abhishek7kalra
/
vangogh
Van Gogh-fy your image !! Or maybe not
- Public
- 375 runs
-
T4
- GitHub
Prediction
abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7IDjsngxcrbzzldqx3ju3233mnjquStatusSucceededSourceWebHardwareT4Total durationCreatedInput
{ "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGREiNaS7u9rKJmmkwtDv1YTAjuqo912Vykp7aeIYB0B0UTb/testimg.jpeg" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", { input: { prompt: "Van Gogh style", input_photo: "https://replicate.delivery/pbxt/JGREiNaS7u9rKJmmkwtDv1YTAjuqo912Vykp7aeIYB0B0UTb/testimg.jpeg" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", input={ "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGREiNaS7u9rKJmmkwtDv1YTAjuqo912Vykp7aeIYB0B0UTb/testimg.jpeg" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", "input": { "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGREiNaS7u9rKJmmkwtDv1YTAjuqo912Vykp7aeIYB0B0UTb/testimg.jpeg" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-07-30T17:39:55.252029Z", "created_at": "2023-07-30T17:39:09.514436Z", "data_removed": false, "error": null, "id": "jsngxcrbzzldqx3ju3233mnjqu", "input": { "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGREiNaS7u9rKJmmkwtDv1YTAjuqo912Vykp7aeIYB0B0UTb/testimg.jpeg" }, "logs": "testing\n 0%| | 0/37 [00:00<?, ?it/s]\n 3%|▎ | 1/37 [00:00<00:18, 1.95it/s]\n 5%|▌ | 2/37 [00:00<00:11, 3.17it/s]\n 8%|▊ | 3/37 [00:00<00:08, 3.96it/s]\n 11%|█ | 4/37 [00:01<00:07, 4.50it/s]\n 14%|█▎ | 5/37 [00:01<00:06, 4.84it/s]\n 16%|█▌ | 6/37 [00:01<00:06, 5.08it/s]\n 19%|█▉ | 7/37 [00:01<00:05, 5.24it/s]\n 22%|██▏ | 8/37 [00:01<00:05, 5.36it/s]\n 24%|██▍ | 9/37 [00:01<00:05, 5.47it/s]\n 27%|██▋ | 10/37 [00:02<00:04, 5.52it/s]\n 30%|██▉ | 11/37 [00:02<00:04, 5.55it/s]\n 32%|███▏ | 12/37 [00:02<00:04, 5.55it/s]\n 35%|███▌ | 13/37 [00:02<00:04, 5.57it/s]\n 38%|███▊ | 14/37 [00:02<00:04, 5.61it/s]\n 41%|████ | 15/37 [00:02<00:03, 5.63it/s]\n 43%|████▎ | 16/37 [00:03<00:03, 5.62it/s]\n 46%|████▌ | 17/37 [00:03<00:03, 5.62it/s]\n 49%|████▊ | 18/37 [00:03<00:03, 5.64it/s]\n 51%|█████▏ | 19/37 [00:03<00:03, 5.64it/s]\n 54%|█████▍ | 20/37 [00:03<00:03, 5.63it/s]\n 57%|█████▋ | 21/37 [00:04<00:02, 5.63it/s]\n 59%|█████▉ | 22/37 [00:04<00:02, 5.64it/s]\n 62%|██████▏ | 23/37 [00:04<00:02, 5.64it/s]\n 65%|██████▍ | 24/37 [00:04<00:02, 5.64it/s]\n 68%|██████▊ | 25/37 [00:04<00:02, 5.62it/s]\n 70%|███████ | 26/37 [00:04<00:01, 5.61it/s]\n 73%|███████▎ | 27/37 [00:05<00:01, 5.62it/s]\n 76%|███████▌ | 28/37 [00:05<00:01, 5.63it/s]\n 78%|███████▊ | 29/37 [00:05<00:01, 5.63it/s]\n 81%|████████ | 30/37 [00:05<00:01, 5.62it/s]\n 84%|████████▍ | 31/37 [00:05<00:01, 5.61it/s]\n 86%|████████▋ | 32/37 [00:06<00:00, 5.61it/s]\n 89%|████████▉ | 33/37 [00:06<00:00, 5.60it/s]\n 92%|█████████▏| 34/37 [00:06<00:00, 5.62it/s]\n 95%|█████████▍| 35/37 [00:06<00:00, 5.61it/s]\n 97%|█████████▋| 36/37 [00:06<00:00, 5.60it/s]\n100%|██████████| 37/37 [00:06<00:00, 5.60it/s]\n100%|██████████| 37/37 [00:06<00:00, 5.35it/s]\nsaved", "metrics": { "predict_time": 11.721649, "total_time": 45.737593 }, "output": [ "https://replicate.delivery/pbxt/eLKnh2rjmvTiH6ouihtzOBN75IiZnc75AB7o2XU9A4Z1kiqIA/out-0.png" ], "started_at": "2023-07-30T17:39:43.530380Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jsngxcrbzzldqx3ju3233mnjqu", "cancel": "https://api.replicate.com/v1/predictions/jsngxcrbzzldqx3ju3233mnjqu/cancel" }, "version": "00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7" }
Generated intesting 0%| | 0/37 [00:00<?, ?it/s] 3%|▎ | 1/37 [00:00<00:18, 1.95it/s] 5%|▌ | 2/37 [00:00<00:11, 3.17it/s] 8%|▊ | 3/37 [00:00<00:08, 3.96it/s] 11%|█ | 4/37 [00:01<00:07, 4.50it/s] 14%|█▎ | 5/37 [00:01<00:06, 4.84it/s] 16%|█▌ | 6/37 [00:01<00:06, 5.08it/s] 19%|█▉ | 7/37 [00:01<00:05, 5.24it/s] 22%|██▏ | 8/37 [00:01<00:05, 5.36it/s] 24%|██▍ | 9/37 [00:01<00:05, 5.47it/s] 27%|██▋ | 10/37 [00:02<00:04, 5.52it/s] 30%|██▉ | 11/37 [00:02<00:04, 5.55it/s] 32%|███▏ | 12/37 [00:02<00:04, 5.55it/s] 35%|███▌ | 13/37 [00:02<00:04, 5.57it/s] 38%|███▊ | 14/37 [00:02<00:04, 5.61it/s] 41%|████ | 15/37 [00:02<00:03, 5.63it/s] 43%|████▎ | 16/37 [00:03<00:03, 5.62it/s] 46%|████▌ | 17/37 [00:03<00:03, 5.62it/s] 49%|████▊ | 18/37 [00:03<00:03, 5.64it/s] 51%|█████▏ | 19/37 [00:03<00:03, 5.64it/s] 54%|█████▍ | 20/37 [00:03<00:03, 5.63it/s] 57%|█████▋ | 21/37 [00:04<00:02, 5.63it/s] 59%|█████▉ | 22/37 [00:04<00:02, 5.64it/s] 62%|██████▏ | 23/37 [00:04<00:02, 5.64it/s] 65%|██████▍ | 24/37 [00:04<00:02, 5.64it/s] 68%|██████▊ | 25/37 [00:04<00:02, 5.62it/s] 70%|███████ | 26/37 [00:04<00:01, 5.61it/s] 73%|███████▎ | 27/37 [00:05<00:01, 5.62it/s] 76%|███████▌ | 28/37 [00:05<00:01, 5.63it/s] 78%|███████▊ | 29/37 [00:05<00:01, 5.63it/s] 81%|████████ | 30/37 [00:05<00:01, 5.62it/s] 84%|████████▍ | 31/37 [00:05<00:01, 5.61it/s] 86%|████████▋ | 32/37 [00:06<00:00, 5.61it/s] 89%|████████▉ | 33/37 [00:06<00:00, 5.60it/s] 92%|█████████▏| 34/37 [00:06<00:00, 5.62it/s] 95%|█████████▍| 35/37 [00:06<00:00, 5.61it/s] 97%|█████████▋| 36/37 [00:06<00:00, 5.60it/s] 100%|██████████| 37/37 [00:06<00:00, 5.60it/s] 100%|██████████| 37/37 [00:06<00:00, 5.35it/s] saved
Prediction
abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7ID64dfotbbruwg6xrjkmea4c33cyStatusSucceededSourceWebHardwareT4Total durationCreatedInput
