29, 15.88s/it]\n 68%|βββββββ | 34/50 [08:58<04:14, 15.88s/it]\n 70%|βββββββ | 35/50 [09:14<03:58, 15.88s/it]\n 72%|ββββββββ | 36/50 [09:30<03:42, 15.88s/it]\n 74%|ββββββββ | 37/50 [09:46<03:26, 15.87s/it]\n 76%|ββββββββ | 38/50 [10:02<03:10, 15.87s/it]\n 78%|ββββββββ | 39/50 [10:18<02:54, 15.88s/it]\n 80%|ββββββββ | 40/50 [10:34<02:38, 15.88s/it]\n 82%|βββββββββ | 41/50 [10:49<02:22, 15.88s/it]\n 84%|βββββββββ | 42/50 [11:05<02:07, 15.88s/it]\n 86%|βββββββββ | 43/50 [11:21<01:51, 15.88s/it]\n 88%|βββββββββ | 44/50 [11:37<01:35, 15.88s/it]\n 90%|βββββββββ | 45/50 [11:53<01:19, 15.88s/it]\n 92%|ββββββββββ| 46/50 [12:09<01:03, 15.88s/it]\n 94%|ββββββββββ| 47/50 [12:25<00:47, 15.88s/it]\n 96%|ββββββββββ| 48/50 [12:41<00:31, 15.88s/it]\n 98%|ββββββββββ| 49/50 [12:57<00:15, 15.88s/it]\n100%|ββββββββββ| 50/50 [13:12<00:00, 15.88s/it]\n100%|ββββββββββ| 50/50 [13:12<00:00, 15.86s/it]\n 0%| | 0/128 [00:00<?, ?it/s]\n 4%|β | 5/128 [00:00<00:04, 30.69it/s]\n 7%|β | 9/128 [00:00<00:06, 17.13it/s]\n 9%|β | 11/128 [00:00<00:07, 15.47it/s]\n 10%|β | 13/128 [00:00<00:07, 14.43it/s]\n 12%|ββ | 15/128 [00:00<00:08, 13.75it/s]\n 13%|ββ | 17/128 [00:01<00:08, 13.30it/s]\n 15%|ββ | 19/128 [00:01<00:08, 12.99it/s]\n 16%|ββ | 21/128 [00:01<00:08, 12.79it/s]\n 18%|ββ | 23/128 [00:01<00:08, 12.65it/s]\n 20%|ββ | 25/128 [00:01<00:08, 12.56it/s]\n 21%|ββ | 27/128 [00:01<00:08, 12.49it/s]\n 23%|βββ | 29/128 [00:02<00:07, 12.45it/s]\n 24%|βββ | 31/128 [00:02<00:07, 12.42it/s]\n 26%|βββ | 33/128 [00:02<00:07, 12.39it/s]\n 27%|βββ | 35/128 [00:02<00:07, 12.36it/s]\n 29%|βββ | 37/128 [00:02<00:07, 12.34it/s]\n 30%|βββ | 39/128 [00:02<00:07, 12.33it/s]\n 32%|ββββ | 41/128 [00:03<00:07, 12.33it/s]\n 34%|ββββ | 43/128 [00:03<00:06, 12.34it/s]\n 35%|ββββ | 45/128 [00:03<00:06, 12.34it/s]\n 37%|ββββ | 47/128 [00:03<00:06, 12.33it/s]\n 38%|ββββ | 49/128 [00:03<00:06, 12.34it/s]\n 40%|ββββ | 51/128 [00:03<00:06, 12.33it/s]\n 41%|βββββ | 53/128 [00:04<00:06, 12.33it/s]\n 43%|βββββ | 55/128 [00:04<00:05, 12.32it/s]\n 45%|βββββ | 57/128 [00:04<00:05, 12.33it/s]\n 46%|βββββ | 59/128 [00:04<00:05, 12.33it/s]\n 48%|βββββ | 61/128 [00:04<00:05, 12.33it/s]\n 49%|βββββ | 63/128 [00:04<00:05, 12.34it/s]\n 51%|βββββ | 65/128 [00:05<00:05, 12.34it/s]\n 52%|ββββββ | 67/128 [00:05<00:04, 12.34it/s]\n 54%|ββββββ | 69/128 [00:05<00:04, 12.33it/s]\n 55%|ββββββ | 71/128 [00:05<00:04, 12.33it/s]\n 57%|ββββββ | 73/128 [00:05<00:04, 12.33it/s]\n 59%|ββββββ | 75/128 [00:05<00:04, 12.33it/s]\n 60%|ββββββ | 77/128 [00:06<00:04, 12.33it/s]\n 62%|βββββββ | 79/128 [00:06<00:03, 12.33it/s]\n 63%|βββββββ | 81/128 [00:06<00:03, 12.33it/s]\n 65%|βββββββ | 83/128 [00:06<00:03, 12.34it/s]\n 66%|βββββββ | 85/128 [00:06<00:03, 12.34it/s]\n 68%|βββββββ | 87/128 [00:06<00:03, 12.32it/s]\n 70%|βββββββ | 89/128 [00:06<00:03, 12.33it/s]\n 71%|βββββββ | 91/128 [00:07<00:03, 12.32it/s]\n 73%|ββββββββ | 93/128 [00:07<00:02, 12.33it/s]\n 74%|ββββββββ | 95/128 [00:07<00:02, 12.33it/s]\n 76%|ββββββββ | 97/128 [00:07<00:02, 12.34it/s]\n 77%|ββββββββ | 99/128 [00:07<00:02, 12.33it/s]\n 79%|ββββββββ | 101/128 [00:07<00:02, 12.33it/s]\n 80%|ββββββββ | 103/128 [00:08<00:02, 12.34it/s]\n 82%|βββββββββ | 105/128 [00:08<00:01, 12.32it/s]\n 84%|βββββββββ | 107/128 [00:08<00:01, 12.31it/s]\n 85%|βββββββββ | 109/128 [00:08<00:01, 12.31it/s]\n 87%|βββββββββ | 111/128 [00:08<00:01, 12.32it/s]\n 88%|βββββββββ | 113/128 [00:08<00:01, 12.33it/s]\n 90%|βββββββββ | 115/128 [00:09<00:01, 12.33it/s]\n 91%|ββββββββββ| 117/128 [00:09<00:00, 12.34it/s]\n 93%|ββββββββββ| 119/128 [00:09<00:00, 12.34it/s]\n 95%|ββββββββββ| 121/128 [00:09<00:00, 12.34it/s]\n 96%|ββββββββββ| 123/128 [00:09<00:00, 12.32it/s]\n 98%|ββββββββββ| 125/128 [00:09<00:00, 12.32it/s]\n 99%|ββββββββββ| 127/128 [00:10<00:00, 12.32it/s]\n100%|ββββββββββ| 128/128 [00:10<00:00, 12.62it/s]", "metrics": { "predict_time": 808.478373, "total_time": 808.539422 }, "output": "https://replicate.delivery/pbxt/ESP3WuTfPCQpPScIOw8fyirewSeHCelUdC7uKKXeZCYph5cjE/20240118T2018.mp4", "started_at": "2024-01-18T20:04:46.560309Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pjr4xntbk7hetovahfsv474o3i", "cancel": "https://api.replicate.com/v1/predictions/pjr4xntbk7hetovahfsv474o3i/cancel" }, "version": "c8b589961b86d3fdffeef13e26fa8465b1935ac3350f2a332dddc1ee4be50df2" }
Generated inUsing seed: 43447 0%| | 0/50 [00:00<?, ?it/s] 2%|β | 1/50 [00:15<12:50, 15.73s/it] 4%|β | 2/50 [00:31<12:34, 15.71s/it] 6%|β | 3/50 [00:47<12:18, 15.72s/it] 8%|β | 4/50 [01:02<12:03, 15.73s/it] 10%|β | 5/50 [01:18<11:48, 15.75s/it] 12%|ββ | 6/50 [01:34<11:33, 15.77s/it] 14%|ββ | 7/50 [01:50<11:18, 15.79s/it] 16%|ββ | 8/50 [02:06<11:03, 15.80s/it] 18%|ββ | 9/50 [02:22<10:48, 15.82s/it] 20%|ββ | 10/50 [02:37<10:33, 15.83s/it] 22%|βββ | 11/50 [02:53<10:17, 15.84s/it] 24%|βββ | 12/50 [03:09<10:02, 15.85s/it] 26%|βββ | 13/50 [03:25<09:46, 15.86s/it] 28%|βββ | 14/50 [03:41<09:31, 15.86s/it] 30%|βββ | 15/50 [03:57<09:15, 15.87s/it] 32%|ββββ | 16/50 [04:13<08:59, 15.87s/it] 34%|ββββ | 17/50 [04:28<08:43, 15.87s/it] 36%|ββββ | 18/50 [04:44<08:27, 15.87s/it] 38%|ββββ | 19/50 [05:00<08:11, 15.87s/it] 40%|ββββ | 20/50 [05:16<07:56, 15.87s/it] 42%|βββββ | 21/50 [05:32<07:40, 15.87s/it] 44%|βββββ | 22/50 [05:48<07:24, 15.87s/it] 46%|βββββ | 23/50 [06:04<07:08, 15.87s/it] 48%|βββββ | 24/50 [06:20<06:52, 15.87s/it] 50%|βββββ | 25/50 [06:35<06:36, 15.87s/it] 52%|ββββββ | 26/50 [06:51<06:21, 15.88s/it] 54%|ββββββ | 27/50 [07:07<06:05, 15.88s/it] 56%|ββββββ | 28/50 [07:23<05:49, 15.88s/it] 58%|ββββββ | 29/50 [07:39<05:33, 15.88s/it] 60%|ββββββ | 30/50 [07:55<05:17, 15.88s/it] 62%|βββββββ | 31/50 [08:11<05:01, 15.88s/it] 64%|βββββββ | 32/50 [08:27<04:45, 15.87s/it] 66%|βββββββ | 33/50 [08:42<04:29, 15.88s/it] 68%|βββββββ | 34/50 [08:58<04:14, 15.88s/it] 70%|βββββββ | 35/50 [09:14<03:58, 15.88s/it] 72%|ββββββββ | 36/50 [09:30<03:42, 15.88s/it] 74%|ββββββββ | 37/50 [09:46<03:26, 15.87s/it] 76%|ββββββββ | 38/50 [10:02<03:10, 15.87s/it] 78%|ββββββββ | 39/50 [10:18<02:54, 15.88s/it] 80%|ββββββββ | 40/50 [10:34<02:38, 15.88s/it] 82%|βββββββββ | 41/50 [10:49<02:22, 15.88s/it] 84%|βββββββββ | 42/50 [11:05<02:07, 15.88s/it] 86%|βββββββββ | 43/50 [11:21<01:51, 15.88s/it] 88%|βββββββββ | 44/50 [11:37<01:35, 15.88s/it] 90%|βββββββββ | 45/50 [11:53<01:19, 15.88s/it] 92%|ββββββββββ| 46/50 [12:09<01:03, 15.88s/it] 94%|ββββββββββ| 47/50 [12:25<00:47, 15.88s/it] 96%|ββββββββββ| 48/50 [12:41<00:31, 15.88s/it] 98%|ββββββββββ| 49/50 [12:57<00:15, 15.88s/it] 100%|ββββββββββ| 50/50 [13:12<00:00, 15.88s/it] 100%|ββββββββββ| 50/50 [13:12<00:00, 15.86s/it] 0%| | 0/128 [00:00<?, ?it/s] 4%|β | 5/128 [00:00<00:04, 30.69it/s] 7%|β | 9/128 [00:00<00:06, 17.13it/s] 9%|β | 11/128 [00:00<00:07, 15.47it/s] 10%|β | 13/128 [00:00<00:07, 14.43it/s] 12%|ββ | 15/128 [00:00<00:08, 13.75it/s] 13%|ββ | 17/128 [00:01<00:08, 13.30it/s] 15%|ββ | 19/128 [00:01<00:08, 12.99it/s] 16%|ββ | 21/128 [00:01<00:08, 12.79it/s] 18%|ββ | 23/128 [00:01<00:08, 12.65it/s] 20%|ββ | 25/128 [00:01<00:08, 12.56it/s] 21%|ββ | 27/128 [00:01<00:08, 12.49it/s] 23%|βββ | 29/128 [00:02<00:07, 