WizardCoder-python-34B-v1.0 with support for grammars and jsonschema
Prediction
andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6IDs5oeuzlb6ij36miihdoy4mnj34StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- top_k
- 10
- top_p
- 0.95
- prompt
- Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a short program that counts the number of occurrences of a character in a string. ### Response:
- grammar
- root ::= "```python\ndef num_occurrences(c: str, s: str) -> int:\n " code "```" code ::= [^`()]+
- max_tokens
- 500
- temperature
- 0.8
- mirostat_mode
- Disabled
- repeat_penalty
- 1.1
- mirostat_entropy
- 5
- presence_penalty
- 0
- frequency_penalty
- 0
- mirostat_learning_rate
- 0.1
{ "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWrite a short program that counts the number of occurrences of a character in a string.\n\n### Response:", "grammar": "root ::= \"```python\\ndef num_occurrences(c: str, s: str) -> int:\\n \" code \"```\"\ncode ::= [^`()]+", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", { input: { top_k: 10, top_p: 0.95, prompt: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWrite a short program that counts the number of occurrences of a character in a string.\n\n### Response:", grammar: "root ::= \"```python\\ndef num_occurrences(c: str, s: str) -> int:\\n \" code \"```\"\ncode ::= [^`()]+", max_tokens: 500, temperature: 0.8, mirostat_mode: "Disabled", repeat_penalty: 1.1, mirostat_entropy: 5, presence_penalty: 0, frequency_penalty: 0, mirostat_learning_rate: 0.1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", input={ "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWrite a short program that counts the number of occurrences of a character in a string.\n\n### Response:", "grammar": "root ::= \"```python\\ndef num_occurrences(c: str, s: str) -> int:\\n \" code \"```\"\ncode ::= [^`()]+", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 } ) # The andreasjansson/wizardcoder-python-34b-v1-gguf model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/andreasjansson/wizardcoder-python-34b-v1-gguf/api#output-schema print(item, end="")
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", "input": { "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nWrite a short program that counts the number of occurrences of a character in a string.\\n\\n### Response:", "grammar": "root ::= \\"```python\\\\ndef num_occurrences(c: str, s: str) -> int:\\\\n \\" code \\"```\\"\\ncode ::= [^`()]+", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
```python def num_occurrences(c: str, s: str) -> int: """Counts the number of occurrences of a character c in a string s.""" count = 0 for char in s: if char == c: count += 1 return count ```{ "completed_at": "2023-09-22T22:10:46.157018Z", "created_at": "2023-09-22T22:10:42.257147Z", "data_removed": false, "error": null, "id": "s5oeuzlb6ij36miihdoy4mnj34", "input": { "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nWrite a short program that counts the number of occurrences of a character in a string.\n\n### Response:", "grammar": "root ::= \"```python\\ndef num_occurrences(c: str, s: str) -> int:\\n \" code \"```\"\ncode ::= [^`()]+", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 }, "logs": "from_string grammar:\nroot ::= [`] [`] [`] [p] [y] [t] [h] [o] [n] [<U+000A>] [d] [e] [f] [ ] [n] [u] [m] [_] [o] [c] [c] [u] [r] [r] [e] [n] [c] [e] [s] [(] [c] [:] [ ] [s] [t] [r] [,] [ ] [s] [:] [ ] [s] [t] [r] [)] [ ] [-] [>] [ ] [i] [n] [t] [:] [<U+000A>] [ ] [ ] [ ] [ ] code [`] [`] [`] \ncode ::= code_2\ncode_2 ::= [^`()] code_2 | [^`()]\nPrompt:\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\nWrite a short program that counts the number of occurrences of a character in a string.\n### Response:\nLlama.generate: prefix-match hit\nllama_print_timings: load time = 323.93 ms\nllama_print_timings: sample time = 644.67 ms / 74 runs ( 8.71 ms per token, 114.79 tokens per second)\nllama_print_timings: prompt eval time = 0.00 ms / 1 tokens ( 0.00 ms per token, inf tokens per second)\nllama_print_timings: eval time = 3161.00 ms / 74 runs ( 42.72 ms per token, 23.41 tokens per second)\nllama_print_timings: total time = 3983.35 ms", "metrics": { "predict_time": 3.994199, "total_time": 3.899871 }, "output": [ "```", "python", "\n", "def", " num", "_", "occ", "urr", "ences", "(", "c", ":", " str", ",", " s", ":", " str", ")", " ->", " int", ":", "\n", " ", " \"\"\"", "Count", "s", " the", " number", " of", " occurr", "ences", " of", " a", " character", " c", " in", " a", " string", " s", ".