aramintak / soft-ones
A model that makes a soft and quiet world. Can use "daiton" as a trigger but it isn't needed.
Prediction
aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15IDfg2vzhcg3hrgg0cfyjwvy7kj04StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework
- lora_strength
- 0.85
- output_format
- webp
- output_quality
- 80
- negative_prompt
- distorted, ugly, broken
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", { input: { width: 1024, height: 1024, prompt: "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", lora_strength: 0.85, output_format: "webp", output_quality: 80, negative_prompt: "distorted, ugly, broken", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", input={ "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", "input": { "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:02:38.534391Z", "created_at": "2024-06-07T22:02:32.860000Z", "data_removed": false, "error": null, "id": "fg2vzhcg3hrgg0cfyjwvy7kj04", "input": { "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 }, "logs": "Random seed set to: 3628039157\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.26it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.22it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.21it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.21it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.22it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.21it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.21it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.20it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.20it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.21it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.21it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.21it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.20it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.26it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.22it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.25 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.630865, "total_time": 5.674391 }, "output": [ "https://replicate.delivery/pbxt/x5TsCUWYfhSFKSjTuYKJd3ToVsXGtMKf1VPto3es4Cv6rm4lA/R8__00001_.webp" ], "started_at": "2024-06-07T22:02:32.903526Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fg2vzhcg3hrgg0cfyjwvy7kj04", "cancel": "https://api.replicate.com/v1/predictions/fg2vzhcg3hrgg0cfyjwvy7kj04/cancel" }, "version": "840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15" }
Generated inRandom seed set to: 3628039157 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.26it/s] 10%|█ | 2/20 [00:00<00:03, 5.22it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.21it/s] 20%|██ | 4/20 [00:00<00:03, 5.21it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.22it/s] 30%|███ | 6/20 [00:01<00:02, 5.21it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s] 40%|████ | 8/20 [00:01<00:02, 5.21it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s] 50%|█████ | 10/20 [00:01<00:01, 5.20it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s] 60%|██████ | 12/20 [00:02<00:01, 5.20it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.21it/s] 70%|███████ | 14/20 [00:02<00:01, 5.21it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.21it/s] 80%|████████ | 16/20 [00:03<00:00, 5.20it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s] 100%|██████████| 20/20 [00:03<00:00, 5.26it/s] 100%|██████████| 20/20 [00:03<00:00, 5.22it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.25 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15IDkwj1z0nvbsrgm0cfyjy86rvxxcStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework
- lora_strength
- 0.85
- output_format
- webp
- output_quality
- 80
- negative_prompt
- bad image, zombie, bad eyes
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", { input: { width: 1024, height: 1024, prompt: "a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework", lora_strength: 0.85, output_format: "webp", output_quality: 80, negative_prompt: "bad image, zombie, bad eyes", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", input={ "width": 1024, "height": 1024, "prompt": "a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", "input": { "width": 1024, "height": 1024, "prompt": "a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:08:07.272188Z", "created_at": "2024-06-07T22:06:00.542000Z", "data_removed": false, "error": null, "id": "kwj1z0nvbsrgm0cfyjy86rvxxc", "input": { "width": 1024, "height": 1024, "prompt": "a lonesome witch walking slowly up a mountain with scattered wildflowers, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }, "logs": "Random seed set to: 3300504298\nRunning workflow\ngot prompt\nExecuting node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple\nmodel_type EPS\nUsing pytorch attention in VAE\nUsing pytorch attention in VAE\nclip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight']\nloaded straight to GPU\nRequested to load SDXL\nLoading 1 new model\nExecuting node 10, title: Load LoRA, class type: LoraLoader\nExecuting node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nRequested to load SDXLClipModel\nLoading 1 new model\nExecuting node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 5, title: Empty Latent Image, class type: EmptyLatentImage\nExecuting node 3, title: KSampler, class type: KSampler\nRequested to load SDXL\nLoading 1 new model\n 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643.\nwarnings.warn(f\"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.