andreasjansson/flux-goo

FLUX.1 [dev] trained on the Replicate goo

Age prediction using CLIP
Simple example of a Cog model that produces Markdown output

Music inpainting of melody and chords
Implicit neural differentiable FM synthesizer

An open-source model for program synthesis. Competitive with OpenAI Codex.

Monkey Island database for Retrieval-augmented Diffusion model
Generate music based on the Monkey Island theme using the FIGARO model

(development branch) Inpainting for Stable Diffusion
Animate Stable Diffusion by interpolating between two prompts

Return CLIP features for the clip-vit-large-patch14 model

Inpainting using RunwayML's stable-diffusion-inpainting checkpoint

Stable Diffusion fined-tuned on frames from Monkey Island 1 and 2

Bach chorale generation and harmonization

Turn two prompts into one image
Create tileable animations with seamless transitions

Answers questions about images

The DeepFloyd IF model has been initially released as a non-commercial research-only model. Please make sure you read and abide to the license before using it.

Generate fixed-bpm loops from text prompts

Monster Labs' control_v1p_sd15_qrcode_monster ControlNet on top of SD 1.5
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dID5ez48nsghxrm40chfh1vrk080wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 1.5
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 1.5, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=1.5' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T22:45:12.472776Z", "created_at": "2024-08-22T22:44:23.823000Z", "data_removed": false, "error": null, "id": "5ez48nsghxrm40chfh1vrk080w", "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 9540\nPrompt: PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.96it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.74it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.53it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.53it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.52it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 16.482869356, "total_time": 48.649776 }, "output": [ "https://replicate.delivery/yhqm/5MgAeh8mS1QtK61oSezRfuWNfq76OVHef9KMj92mze7a8irqJA/out-0.webp" ], "started_at": "2024-08-22T22:44:55.989907Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/5ez48nsghxrm40chfh1vrk080w", "cancel": "https://api.replicate.com/v1/predictions/5ez48nsghxrm40chfh1vrk080w/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 9540 Prompt: PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.96it/s] 11%|█ | 3/28 [00:00<00:06, 3.74it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.53it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.52it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.52it/s] 61%|██████ | 17/28 [00:04<00:03, 3.53it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.52it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.52it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.52it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.52it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.53it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.52it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDnm34mtbfwnrm60chfh4brs02k4StatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a horse, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 1.5
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 1.5, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a horse, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=1.5' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T22:50:16.131130Z", "created_at": "2024-08-22T22:50:07.717000Z", "data_removed": false, "error": null, "id": "nm34mtbfwnrm60chfh4brs02k4", "input": { "model": "dev", "prompt": "PLSM style, an image of a horse, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 8322\nPrompt: PLSM style, an image of a horse, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.51it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.94it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 8.405517653, "total_time": 8.41413 }, "output": [ "https://replicate.delivery/yhqm/d6uQfRL5bp0VUajl95IPnsL0bddQpelpyRitdGofI8LOVuqmA/out-0.webp" ], "started_at": "2024-08-22T22:50:07.725612Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nm34mtbfwnrm60chfh4brs02k4", "cancel": "https://api.replicate.com/v1/predictions/nm34mtbfwnrm60chfh4brs02k4/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 8322 Prompt: PLSM style, an image of a horse, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights weights already loaded! 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.51it/s] 7%|▋ | 2/28 [00:00<00:06, 3.94it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.55it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.54it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDqj58gza1z1rm20chfh5bxye9rwStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 1.5
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 1.5, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=1.5' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T22:52:24.275022Z", "created_at": "2024-08-22T22:52:07.032000Z", "data_removed": false, "error": null, "id": "qj58gza1z1rm20chfh5bxye9rw", "input": { "model": "dev", "prompt": "PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 17439\nPrompt: PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.50it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.93it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.74it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.53it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.53it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 17.233267941, "total_time": 17.243022 }, "output": [ "https://replicate.delivery/yhqm/jYBFyfOdTMwuN67Fb2KtjY14VB91x8ADNGgodiWkXIMUmrqJA/out-0.webp" ], "started_at": "2024-08-22T22:52:07.041754Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qj58gza1z1rm20chfh5bxye9rw", "cancel": "https://api.replicate.com/v1/predictions/qj58gza1z1rm20chfh5bxye9rw/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 17439 Prompt: PLSM style, an image of a dense forest, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.50it/s] 7%|▋ | 2/28 [00:00<00:06, 3.93it/s] 11%|█ | 3/28 [00:00<00:06, 3.74it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.53it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.53it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.52it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.52it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.52it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDnhy153pabsrm40chfh7a7592srStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a city, made of yellow, red, and purple goo plasma