\"", "\"\"", "\n", " ", " count", " =", " ", "0", "\n", " ", " for", " char", " in", " s", ":", "\n", " ", " if", " char", " ==", " c", ":", "\n", " ", " count", " +=", " ", "1", "\n", " ", " return", " count", "\n", "```" ], "started_at": "2023-09-22T22:10:42.162819Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s5oeuzlb6ij36miihdoy4mnj34", "cancel": "https://api.replicate.com/v1/predictions/s5oeuzlb6ij36miihdoy4mnj34/cancel" }, "version": "b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6" }
Generated infrom_string grammar: root ::= [`] [`] [`] [p] [y] [t] [h] [o] [n] [<U+000A>] [d] [e] [f] [ ] [n] [u] [m] [_] [o] [c] [c] [u] [r] [r] [e] [n] [c] [e] [s] [(] [c] [:] [ ] [s] [t] [r] [,] [ ] [s] [:] [ ] [s] [t] [r] [)] [ ] [-] [>] [ ] [i] [n] [t] [:] [<U+000A>] [ ] [ ] [ ] [ ] code [`] [`] [`] code ::= code_2 code_2 ::= [^`()] code_2 | [^`()] Prompt: Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a short program that counts the number of occurrences of a character in a string. ### Response: Llama.generate: prefix-match hit llama_print_timings: load time = 323.93 ms llama_print_timings: sample time = 644.67 ms / 74 runs ( 8.71 ms per token, 114.79 tokens per second) llama_print_timings: prompt eval time = 0.00 ms / 1 tokens ( 0.00 ms per token, inf tokens per second) llama_print_timings: eval time = 3161.00 ms / 74 runs ( 42.72 ms per token, 23.41 tokens per second) llama_print_timings: total time = 3983.35 ms
Prediction
andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6IDrlnwn6dbidyjpx4qfiizgqcd2uStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- top_k
- 10
- top_p
- 0.95
- prompt
- Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Send a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible. Respond with json that adheres to the following jsonschema: {jsonschema} ### Response:
- grammar
- jsonschema
- { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "from": { "type": "string", "format": "email", "description": "The email address of the sender." }, "to": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to send the email to." }, "cc": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to be included in the CC field." }, "bcc": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to be included in the BCC field." }, "subject": { "type": "string", "description": "The subject of the email." }, "body": { "type": "string", "description": "The body text of the email." } }, "required": ["from", "to", "subject", "body"], "additionalProperties": false }
- max_tokens
- 500
- temperature
- 0.8
- mirostat_mode
- Disabled
- repeat_penalty
- 1.1
- mirostat_entropy
- 5
- presence_penalty
- 0
- frequency_penalty
- 0
- mirostat_learning_rate
- 0.1
{ "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\n\nRespond with json that adheres to the following jsonschema:\n\n{jsonschema}\n\n### Response:", "grammar": "", "jsonschema": "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"type\": \"object\",\n \"properties\": {\n \"from\": {\n \"type\": \"string\",\n \"format\": \"email\",\n \"description\": \"The email address of the sender.\"\n },\n \"to\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to send the email to.\"\n },\n \"cc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the CC field.\"\n },\n \"bcc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the BCC field.\"\n },\n \"subject\": {\n \"type\": \"string\",\n \"description\": \"The subject of the email.\"\n },\n \"body\": {\n \"type\": \"string\",\n \"description\": \"The body text of the email.