{ "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGRLDbSlpwsp8FWetZRCcUrJtjso5opRhFE8ZQYKzojRzB2j/photo-1503023345310-bd7c1de61c7d.jpeg" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", { input: { prompt: "Van Gogh style", input_photo: "https://replicate.delivery/pbxt/JGRLDbSlpwsp8FWetZRCcUrJtjso5opRhFE8ZQYKzojRzB2j/photo-1503023345310-bd7c1de61c7d.jpeg" } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", input={ "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGRLDbSlpwsp8FWetZRCcUrJtjso5opRhFE8ZQYKzojRzB2j/photo-1503023345310-bd7c1de61c7d.jpeg" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run abhishek7kalra/vangogh using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "abhishek7kalra/vangogh:00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7", "input": { "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGRLDbSlpwsp8FWetZRCcUrJtjso5opRhFE8ZQYKzojRzB2j/photo-1503023345310-bd7c1de61c7d.jpeg" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-07-30T17:46:12.227390Z", "created_at": "2023-07-30T17:46:03.102122Z", "data_removed": false, "error": null, "id": "64dfotbbruwg6xrjkmea4c33cy", "input": { "prompt": "Van Gogh style", "input_photo": "https://replicate.delivery/pbxt/JGRLDbSlpwsp8FWetZRCcUrJtjso5opRhFE8ZQYKzojRzB2j/photo-1503023345310-bd7c1de61c7d.jpeg" }, "logs": "testing\n 0%| | 0/37 [00:00<?, ?it/s]\n 3%|▎ | 1/37 [00:00<00:14, 2.50it/s]\n 5%|▌ | 2/37 [00:00<00:09, 3.63it/s]\n 8%|▊ | 3/37 [00:00<00:08, 4.23it/s]\n 11%|█ | 4/37 [00:00<00:07, 4.60it/s]\n 14%|█▎ | 5/37 [00:01<00:06, 4.77it/s]\n 16%|█▌ | 6/37 [00:01<00:06, 4.94it/s]\n 19%|█▉ | 7/37 [00:01<00:05, 5.04it/s]\n 22%|██▏ | 8/37 [00:01<00:05, 5.11it/s]\n 24%|██▍ | 9/37 [00:01<00:05, 5.18it/s]\n 27%|██▋ | 10/37 [00:02<00:05, 5.17it/s]\n 30%|██▉ | 11/37 [00:02<00:05, 5.19it/s]\n 32%|███▏ | 12/37 [00:02<00:04, 5.21it/s]\n 35%|███▌ | 13/37 [00:02<00:04, 5.21it/s]\n 38%|███▊ | 14/37 [00:02<00:04, 5.22it/s]\n 41%|████ | 15/37 [00:03<00:04, 5.22it/s]\n 43%|████▎ | 16/37 [00:03<00:04, 5.23it/s]\n 46%|████▌ | 17/37 [00:03<00:03, 5.24it/s]\n 49%|████▊ | 18/37 [00:03<00:03, 5.26it/s]\n 51%|█████▏ | 19/37 [00:03<00:03, 5.24it/s]\n 54%|█████▍ | 20/37 [00:04<00:03, 5.24it/s]\n 57%|█████▋ | 21/37 [00:04<00:03, 5.22it/s]\n 59%|█████▉ | 22/37 [00:04<00:02, 5.22it/s]\n 62%|██████▏ | 23/37 [00:04<00:02, 5.23it/s]\n 65%|██████▍ | 24/37 [00:04<00:02, 5.22it/s]\n 68%|██████▊ | 25/37 [00:04<00:02, 5.23it/s]\n 70%|███████ | 26/37 [00:05<00:02, 5.21it/s]\n 73%|███████▎ | 27/37 [00:05<00:01, 5.21it/s]\n 76%|███████▌ | 28/37 [00:05<00:01, 5.21it/s]\n 78%|███████▊ | 29/37 [00:05<00:01, 