Readme
Current metrics for perceptual image similarity operate at the level of pixels and patches. These metrics compare images in terms of their low-level colors and textures, but fail to capture mid-level differences in layout, pose, semantic content, etc. Models that use image-level embeddings such as DINO and CLIP capture high-level and semantic judgements, but may not be aligned with human perception of more finegrained attributes.
DreamSim is a new metric for perceptual image similarity that bridges the gap between “low-level” metrics (e.g. LPIPS, PSNR, SSIM) and “high-level” measures (e.g. CLIP). Our model was trained by concatenating CLIP, OpenCLIP, and DINO embeddings, and then finetuning on human perceptual judgements. We gathered these judgements on a dataset of ~20k image triplets, generated by diffusion models. Our model achieves better alignment with human similarity judgements than existing metrics, and can be used for downstream applications such as image retrieval.