\"\n }\n },\n \"required\": [\"from\", \"to\", \"subject\", \"body\"],\n \"additionalProperties\": false\n}", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", { input: { top_k: 10, top_p: 0.95, prompt: "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\n\nRespond with json that adheres to the following jsonschema:\n\n{jsonschema}\n\n### Response:", grammar: "", jsonschema: "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"type\": \"object\",\n \"properties\": {\n \"from\": {\n \"type\": \"string\",\n \"format\": \"email\",\n \"description\": \"The email address of the sender.\"\n },\n \"to\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to send the email to.\"\n },\n \"cc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the CC field.\"\n },\n \"bcc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the BCC field.\"\n },\n \"subject\": {\n \"type\": \"string\",\n \"description\": \"The subject of the email.\"\n },\n \"body\": {\n \"type\": \"string\",\n \"description\": \"The body text of the email.\"\n }\n },\n \"required\": [\"from\", \"to\", \"subject\", \"body\"],\n \"additionalProperties\": false\n}", max_tokens: 500, temperature: 0.8, mirostat_mode: "Disabled", repeat_penalty: 1.1, mirostat_entropy: 5, presence_penalty: 0, frequency_penalty: 0, mirostat_learning_rate: 0.1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", input={ "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\n\nRespond with json that adheres to the following jsonschema:\n\n{jsonschema}\n\n### Response:", "grammar": "", "jsonschema": "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"type\": \"object\",\n \"properties\": {\n \"from\": {\n \"type\": \"string\",\n \"format\": \"email\",\n \"description\": \"The email address of the sender.\"\n },\n \"to\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to send the email to.\"\n },\n \"cc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the CC field.\"\n },\n \"bcc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the BCC field.\"\n },\n \"subject\": {\n \"type\": \"string\",\n \"description\": \"The subject of the email.\"\n },\n \"body\": {\n \"type\": \"string\",\n \"description\": \"The body text of the email.\"\n }\n },\n \"required\": [\"from\", \"to\", \"subject\", \"body\"],\n \"additionalProperties\": false\n}", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 } ) # The andreasjansson/wizardcoder-python-34b-v1-gguf model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/andreasjansson/wizardcoder-python-34b-v1-gguf/api#output-schema print(item, end="")
To learn more, take a look at the guide on getting started with Python.
Run andreasjansson/wizardcoder-python-34b-v1-gguf using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "andreasjansson/wizardcoder-python-34b-v1-gguf:b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6", "input": { "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\\n\\nRespond with json that adheres to the following jsonschema:\\n\\n{jsonschema}\\n\\n### Response:", "grammar": "", "jsonschema": "{\\n \\"$schema\\": \\"http://json-schema.org/draft-07/schema#\\",\\n \\"type\\": \\"object\\",\\n \\"properties\\": {\\n \\"from\\": {\\n \\"type\\": \\"string\\",\\n \\"format\\": \\"email\\",\\n \\"description\\": \\"The email address of the sender.\\"\\n },\\n \\"to\\": {\\n \\"type\\": \\"array\\",\\n \\"items\\": {\\n \\"type\\": \\"string\\",\\n \\"format\\": \\"email\\"\\n },\\n \\"description\\": \\"An array of email addresses to send the email to.\\"\\n },\\n \\"cc\\": {\\n \\"type\\": \\"array\\",\\n \\"items\\": {\\n \\"type\\": \\"string\\",\\n \\"format\\": \\"email\\"\\n },\\n \\"description\\": \\"An array of email addresses to be included in the CC field.\\"\\n },\\n \\"bcc\\": {\\n \\"type\\": \\"array\\",\\n \\"items\\": {\\n \\"type\\": \\"string\\",\\n \\"format\\": \\"email\\"\\n },\\n \\"description\\": \\"An array of email addresses to be included in the BCC field.\\"\\n },\\n \\"subject\\": {\\n \\"type\\": \\"string\\",\\n \\"description\\": \\"The subject of the email.\\"\\n },\\n \\"body\\": {\\n \\"type\\": \\"string\\",\\n \\"description\\": \\"The body text of the email.\\"\\n }\\n },\\n \\"required\\": [\\"from\\", \\"to\\", \\"subject\\", \\"body\\"],\\n \\"additionalProperties\\": false\\n}", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{"bcc": [],"body": "Hello myfriend,\n\nIt is currently raining in Stockholm and the temperature is around 15 degrees Celsius. The wind is strong and the sky is overcast, but it won't last long as we are expecting sunny weather this weekend. It is a good day for a picnic or a walk in the park!