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 1.5
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 1.5, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a city, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=1.5' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T22:57:28.093581Z", "created_at": "2024-08-22T22:57:04.094000Z", "data_removed": false, "error": null, "id": "nhy153pabsrm40chfh7a7592sr", "input": { "model": "dev", "prompt": "PLSM style, an image of a city, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 23795\nPrompt: PLSM style, an image of a city, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.23it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.95it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.82it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]", "metrics": { "predict_time": 17.055186729, "total_time": 23.999581 }, "output": [ "https://replicate.delivery/yhqm/UUrxGOdALfSvBqBYnbuROiExDGHFc0SQakOG95gdzGhrorqJA/out-0.webp" ], "started_at": "2024-08-22T22:57:11.038394Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nhy153pabsrm40chfh7a7592sr", "cancel": "https://api.replicate.com/v1/predictions/nhy153pabsrm40chfh7a7592sr/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 23795 Prompt: PLSM style, an image of a city, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.68it/s] 7%|▋ | 2/28 [00:00<00:06, 4.23it/s] 11%|█ | 3/28 [00:00<00:06, 3.95it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.82it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.73it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.71it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.68it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.66it/s] 50%|█████ | 14/28 [00:03<00:03, 3.66it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s] 61%|██████ | 17/28 [00:04<00:03, 3.66it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.66it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.66it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.66it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.65it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.65it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.65it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.65it/s] 100%|██████████| 28/28 [00:07<00:00, 3.69it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDmddwsgg5ehrm60chfh89nb123mStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=2' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T22:58:48.047104Z", "created_at": "2024-08-22T22:58:24.756000Z", "data_removed": false, "error": null, "id": "mddwsgg5ehrm60chfh89nb123m", "input": { "model": "dev", "prompt": "PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 56148\nPrompt: PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.51it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.95it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.53it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.52it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 17.702627298, "total_time": 23.291104 }, "output": [ "https://replicate.delivery/yhqm/oBrqShITcEaILZXUKEdC2n2sBhMsCRAM1fEHHeLf6Y8OluqmA/out-0.webp" ], "started_at": "2024-08-22T22:58:30.344477Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/mddwsgg5ehrm60chfh89nb123m", "cancel": "https://api.replicate.com/v1/predictions/mddwsgg5ehrm60chfh89nb123m/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 56148 Prompt: PLSM style, an image of a dramatic alien planet, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.51it/s] 7%|▋ | 2/28 [00:00<00:06, 3.95it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.54it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.53it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.52it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDgc83em4h9xrm20chfh8s692q5wStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 1.5
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 1.5, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=1.5' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T23:00:20.368780Z", "created_at": "2024-08-22T23:00:06.095000Z", "data_removed": false, "error": null, "id": "gc83em4h9xrm20chfh8s692q5w", "input": { "model": "dev", "prompt": "PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 1.5, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 18405\nPrompt: PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.66it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.21it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.93it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.81it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.71it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.68it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.67it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.66it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.65it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.65it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.64it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.65it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.64it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.64it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.63it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.63it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.63it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.63it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.63it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.63it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.64it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.64it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.64it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.64it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.64it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.64it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.63it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.67it/s]", "metrics": { "predict_time": 8.212518616, "total_time": 14.27378 }, "output": [ "https://replicate.delivery/yhqm/nToWCCi2B8pDNNkhZkgpV89RvGfIlRp7QaRJlkRfHroEUXVTA/out-0.webp" ], "started_at": "2024-08-22T23:00:12.156262Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gc83em4h9xrm20chfh8s692q5w", "cancel": "https://api.replicate.com/v1/predictions/gc83em4h9xrm20chfh8s692q5w/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 18405 Prompt: PLSM style, an image of a landscape on a dramatic alien planet, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights weights already loaded! 