aramintak / pop-art-anime
A very blocky and bold cartoon style with some anime elements. You should use daiton style to trigger the image generation.
- Public
- 1.3K runs
-
L40S
- Paper
Prediction
aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70IDazg13b4m11rgp0cfykjsedcya8StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- a mouse knight, daiton style
- lora_strength
- 1
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a mouse knight, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", { input: { width: 1024, height: 1024, prompt: "a mouse knight, daiton style", lora_strength: 1, output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", input={ "width": 1024, "height": 1024, "prompt": "a mouse knight, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", "input": { "width": 1024, "height": 1024, "prompt": "a mouse knight, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:50:43.064036Z", "created_at": "2024-06-07T22:50:37.448000Z", "data_removed": false, "error": null, "id": "azg13b4m11rgp0cfykjsedcya8", "input": { "width": 1024, "height": 1024, "prompt": "a mouse knight, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 3250873027\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.33it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.25it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.22it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.21it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.21it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.19it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.18it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.17it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.16it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.17it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.19it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.18it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.20it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.22it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.24it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.24it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.25it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.25it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.28it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.31it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.23it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.21 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.570685, "total_time": 5.616036 }, "output": [ "https://replicate.delivery/pbxt/auHmFCZneaQLE6n87oGyOkeeqn8s8Lj1cSZItXKCuO0EGo4lA/R8__00001_.webp" ], "started_at": "2024-06-07T22:50:37.493351Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/azg13b4m11rgp0cfykjsedcya8", "cancel": "https://api.replicate.com/v1/predictions/azg13b4m11rgp0cfykjsedcya8/cancel" }, "version": "a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70" }
Generated inRandom seed set to: 3250873027 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.33it/s] 10%|█ | 2/20 [00:00<00:03, 5.25it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.22it/s] 20%|██ | 4/20 [00:00<00:03, 5.21it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.21it/s] 30%|███ | 6/20 [00:01<00:02, 5.19it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.18it/s] 40%|████ | 8/20 [00:01<00:02, 5.17it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.16it/s] 50%|█████ | 10/20 [00:01<00:01, 5.17it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.19it/s] 60%|██████ | 12/20 [00:02<00:01, 5.18it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.20it/s] 70%|███████ | 14/20 [00:02<00:01, 5.22it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.24it/s] 80%|████████ | 16/20 [00:03<00:00, 5.24it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.25it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.25it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.28it/s] 100%|██████████| 20/20 [00:03<00:00, 5.31it/s] 100%|██████████| 20/20 [00:03<00:00, 5.23it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.21 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70IDz4m5vjermdrgg0cfykjsptcr28StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a princess with a dress mad of flowers, daiton style
- lora_strength
- 1
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a princess with a dress mad of flowers, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", { input: { width: 1024, height: 1024, prompt: "a princess with a dress mad of flowers, daiton style", lora_strength: 1, output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", input={ "width": 1024, "height": 1024, "prompt": "a princess with a dress mad of flowers, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", "input": { "width": 1024, "height": 1024, "prompt": "a princess with a dress mad of flowers, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:51:00.690167Z", "created_at": "2024-06-07T22:50:55.011000Z", "data_removed": false, "error": null, "id": "z4m5vjermdrgg0cfykjsptcr28", "input": { "width": 1024, "height": 1024, "prompt": "a princess with a dress mad of flowers, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 3435930362\nRunning workflow\ngot prompt\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.33it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.23it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.23it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.23it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.23it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.22it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.21it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.21it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.23it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.24it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.25it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.26it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.26it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.26it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.26it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.26it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.30it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.33it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.25it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.19 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.634936, "total_time": 5.679167 }, "output": [ "https://replicate.delivery/pbxt/AKww7pfhPvzqZqeeHPvOqdJGTFvW3KhtAUjBdwA65yeMNQxLB/R8__00001_.webp" ], "started_at": "2024-06-07T22:50:55.055231Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/z4m5vjermdrgg0cfykjsptcr28", "cancel": "https://api.replicate.com/v1/predictions/z4m5vjermdrgg0cfykjsptcr28/cancel" }, "version": "a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70" }