\n\nRegards,\nAndreas","cc": [],"from": "andreas86@telia.se","subject": "Weather Update from Stockholm","to": ["myfriend@telia.se"]}{ "completed_at": "2023-09-22T22:11:51.234816Z", "created_at": "2023-09-22T22:11:42.978818Z", "data_removed": false, "error": null, "id": "rlnwn6dbidyjpx4qfiizgqcd2u", "input": { "top_k": 10, "top_p": 0.95, "prompt": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\n\nRespond with json that adheres to the following jsonschema:\n\n{jsonschema}\n\n### Response:", "grammar": "", "jsonschema": "{\n \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n \"type\": \"object\",\n \"properties\": {\n \"from\": {\n \"type\": \"string\",\n \"format\": \"email\",\n \"description\": \"The email address of the sender.\"\n },\n \"to\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to send the email to.\"\n },\n \"cc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the CC field.\"\n },\n \"bcc\": {\n \"type\": \"array\",\n \"items\": {\n \"type\": \"string\",\n \"format\": \"email\"\n },\n \"description\": \"An array of email addresses to be included in the BCC field.\"\n },\n \"subject\": {\n \"type\": \"string\",\n \"description\": \"The subject of the email.\"\n },\n \"body\": {\n \"type\": \"string\",\n \"description\": \"The body text of the email.\"\n }\n },\n \"required\": [\"from\", \"to\", \"subject\", \"body\"],\n \"additionalProperties\": false\n}", "max_tokens": 500, "temperature": 0.8, "mirostat_mode": "Disabled", "repeat_penalty": 1.1, "mirostat_entropy": 5, "presence_penalty": 0, "frequency_penalty": 0, "mirostat_learning_rate": 0.1 }, "logs": "from_string grammar:\nspace ::= space_1\nspace_1 ::= [ ] |\nstring ::= [\"] string_5 [\"] space\nstring_3 ::= [^\"\\] | [\\] string_4\nstring_4 ::= [\"\\/bfnrt] | [u] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]\nstring_5 ::= string_3 string_5 |\nbcc ::= [[] space bcc_10 []] space\nbcc_7 ::= string bcc_9\nbcc_8 ::= [,] space string\nbcc_9 ::= bcc_8 bcc_9 |\nbcc_10 ::= bcc_7 |\ncc ::= [[] space cc_15 []] space\ncc_12 ::= string cc_14\ncc_13 ::= [,] space string \ncc_14 ::= cc_13 cc_14 |\ncc_15 ::= cc_12 | \nto ::= [[] space to_20 []] space \nto_17 ::= string to_19\nto_18 ::= [,] space string\nto_19 ::= to_18 to_19 | \nto_20 ::= to_17 |\nroot ::= [{] space [\"] [b] [c] [c] [\"] space [:] space bcc [,] space [\"] [b] [o] [d] [y] [\"] space [:] space string [,] space [\"] [c] [c] [\"] space [:] space cc [,] space [\"] [f] [r] [o] [m] [\"] space [:] space string [,] space [\"] [s] [u] [b] [j] [e] [c] [t] [\"] space [:] space string [,] space [\"] [t] [o] [\"] space [:] space to [}] space\nPrompt:\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n### Instruction:\nSend a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible.\nRespond with json that adheres to the following jsonschema:\n{\n\"$schema\": \"http://json-schema.org/draft-07/schema#\",\n\"type\": \"object\",\n\"properties\": {\n\"from\": {\n\"type\": \"string\",\n\"format\": \"email\",\n\"description\": \"The email address of the sender.\"\n},\n\"to\": {\n\"type\": \"array\",\n\"items\": {\n\"type\": \"string\",\n\"format\": \"email\"\n},\n\"description\": \"An array of email addresses to send the email to.\"\n},\n\"cc\": {\n\"type\": \"array\",\n\"items\": {\n\"type\": \"string\",\n\"format\": \"email\"\n},\n\"description\": \"An array of email addresses to be included in the CC field.\"\n},\n\"bcc\": {\n\"type\": \"array\",\n\"items\": {\n\"type\": \"string\",\n\"format\": \"email\"\n},\n\"description\": \"An array of email addresses to be included in the BCC field.\"\n},\n\"subject\": {\n\"type\": \"string\",\n\"description\": \"The subject of the email.\"\n},\n\"body\": {\n\"type\": \"string\",\n\"description\": \"The body text of the email.