5.21it/s]\n 81%|████████ | 30/37 [00:05<00:01, 5.21it/s]\n 84%|████████▍ | 31/37 [00:06<00:01, 5.20it/s]\n 86%|████████▋ | 32/37 [00:06<00:00, 5.21it/s]\n 89%|████████▉ | 33/37 [00:06<00:00, 5.21it/s]\n 92%|█████████▏| 34/37 [00:06<00:00, 5.21it/s]\n 95%|█████████▍| 35/37 [00:06<00:00, 5.22it/s]\n 97%|█████████▋| 36/37 [00:07<00:00, 5.20it/s]\n100%|██████████| 37/37 [00:07<00:00, 5.20it/s]\n100%|██████████| 37/37 [00:07<00:00, 5.08it/s]\nsaved", "metrics": { "predict_time": 9.14674, "total_time": 9.125268 }, "output": [ "https://replicate.delivery/pbxt/uempdjOIbBW5OKGI0X5qUtSi3MbmayVEeeKt1bl93szGfUUFB/out-0.png" ], "started_at": "2023-07-30T17:46:03.080650Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/64dfotbbruwg6xrjkmea4c33cy", "cancel": "https://api.replicate.com/v1/predictions/64dfotbbruwg6xrjkmea4c33cy/cancel" }, "version": "00e92fe5b2ae8264c3ad7ef3b76196b7bd510d996e546d2f76454cc1140821e7" }
Generated intesting 0%| | 0/37 [00:00<?, ?it/s] 3%|▎ | 1/37 [00:00<00:14, 2.50it/s] 5%|▌ | 2/37 [00:00<00:09, 3.63it/s] 8%|▊ | 3/37 [00:00<00:08, 4.23it/s] 11%|█ | 4/37 [00:00<00:07, 4.60it/s] 14%|█▎ | 5/37 [00:01<00:06, 4.77it/s] 16%|█▌ | 6/37 [00:01<00:06, 4.94it/s] 19%|█▉ | 7/37 [00:01<00:05, 5.04it/s] 22%|██▏ | 8/37 [00:01<00:05, 5.11it/s] 24%|██▍ | 9/37 [00:01<00:05, 5.18it/s] 27%|██▋ | 10/37 [00:02<00:05, 5.17it/s] 30%|██▉ | 11/37 [00:02<00:05, 5.19it/s] 32%|███▏ | 12/37 [00:02<00:04, 5.21it/s] 35%|███▌ | 13/37 [00:02<00:04, 5.21it/s] 38%|███▊ | 14/37 [00:02<00:04, 5.22it/s] 41%|████ | 15/37 [00:03<00:04, 5.22it/s] 43%|████▎ | 16/37 [00:03<00:04, 5.23it/s] 46%|████▌ | 17/37 [00:03<00:03, 5.24it/s] 49%|████▊ | 18/37 [00:03<00:03, 5.26it/s] 51%|█████▏ | 19/37 [00:03<00:03, 5.24it/s] 54%|█████▍ | 20/37 [00:04<00:03, 5.24it/s] 57%|█████▋ | 21/37 [00:04<00:03, 5.22it/s] 59%|█████▉ | 22/37 [00:04<00:02, 5.22it/s] 62%|██████▏ | 23/37 [00:04<00:02, 5.23it/s] 65%|██████▍ | 24/37 [00:04<00:02, 5.22it/s] 68%|██████▊ | 25/37 [00:04<00:02, 5.23it/s] 70%|███████ | 26/37 [00:05<00:02, 5.21it/s] 73%|███████▎ | 27/37 [00:05<00:01, 5.21it/s] 76%|███████▌ | 28/37 [00:05<00:01, 5.21it/s] 78%|███████▊ | 29/37 [00:05<00:01, 5.21it/s] 81%|████████ | 30/37 [00:05<00:01, 5.21it/s] 84%|████████▍ | 31/37 [00:06<00:01, 5.20it/s] 86%|████████▋ | 32/37 [00:06<00:00, 5.21it/s] 89%|████████▉ | 33/37 [00:06<00:00, 5.21it/s] 92%|█████████▏| 34/37 [00:06<00:00, 5.21it/s] 95%|█████████▍| 35/37 [00:06<00:00, 5.22it/s] 97%|█████████▋| 36/37 [00:07<00:00, 5.20it/s] 100%|██████████| 37/37 [00:07<00:00, 5.20it/s] 100%|██████████| 37/37 [00:07<00:00, 5.08it/s] saved
Want to make some of these yourself?
Run this model