Generated inRandom seed set to: 3435930362 Running workflow got prompt Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.33it/s] 10%|█ | 2/20 [00:00<00:03, 5.23it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.23it/s] 20%|██ | 4/20 [00:00<00:03, 5.23it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.23it/s] 30%|███ | 6/20 [00:01<00:02, 5.22it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s] 40%|████ | 8/20 [00:01<00:02, 5.21it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s] 50%|█████ | 10/20 [00:01<00:01, 5.21it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.23it/s] 60%|██████ | 12/20 [00:02<00:01, 5.24it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.25it/s] 70%|███████ | 14/20 [00:02<00:01, 5.26it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.26it/s] 80%|████████ | 16/20 [00:03<00:00, 5.26it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.26it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.26it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.30it/s] 100%|██████████| 20/20 [00:03<00:00, 5.33it/s] 100%|██████████| 20/20 [00:03<00:00, 5.25it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.19 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70IDamnrha4am1rgm0cfykp8hqkvbcStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a happy girl, daiton style
- lora_strength
- 1
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a happy girl, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", { input: { width: 1024, height: 1024, prompt: "a happy girl, daiton style", lora_strength: 1, output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", input={ "width": 1024, "height": 1024, "prompt": "a happy girl, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", "input": { "width": 1024, "height": 1024, "prompt": "a happy girl, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T23:00:05.815784Z", "created_at": "2024-06-07T22:58:13.792000Z", "data_removed": false, "error": null, "id": "amnrha4am1rgm0cfykp8hqkvbc", "input": { "width": 1024, "height": 1024, "prompt": "a happy girl, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 3636985323\nRunning workflow\ngot prompt\nExecuting node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple\nmodel_type EPS\nUsing pytorch attention in VAE\nUsing pytorch attention in VAE\nclip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight']\nloaded straight to GPU\nRequested to load SDXL\nLoading 1 new model\nExecuting node 10, title: Load LoRA, class type: LoraLoader\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nRequested to load SDXLClipModel\nLoading 1 new model\nExecuting node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 5, title: Empty Latent Image, class type: EmptyLatentImage\nExecuting node 3, title: KSampler, class type: KSampler\nRequested to load SDXL\nLoading 1 new model\n 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643.\nwarnings.warn(f\"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.\")\n 5%|▌ | 1/20 [00:00<00:09, 2.08it/s]\n 10%|█ | 2/20 [00:00<00:05, 3.19it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.88it/s]\n 20%|██ | 4/20 [00:01<00:03, 4.31it/s]\n 25%|██▌ | 5/20 [00:01<00:03, 4.60it/s]\n 30%|███ | 6/20 [00:01<00:02, 4.79it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 4.92it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.01it/s]\n 45%|████▌ | 9/20 [00:02<00:02, 5.07it/s]\n 50%|█████ | 10/20 [00:02<00:01, 5.11it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.14it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.16it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.18it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.19it/s]\n 75%|███████▌ | 15/20 [00:03<00:00, 5.19it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.19it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.19it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s]\n100%|██████████| 20/20 [00:04<00:00, 5.26it/s]\n100%|██████████| 20/20 [00:04<00:00, 4.85it/s]\nRequested to load AutoencoderKL\nLoading 1 new model\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 8.51 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 10.424486, "total_time": 112.023784 }, "output": [ "https://replicate.delivery/pbxt/As7LqiWvDWJHAtLdc8qnFha7Ykqf5CbrqavFMHil7S36FKeSA/R8__00001_.webp" ], "started_at": "2024-06-07T22:59:55.391298Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/amnrha4am1rgm0cfykp8hqkvbc", "cancel": "https://api.replicate.com/v1/predictions/amnrha4am1rgm0cfykp8hqkvbc/cancel" }, "version": "a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70" }
Generated inRandom seed set to: 3636985323 Running workflow got prompt Executing node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS Using pytorch attention in VAE Using pytorch attention in VAE clip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight'] loaded straight to GPU Requested to load SDXL Loading 1 new model Executing node 10, title: Load LoRA, class type: LoraLoader Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SDXLClipModel Loading 1 new model Executing node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 5, title: Empty Latent Image, class type: EmptyLatentImage Executing node 3, title: KSampler, class type: KSampler Requested to load SDXL Loading 1 new model 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 5%|▌ | 1/20 [00:00<00:09, 2.08it/s] 10%|█ | 2/20 [00:00<00:05, 3.19it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.88it/s] 20%|██ | 4/20 [00:01<00:03, 4.31it/s] 25%|██▌ | 5/20 [00:01<00:03, 4.60it/s] 30%|███ | 6/20 [00:01<00:02, 4.79it/s] 35%|███▌ | 7/20 [00:01<00:02, 4.92it/s] 40%|████ | 8/20 [00:01<00:02, 5.01it/s] 45%|████▌ | 9/20 [00:02<00:02, 5.07it/s] 50%|█████ | 10/20 [00:02<00:01, 5.11it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.14it/s] 60%|██████ | 12/20 [00:02<00:01, 5.16it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.18it/s] 70%|███████ | 14/20 [00:02<00:01, 5.19it/s] 75%|███████▌ | 15/20 [00:03<00:00, 5.19it/s] 80%|████████ | 16/20 [00:03<00:00, 5.19it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.19it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s] 100%|██████████| 20/20 [00:04<00:00, 5.26it/s] 100%|██████████| 20/20 [00:04<00:00, 4.85it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 8.51 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70IDcgk6nwcdfhrgm0cfym18keaw68StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a couple go on a date at an evening cafe, daiton style