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.66it/s] 7%|▋ | 2/28 [00:00<00:06, 4.21it/s] 11%|█ | 3/28 [00:00<00:06, 3.93it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.81it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.75it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.71it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.68it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.67it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.66it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.65it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.65it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.64it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.65it/s] 50%|█████ | 14/28 [00:03<00:03, 3.64it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.64it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.63it/s] 61%|██████ | 17/28 [00:04<00:03, 3.63it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.63it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.63it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.63it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.63it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.64it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.64it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.64it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.64it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.64it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.64it/s] 100%|██████████| 28/28 [00:07<00:00, 3.63it/s] 100%|██████████| 28/28 [00:07<00:00, 3.67it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dID8fx62v3qqsrm40chfhabx5srhrStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=2' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T23:03:25.643679Z", "created_at": "2024-08-22T23:03:16.158000Z", "data_removed": false, "error": null, "id": "8fx62v3qqsrm40chfhabx5srhr", "input": { "model": "dev", "prompt": "PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 29128\nPrompt: PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.96it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.55it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]", "metrics": { "predict_time": 8.381131717, "total_time": 9.485679 }, "output": [ "https://replicate.delivery/yhqm/OEC6gom5ORLoAN5WD2KFzp4NlIawHwE8IVx5jtJiexmeWXVTA/out-0.webp" ], "started_at": "2024-08-22T23:03:17.262548Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/8fx62v3qqsrm40chfhabx5srhr", "cancel": "https://api.replicate.com/v1/predictions/8fx62v3qqsrm40chfhabx5srhr/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 29128 Prompt: PLSM style, an image of a burning fire, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights weights already loaded! 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.96it/s] 11%|█ | 3/28 [00:00<00:06, 3.76it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.58it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.55it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.55it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.55it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.55it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.55it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.55it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.55it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.55it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.55it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.55it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s] 100%|██████████| 28/28 [00:07<00:00, 3.57it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dID79p04gze3nrm40chfhatysp1hgStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a rose, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a rose, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=2' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T23:05:00.391180Z", "created_at": "2024-08-22T23:04:51.997000Z", "data_removed": false, "error": null, "id": "79p04gze3nrm40chfhatysp1hg", "input": { "model": "dev", "prompt": "PLSM style, an image of a rose, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 54953\nPrompt: PLSM style, an image of a rose, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nweights already loaded!\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.95it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.75it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 8.385020539, "total_time": 8.39418 }, "output": [ "https://replicate.delivery/yhqm/kTcJuzrs4uZWANQZCS2OVohTdnloDHyLyF4Gb22cKCDH2V1E/out-0.webp" ], "started_at": "2024-08-22T23:04:52.006160Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/79p04gze3nrm40chfhatysp1hg", "cancel": "https://api.replicate.com/v1/predictions/79p04gze3nrm40chfhatysp1hg/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 54953 Prompt: PLSM style, an image of a rose, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights weights already loaded! 