12.45it/s] 24%|βββ | 31/128 [00:02<00:07, 12.42it/s] 26%|βββ | 33/128 [00:02<00:07, 12.39it/s] 27%|βββ | 35/128 [00:02<00:07, 12.36it/s] 29%|βββ | 37/128 [00:02<00:07, 12.34it/s] 30%|βββ | 39/128 [00:02<00:07, 12.33it/s] 32%|ββββ | 41/128 [00:03<00:07, 12.33it/s] 34%|ββββ | 43/128 [00:03<00:06, 12.34it/s] 35%|ββββ | 45/128 [00:03<00:06, 12.34it/s] 37%|ββββ | 47/128 [00:03<00:06, 12.33it/s] 38%|ββββ | 49/128 [00:03<00:06, 12.34it/s] 40%|ββββ | 51/128 [00:03<00:06, 12.33it/s] 41%|βββββ | 53/128 [00:04<00:06, 12.33it/s] 43%|βββββ | 55/128 [00:04<00:05, 12.32it/s] 45%|βββββ | 57/128 [00:04<00:05, 12.33it/s] 46%|βββββ | 59/128 [00:04<00:05, 12.33it/s] 48%|βββββ | 61/128 [00:04<00:05, 12.33it/s] 49%|βββββ | 63/128 [00:04<00:05, 12.34it/s] 51%|βββββ | 65/128 [00:05<00:05, 12.34it/s] 52%|ββββββ | 67/128 [00:05<00:04, 12.34it/s] 54%|ββββββ | 69/128 [00:05<00:04, 12.33it/s] 55%|ββββββ | 71/128 [00:05<00:04, 12.33it/s] 57%|ββββββ | 73/128 [00:05<00:04, 12.33it/s] 59%|ββββββ | 75/128 [00:05<00:04, 12.33it/s] 60%|ββββββ | 77/128 [00:06<00:04, 12.33it/s] 62%|βββββββ | 79/128 [00:06<00:03, 12.33it/s] 63%|βββββββ | 81/128 [00:06<00:03, 12.33it/s] 65%|βββββββ | 83/128 [00:06<00:03, 12.34it/s] 66%|βββββββ | 85/128 [00:06<00:03, 12.34it/s] 68%|βββββββ | 87/128 [00:06<00:03, 12.32it/s] 70%|βββββββ | 89/128 [00:06<00:03, 12.33it/s] 71%|βββββββ | 91/128 [00:07<00:03, 12.32it/s] 73%|ββββββββ | 93/128 [00:07<00:02, 12.33it/s] 74%|ββββββββ | 95/128 [00:07<00:02, 12.33it/s] 76%|ββββββββ | 97/128 [00:07<00:02, 12.34it/s] 77%|ββββββββ | 99/128 [00:07<00:02, 12.33it/s] 79%|ββββββββ | 101/128 [00:07<00:02, 12.33it/s] 80%|ββββββββ | 103/128 [00:08<00:02, 12.34it/s] 82%|βββββββββ | 105/128 [00:08<00:01, 12.32it/s] 84%|βββββββββ | 107/128 [00:08<00:01, 12.31it/s] 85%|βββββββββ | 109/128 [00:08<00:01, 12.31it/s] 87%|βββββββββ | 111/128 [00:08<00:01, 12.32it/s] 88%|βββββββββ | 113/128 [00:08<00:01, 12.33it/s] 90%|βββββββββ | 115/128 [00:09<00:01, 12.33it/s] 91%|ββββββββββ| 117/128 [00:09<00:00, 12.34it/s] 93%|ββββββββββ| 119/128 [00:09<00:00, 12.34it/s] 95%|ββββββββββ| 121/128 [00:09<00:00, 12.34it/s] 96%|ββββββββββ| 123/128 [00:09<00:00, 12.32it/s] 98%|ββββββββββ| 125/128 [00:09<00:00, 12.32it/s] 99%|ββββββββββ| 127/128 [00:10<00:00, 12.32it/s] 100%|ββββββββββ| 128/128 [00:10<00:00, 12.62it/s]
Want to make some of these yourself?
Run this model