\")\n 5%|▌ | 1/20 [00:00<00:11, 1.62it/s]\n 10%|█ | 2/20 [00:00<00:06, 2.69it/s]\n 15%|█▌ | 3/20 [00:01<00:04, 3.44it/s]\n 20%|██ | 4/20 [00:01<00:04, 3.97it/s]\n 25%|██▌ | 5/20 [00:01<00:03, 4.33it/s]\n 30%|███ | 6/20 [00:01<00:03, 4.56it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 4.75it/s]\n 40%|████ | 8/20 [00:01<00:02, 4.88it/s]\n 45%|████▌ | 9/20 [00:02<00:02, 4.97it/s]\n 50%|█████ | 10/20 [00:02<00:01, 5.03it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.09it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.13it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.16it/s]\n 70%|███████ | 14/20 [00:03<00:01, 5.18it/s]\n 75%|███████▌ | 15/20 [00:03<00:00, 5.15it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.16it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.18it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s]\n 95%|█████████▌| 19/20 [00:04<00:00, 5.23it/s]\n100%|██████████| 20/20 [00:04<00:00, 5.27it/s]\n100%|██████████| 20/20 [00:04<00:00, 4.68it/s]\nRequested to load AutoencoderKL\nLoading 1 new model\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 15.29 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 17.366908, "total_time": 126.730188 }, "output": [ "https://replicate.delivery/pbxt/X0eRh7sdTiTwQass0RqlIq2wNVSh9oMMj2AQima7NaGjtJeSA/R8__00001_.webp" ], "started_at": "2024-06-07T22:07:49.905280Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kwj1z0nvbsrgm0cfyjy86rvxxc", "cancel": "https://api.replicate.com/v1/predictions/kwj1z0nvbsrgm0cfyjy86rvxxc/cancel" }, "version": "840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15" }
Generated inRandom seed set to: 3300504298 Running workflow got prompt Executing node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS Using pytorch attention in VAE Using pytorch attention in VAE clip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight'] loaded straight to GPU Requested to load SDXL Loading 1 new model Executing node 10, title: Load LoRA, class type: LoraLoader Executing node 6, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SDXLClipModel Loading 1 new model Executing node 7, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 5, title: Empty Latent Image, class type: EmptyLatentImage Executing node 3, title: KSampler, class type: KSampler Requested to load SDXL Loading 1 new model 0%| | 0/20 [00:00<?, ?it/s]/root/.pyenv/versions/3.10.6/lib/python3.10/site-packages/torchsde/_brownian/brownian_interval.py:608: UserWarning: Should have tb<=t1 but got tb=14.614643096923828 and t1=14.614643. warnings.warn(f"Should have {tb_name}<=t1 but got {tb_name}={tb} and t1={self._end}.") 5%|▌ | 1/20 [00:00<00:11, 1.62it/s] 10%|█ | 2/20 [00:00<00:06, 2.69it/s] 15%|█▌ | 3/20 [00:01<00:04, 3.44it/s] 20%|██ | 4/20 [00:01<00:04, 3.97it/s] 25%|██▌ | 5/20 [00:01<00:03, 4.33it/s] 30%|███ | 6/20 [00:01<00:03, 4.56it/s] 35%|███▌ | 7/20 [00:01<00:02, 4.75it/s] 40%|████ | 8/20 [00:01<00:02, 4.88it/s] 45%|████▌ | 9/20 [00:02<00:02, 4.97it/s] 50%|█████ | 10/20 [00:02<00:01, 5.03it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.09it/s] 60%|██████ | 12/20 [00:02<00:01, 5.13it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.16it/s] 70%|███████ | 14/20 [00:03<00:01, 5.18it/s] 75%|███████▌ | 15/20 [00:03<00:00, 5.15it/s] 80%|████████ | 16/20 [00:03<00:00, 5.16it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.18it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s] 95%|█████████▌| 19/20 [00:04<00:00, 5.23it/s] 100%|██████████| 20/20 [00:04<00:00, 5.27it/s] 100%|██████████| 20/20 [00:04<00:00, 4.68it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 15.29 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15IDj81t47d3mhrgg0cfyjzsaf094gStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a small pixie dancing in the moonlight, daiton style, super detailed, fine linework
- lora_strength
- 0.75
- output_format
- webp
- output_quality
- 80
- negative_prompt
- bad image, zombie, bad eyes
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a small pixie dancing in the moonlight, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", { input: { width: 1024, height: 1024, prompt: "a small pixie dancing in the moonlight, daiton style, super detailed, fine linework", lora_strength: 0.75, output_format: "webp", output_quality: 80, negative_prompt: "bad image, zombie, bad eyes", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", input={ "width": 1024, "height": 1024, "prompt": "a small pixie dancing in the moonlight, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", "input": { "width": 1024, "height": 1024, "prompt": "a small pixie dancing in the moonlight, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:09:16.804962Z", "created_at": "2024-06-07T22:09:11.076000Z", "data_removed": false, "error": null, "id": "j81t47d3mhrgg0cfyjzsaf094g", "input": { "width": 1024, "height": 1024, "prompt": "a small pixie dancing in the moonlight, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }, "logs": "Random seed set to: 1513206520\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.22it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.21it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.22it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.20it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.21it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.20it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.21it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.20it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.20it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.20it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.20it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.19it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.19it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.19it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.19it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.22it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.25it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.21it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.23 