\"\n}\n},\n\"required\": [\"from\", \"to\", \"subject\", \"body\"],\n\"additionalProperties\": false\n}\n### Response:\nLlama.generate: prefix-match hit\nllama_print_timings: load time = 323.93 ms\nllama_print_timings: sample time = 1143.80 ms / 131 runs ( 8.73 ms per token, 114.53 tokens per second)\nllama_print_timings: prompt eval time = 954.76 ms / 372 tokens ( 2.57 ms per token, 389.63 tokens per second)\nllama_print_timings: eval time = 5865.64 ms / 130 runs ( 45.12 ms per token, 22.16 tokens per second)\nllama_print_timings: total time = 8286.14 ms", "metrics": { "predict_time": 8.301813, "total_time": 8.255998 }, "output": [ "{\"", "b", "cc", "\":", " [],", "\"", "body", "\":", " \"", "Hello", " my", "friend", ",\\", "n", "\\", "n", "It", " is", " currently", " ra", "ining", " in", " Stockholm", " and", " the", " temperature", " is", " around", " ", "1", "5", " degrees", " Cel", "si", "us", ".", " The", " wind", " is", " strong", " and", " the", " sky", " is", " over", "cast", ",", " but", " it", " won", "'", "t", " last", " long", " as", " we", " are", " expecting", " sun", "ny", " weather", " this", " week", "end", ".", " It", " is", " a", " good", " day", " for", " a", " pic", "nic", " or", " a", " walk", " in", " the", " park", "!\\", "n", "\\", "n", "Reg", "ards", ",\\", "n", "And", "reas", "\",\"", "cc", "\":", " [],", "\"", "from", "\":", " \"", "and", "reas", "8", "6", "@", "t", "elia", ".", "se", "\",\"", "subject", "\":", " \"", "We", "ather", " Update", " from", " Stockholm", "\",\"", "to", "\":", " [\"", "my", "friend", "@", "t", "elia", ".", "se", "\"]", "}", " " ], "started_at": "2023-09-22T22:11:42.933003Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rlnwn6dbidyjpx4qfiizgqcd2u", "cancel": "https://api.replicate.com/v1/predictions/rlnwn6dbidyjpx4qfiizgqcd2u/cancel" }, "version": "b357a162acd41ce53c04b14a25df0f1d476c2e39d465895d28cdba87944506c6" }
Generated infrom_string grammar: space ::= space_1 space_1 ::= [ ] | string ::= ["] string_5 ["] space string_3 ::= [^"\] | [\] string_4 string_4 ::= ["\/bfnrt] | [u] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] string_5 ::= string_3 string_5 | bcc ::= [[] space bcc_10 []] space bcc_7 ::= string bcc_9 bcc_8 ::= [,] space string bcc_9 ::= bcc_8 bcc_9 | bcc_10 ::= bcc_7 | cc ::= [[] space cc_15 []] space cc_12 ::= string cc_14 cc_13 ::= [,] space string cc_14 ::= cc_13 cc_14 | cc_15 ::= cc_12 | to ::= [[] space to_20 []] space to_17 ::= string to_19 to_18 ::= [,] space string to_19 ::= to_18 to_19 | to_20 ::= to_17 | root ::= [{] space ["] [b] [c] [c] ["] space [:] space bcc [,] space ["] [b] [o] [d] [y] ["] space [:] space string [,] space ["] [c] [c] ["] space [:] space cc [,] space ["] [f] [r] [o] [m] ["] space [:] space string [,] space ["] [s] [u] [b] [j] [e] [c] [t] ["] space [:] space string [,] space ["] [t] [o] ["] space [:] space to [}] space Prompt: Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Send a email from andreas86@telia.se to myfriend@telia.se where you discuss the weather. In the body, describe the current weather in Stockholm as detailed as possible. Respond with json that adheres to the following jsonschema: { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "from": { "type": "string", "format": "email", "description": "The email address of the sender." }, "to": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to send the email to." }, "cc": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to be included in the CC field." }, "bcc": { "type": "array", "items": { "type": "string", "format": "email" }, "description": "An array of email addresses to be included in the BCC field." }, "subject": { "type": "string", "description": "The subject of the email." }, "body": { "type": "string", "description": "The body text of the email." } }, "required": ["from", "to", "subject", "body"], "additionalProperties": false } ### Response: Llama.generate: prefix-match hit llama_print_timings: load time = 323.93 ms llama_print_timings: sample time = 1143.80 ms / 131 runs ( 8.73 ms per token, 114.53 tokens per second) llama_print_timings: prompt eval time = 954.76 ms / 372 tokens ( 2.57 ms per token, 389.63 tokens per second) llama_print_timings: eval time = 5865.64 ms / 130 runs ( 45.12 ms per token, 22.16 tokens per second) llama_print_timings: total time = 8286.14 ms
Want to make some of these yourself?
Run this model