- lora_strength
- 1
- output_format
- webp
- output_quality
- 80
- negative_prompt
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a couple go on a date at an evening cafe, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", { input: { width: 1024, height: 1024, prompt: "a couple go on a date at an evening cafe, daiton style", lora_strength: 1, output_format: "webp", output_quality: 80, negative_prompt: "", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", input={ "width": 1024, "height": 1024, "prompt": "a couple go on a date at an evening cafe, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/pop-art-anime using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/pop-art-anime:a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70", "input": { "width": 1024, "height": 1024, "prompt": "a couple go on a date at an evening cafe, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T23:23:56.557990Z", "created_at": "2024-06-07T23:22:16.316000Z", "data_removed": false, "error": null, "id": "cgk6nwcdfhrgm0cfym18keaw68", "input": { "width": 1024, "height": 1024, "prompt": "a couple go on a date at an evening cafe, daiton style", "lora_strength": 1, "output_format": "webp", "output_quality": 80, "negative_prompt": "", "number_of_images": 1 }, "logs": "Random seed set to: 554574446\nRunning workflow\ngot prompt\nExecuting node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple\nmodel_type EPS\nUsing pytorch attention in VAE\nUsing pytorch attention in VAE\nclip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight']\nloaded straight to GPU\nRequested to load SDXL\nLoading 1 new model\nExecuting node 10, title: Load LoRA, class type: LoraLoader\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nRequested to load SDXLClipModel\nLoading 1 new model\nExecuting node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 5, title: Empty Latent Image, class type: EmptyLatentImage\nExecuting node 3, title: KSampler, class type: KSampler\nRequested to load SDXL\nLoading 1 new model\n 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643.\nwarnings.warn(f\"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.\")\n 5%|▌ | 1/20 [00:00<00:11, 1.66it/s]\n 10%|█ | 2/20 [00:00<00:06, 2.73it/s]\n 15%|█▌ | 3/20 [00:00<00:04, 3.48it/s]\n 20%|██ | 4/20 [00:01<00:03, 4.01it/s]\n 25%|██▌ | 5/20 [00:01<00:03, 4.37it/s]\n 30%|███ | 6/20 [00:01<00:03, 4.62it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 4.80it/s]\n 40%|████ | 8/20 [00:01<00:02, 4.91it/s]\n 45%|████▌ | 9/20 [00:02<00:02, 5.00it/s]\n 50%|█████ | 10/20 [00:02<00:01, 5.06it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.09it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.13it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.16it/s]\n 70%|███████ | 14/20 [00:03<00:01, 5.16it/s]\n 75%|███████▌ | 15/20 [00:03<00:00, 5.18it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.19it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.21it/s]\n 95%|█████████▌| 19/20 [00:04<00:00, 5.23it/s]\n100%|██████████| 20/20 [00:04<00:00, 5.26it/s]\n100%|██████████| 20/20 [00:04<00:00, 4.70it/s]\nRequested to load AutoencoderKL\nLoading 1 new model\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 9.01 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 11.155411, "total_time": 100.24199 }, "output": [ "https://replicate.delivery/pbxt/DlgLZsRfL5wzPiuOGlVdvp25G5PCUsGQxVKuCbOWvYlFRKeSA/R8__00001_.webp" ], "started_at": "2024-06-07T23:23:45.402579Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/cgk6nwcdfhrgm0cfym18keaw68", "cancel": "https://api.replicate.com/v1/predictions/cgk6nwcdfhrgm0cfym18keaw68/cancel" }, "version": "a59ccb3185d54e16d3a6ce1452aa0b63ca08e9ee6c81fa4ea8b03201b3aa9b70" }
Generated inRandom seed set to: 554574446 Running workflow got prompt Executing node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS Using pytorch attention in VAE Using pytorch attention in VAE clip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight'] loaded straight to GPU Requested to load SDXL Loading 1 new model Executing node 10, title: Load LoRA, class type: LoraLoader Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SDXLClipModel Loading 1 new model Executing node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 5, title: Empty Latent Image, class type: EmptyLatentImage Executing node 3, title: KSampler, class type: KSampler Requested to load SDXL Loading 1 new model 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 5%|▌ | 1/20 [00:00<00:11, 1.66it/s] 10%|█ | 2/20 [00:00<00:06, 2.73it/s] 15%|█▌ | 3/20 [00:00<00:04, 3.48it/s] 20%|██ | 4/20 [00:01<00:03, 4.01it/s] 25%|██▌ | 5/20 [00:01<00:03, 4.37it/s] 30%|███ | 6/20 [00:01<00:03, 4.62it/s] 35%|███▌ | 7/20 [00:01<00:02, 4.80it/s] 40%|████ | 8/20 [00:01<00:02, 4.91it/s] 45%|████▌ | 9/20 [00:02<00:02, 5.00it/s] 50%|█████ | 10/20 [00:02<00:01, 5.06it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.09it/s] 60%|██████ | 12/20 [00:02<00:01, 5.13it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.16it/s] 70%|███████ | 14/20 [00:03<00:01, 5.16it/s] 75%|███████▌ | 15/20 [00:03<00:00, 5.18it/s] 80%|████████ | 16/20 [00:03<00:00, 5.19it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.21it/s] 95%|█████████▌| 19/20 [00:04<00:00, 5.23it/s] 100%|██████████| 20/20 [00:04<00:00, 5.26it/s] 100%|██████████| 20/20 [00:04<00:00, 4.70it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 9.01 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Want to make some of these yourself?
Run this model