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.95it/s] 11%|█ | 3/28 [00:00<00:06, 3.75it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.65it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.61it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dID18rkpnnezdrm60chfhe96ft7jcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=2' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T23:12:32.487591Z", "created_at": "2024-08-22T23:12:14.587000Z", "data_removed": false, "error": null, "id": "18rkpnnezdrm60chfhe96ft7jc", "input": { "model": "dev", "prompt": "PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 39448\nPrompt: PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.96it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.76it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.56it/s]", "metrics": { "predict_time": 17.891634893, "total_time": 17.900591 }, "output": [ "https://replicate.delivery/yhqm/QzEKxI7rqBKrO56xXbdSUJEMz6gLSpm23Ha6h6dVGdA43V1E/out-0.webp" ], "started_at": "2024-08-22T23:12:14.595956Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/18rkpnnezdrm60chfhe96ft7jc", "cancel": "https://api.replicate.com/v1/predictions/18rkpnnezdrm60chfhe96ft7jc/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 39448 Prompt: PLSM style, an image of a tiger, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.96it/s] 11%|█ | 3/28 [00:00<00:06, 3.76it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.66it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.62it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.59it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.57it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.56it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.56it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.55it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.55it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.55it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.55it/s] 50%|█████ | 14/28 [00:03<00:03, 3.55it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.55it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.54it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.54it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.56it/s]
Prediction
andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3dIDpab8t5dtndrm20chfhbtd6br7rStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma
- lora_scale
- 1.1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 2
- output_quality
- 80
- num_inference_steps
- 28
{ "model": "dev", "prompt": "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", { input: { model: "dev", prompt: "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", lora_scale: 1.1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 2, output_quality: 80, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", input={ "model": "dev", "prompt": "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/flux-goo using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/flux-goo:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d", "input": { "model": "dev", "prompt": "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d \ -i 'model="dev"' \ -i 'prompt="PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma"' \ -i 'lora_scale=1.1' \ -i 'num_outputs=1' \ -i 'aspect_ratio="1:1"' \ -i 'output_format="webp"' \ -i 'guidance_scale=2' \ -i 'output_quality=80' \ -i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/andreasjansson/flux-goo@sha256:17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-08-22T23:07:24.003747Z", "created_at": "2024-08-22T23:06:49.899000Z", "data_removed": false, "error": null, "id": "pab8t5dtndrm20chfhbtd6br7r", "input": { "model": "dev", "prompt": "PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma", "lora_scale": 1.1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "num_inference_steps": 28 }, "logs": "Using seed: 26991\nPrompt: PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma\ntxt2img mode\nUsing dev model\nLoading LoRA weights\nEnsuring enough disk space...\nFree disk space: 9549500669952\nDownloading weights\n2024-08-22T23:06:49Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b4f70436c3e28e42 url=https://replicate.delivery/yhqm/MHJmIF7zlLKXPNN9LKN5yxYUuC7SyzKjMBtqeVwUGdPCpqqJA/trained_model.tar\n2024-08-22T23:06:51Z | INFO | [ Complete ] dest=/src/weights-cache/b4f70436c3e28e42 size=\"172 MB\" total_elapsed=1.823s url=https://replicate.delivery/yhqm/MHJmIF7zlLKXPNN9LKN5yxYUuC7SyzKjMBtqeVwUGdPCpqqJA/trained_model.tar\nb''\nDownloaded weights in 1.8533737659454346 seconds\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.52it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.93it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.74it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.53it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.52it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.54it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.54it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 34.102632688, "total_time": 34.104747 }, "output": [ "https://replicate.delivery/yhqm/climqfC4LaSqfkxTfnUPfxi85OCE2uB3jlBw57CChtfeq2V1E/out-0.webp" ], "started_at": "2024-08-22T23:06:49.901114Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pab8t5dtndrm20chfhbtd6br7r", "cancel": "https://api.replicate.com/v1/predictions/pab8t5dtndrm20chfhbtd6br7r/cancel" }, "version": "17db11dcf58d8bddfb917583225aa438e00b47d3af2c245606a0fccc83f6eb3d" }
Generated inUsing seed: 26991 Prompt: PLSM style, an image of the word PLASMA, made of yellow, red, and purple goo plasma txt2img mode Using dev model Loading LoRA weights Ensuring enough disk space... Free disk space: 9549500669952 Downloading weights 2024-08-22T23:06:49Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/b4f70436c3e28e42 url=https://replicate.delivery/yhqm/MHJmIF7zlLKXPNN9LKN5yxYUuC7SyzKjMBtqeVwUGdPCpqqJA/trained_model.tar 2024-08-22T23:06:51Z | INFO | [ Complete ] dest=/src/weights-cache/b4f70436c3e28e42 size="172 MB" total_elapsed=1.823s url=https://replicate.delivery/yhqm/MHJmIF7zlLKXPNN9LKN5yxYUuC7SyzKjMBtqeVwUGdPCpqqJA/trained_model.tar b'' Downloaded weights in 1.8533737659454346 seconds LoRA weights loaded successfully 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.52it/s] 7%|▋ | 2/28 [00:00<00:06, 3.93it/s] 11%|█ | 3/28 [00:00<00:06, 3.74it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.57it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.53it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.53it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.53it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.53it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.53it/s] 50%|█████ | 14/28 [00:03<00:03, 3.52it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.54it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.54it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.54it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.54it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.52it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.54it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.54it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.54it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Want to make some of these yourself?
Run this model