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.677324, "total_time": 5.728962 }, "output": [ "https://replicate.delivery/pbxt/r2mUfb20aqR9TiODFLx7WWFtPpfUwcZcIyQGEgAWEWXLcT8SA/R8__00001_.webp" ], "started_at": "2024-06-07T22:09:11.127638Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/j81t47d3mhrgg0cfyjzsaf094g", "cancel": "https://api.replicate.com/v1/predictions/j81t47d3mhrgg0cfyjzsaf094g/cancel" }, "version": "840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15" }
Generated inRandom seed set to: 1513206520 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.22it/s] 10%|█ | 2/20 [00:00<00:03, 5.21it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.22it/s] 20%|██ | 4/20 [00:00<00:03, 5.20it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.21it/s] 30%|███ | 6/20 [00:01<00:02, 5.20it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s] 40%|████ | 8/20 [00:01<00:02, 5.21it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s] 50%|█████ | 10/20 [00:01<00:01, 5.20it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s] 60%|██████ | 12/20 [00:02<00:01, 5.20it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.20it/s] 70%|███████ | 14/20 [00:02<00:01, 5.20it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.19it/s] 80%|████████ | 16/20 [00:03<00:00, 5.19it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.19it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.19it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.22it/s] 100%|██████████| 20/20 [00:03<00:00, 5.25it/s] 100%|██████████| 20/20 [00:03<00:00, 5.21it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.23 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15IDkryph7s6zxrgj0cfyk0a7wqmmmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- a woman with with flowers blooming from her face, daiton style, super detailed, fine linework
- lora_strength
- 0.75
- output_format
- webp
- output_quality
- 80
- negative_prompt
- bad image, zombie, bad eyes
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "a woman with with flowers blooming from her face, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", { input: { width: 1024, height: 1024, prompt: "a woman with with flowers blooming from her face, daiton style, super detailed, fine linework", lora_strength: 0.75, output_format: "webp", output_quality: 80, negative_prompt: "bad image, zombie, bad eyes", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", input={ "width": 1024, "height": 1024, "prompt": "a woman with with flowers blooming from her face, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", "input": { "width": 1024, "height": 1024, "prompt": "a woman with with flowers blooming from her face, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:09:50.545700Z", "created_at": "2024-06-07T22:09:44.703000Z", "data_removed": false, "error": null, "id": "kryph7s6zxrgj0cfyk0a7wqmmm", "input": { "width": 1024, "height": 1024, "prompt": "a woman with with flowers blooming from her face, daiton style, super detailed, fine linework", "lora_strength": 0.75, "output_format": "webp", "output_quality": 80, "negative_prompt": "bad image, zombie, bad eyes", "number_of_images": 1 }, "logs": "Random seed set to: 2893810977\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.22it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.19it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.18it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.18it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.18it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.18it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.18it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.19it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.18it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.17it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.01it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.06it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.09it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.11it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.12it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.13it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.14it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.15it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.18it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.22it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.16it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.28 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.794066, "total_time": 5.8427 }, "output": [ "https://replicate.delivery/pbxt/olbHqeNli9XcViNtYBaLkdvj5f2mPqwY8UuYOgN1CTmtcT8SA/R8__00001_.webp" ], "started_at": "2024-06-07T22:09:44.751634Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kryph7s6zxrgj0cfyk0a7wqmmm", "cancel": "https://api.replicate.com/v1/predictions/kryph7s6zxrgj0cfyk0a7wqmmm/cancel" }, "version": "840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15" }
Generated inRandom seed set to: 2893810977 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.22it/s] 10%|█ | 2/20 [00:00<00:03, 5.19it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.18it/s] 20%|██ | 4/20 [00:00<00:03, 5.18it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.18it/s] 30%|███ | 6/20 [00:01<00:02, 5.18it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.18it/s] 40%|████ | 8/20 [00:01<00:02, 5.19it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.18it/s] 50%|█████ | 10/20 [00:01<00:01, 5.17it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.01it/s] 60%|██████ | 12/20 [00:02<00:01, 5.06it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.09it/s] 70%|███████ | 14/20 [00:02<00:01, 5.11it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.12it/s] 80%|████████ | 16/20 [00:03<00:00, 5.13it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.14it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.15it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.18it/s] 100%|██████████| 20/20 [00:03<00:00, 5.22it/s] 100%|██████████| 20/20 [00:03<00:00, 5.16it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.28 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Prediction
aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15IDfg2vzhcg3hrgg0cfyjwvy7kj04StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1024
- height
- 1024
- prompt
- neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework
- lora_strength
- 0.85
- output_format
- webp
- output_quality
- 80
- negative_prompt
- distorted, ugly, broken
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", { input: { width: 1024, height: 1024, prompt: "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", lora_strength: 0.85, output_format: "webp", output_quality: 80, negative_prompt: "distorted, ugly, broken", number_of_images: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", input={ "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run aramintak/soft-ones using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "aramintak/soft-ones:840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15", "input": { "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-06-07T22:02:38.534391Z", "created_at": "2024-06-07T22:02:32.860000Z", "data_removed": false, "error": null, "id": "fg2vzhcg3hrgg0cfyjwvy7kj04", "input": { "width": 1024, "height": 1024, "prompt": "neon cyberpunk portrait on a beach, daiton style, super detailed, fine linework", "lora_strength": 0.85, "output_format": "webp", "output_quality": 80, "negative_prompt": "distorted, ugly, broken", "number_of_images": 1 }, "logs": "Random seed set to: 3628039157\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:03, 5.26it/s]\n 10%|█ | 2/20 [00:00<00:03, 5.22it/s]\n 15%|█▌ | 3/20 [00:00<00:03, 5.21it/s]\n 20%|██ | 4/20 [00:00<00:03, 5.21it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 5.22it/s]\n 30%|███ | 6/20 [00:01<00:02, 5.21it/s]\n 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s]\n 40%|████ | 8/20 [00:01<00:02, 5.21it/s]\n 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s]\n 50%|█████ | 10/20 [00:01<00:01, 5.20it/s]\n 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s]\n 60%|██████ | 12/20 [00:02<00:01, 5.20it/s]\n 65%|██████▌ | 13/20 [00:02<00:01, 5.21it/s]\n 70%|███████ | 14/20 [00:02<00:01, 5.21it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 5.21it/s]\n 80%|████████ | 16/20 [00:03<00:00, 5.20it/s]\n 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s]\n 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s]\n 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.26it/s]\n100%|██████████| 20/20 [00:03<00:00, 5.22it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 9, title: Save Image, class type: SaveImage\nPrompt executed in 4.25 seconds\noutputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nR8__00001_.png", "metrics": { "predict_time": 5.630865, "total_time": 5.674391 }, "output": [ "https://replicate.delivery/pbxt/x5TsCUWYfhSFKSjTuYKJd3ToVsXGtMKf1VPto3es4Cv6rm4lA/R8__00001_.webp" ], "started_at": "2024-06-07T22:02:32.903526Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fg2vzhcg3hrgg0cfyjwvy7kj04", "cancel": "https://api.replicate.com/v1/predictions/fg2vzhcg3hrgg0cfyjwvy7kj04/cancel" }, "version": "840dcde1e729f762f473bbf7f5de6f02f8386d94fe8b64d320e659c32213ed15" }
Generated inRandom seed set to: 3628039157 Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:03, 5.26it/s] 10%|█ | 2/20 [00:00<00:03, 5.22it/s] 15%|█▌ | 3/20 [00:00<00:03, 5.21it/s] 20%|██ | 4/20 [00:00<00:03, 5.21it/s] 25%|██▌ | 5/20 [00:00<00:02, 5.22it/s] 30%|███ | 6/20 [00:01<00:02, 5.21it/s] 35%|███▌ | 7/20 [00:01<00:02, 5.21it/s] 40%|████ | 8/20 [00:01<00:02, 5.21it/s] 45%|████▌ | 9/20 [00:01<00:02, 5.20it/s] 50%|█████ | 10/20 [00:01<00:01, 5.20it/s] 55%|█████▌ | 11/20 [00:02<00:01, 5.20it/s] 60%|██████ | 12/20 [00:02<00:01, 5.20it/s] 65%|██████▌ | 13/20 [00:02<00:01, 5.21it/s] 70%|███████ | 14/20 [00:02<00:01, 5.21it/s] 75%|███████▌ | 15/20 [00:02<00:00, 5.21it/s] 80%|████████ | 16/20 [00:03<00:00, 5.20it/s] 85%|████████▌ | 17/20 [00:03<00:00, 5.20it/s] 90%|█████████ | 18/20 [00:03<00:00, 5.20it/s] 95%|█████████▌| 19/20 [00:03<00:00, 5.23it/s] 100%|██████████| 20/20 [00:03<00:00, 5.26it/s] 100%|██████████| 20/20 [00:03<00:00, 5.22it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 9, title: Save Image, class type: SaveImage Prompt executed in 4.25 seconds outputs: {'9': {'images': [{'filename': 'R8__00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== R8__00001_.png
Want to make some of these yourself?
Run this model