Readme
This model doesn't have a readme.
A refined version of my original MK1 model, with a better focus on fighters with human faces, and different materials (water, ice, fire, etc.)
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"asronline/mk1-redux:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
{
input: {
width: 1024,
height: 1024,
prompt: "In the style of MK1, a woman composed of water, transparent features, ready to fight",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"asronline/mk1-redux:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
input={
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, a woman composed of water, transparent features, ready to fight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, a woman composed of water, transparent features, ready to fight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run asronline/mk1-redux using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/asronline/mk1-redux@sha256:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="In the style of MK1, a woman composed of water, transparent features, ready to fight"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Pull and run asronline/mk1-redux using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/asronline/mk1-redux@sha256:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "In the style of MK1, a woman composed of water, transparent features, ready to fight", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.015. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-09-02T22:03:00.012063Z",
"created_at": "2023-09-02T22:02:44.360730Z",
"data_removed": false,
"error": null,
"id": "4u3ngpdbo4qbgbu7nd4aidep5m",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, a woman composed of water, transparent features, ready to fight",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 17130\nPrompt: In the style of MK1, a woman composed of water, transparent features, ready to fight\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.68it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.66it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.65it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.64it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.66it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.66it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.66it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.66it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.66it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.65it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.65it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]",
"metrics": {
"predict_time": 15.720556,
"total_time": 15.651333
},
"output": [
"https://pbxt.replicate.delivery/2tB7LOgie0XmeUIOROJmwYEkBN0RgUZCekyqKsnPie9OxYBGB/out-0.png"
],
"started_at": "2023-09-02T22:02:44.291507Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/4u3ngpdbo4qbgbu7nd4aidep5m",
"cancel": "https://api.replicate.com/v1/predictions/4u3ngpdbo4qbgbu7nd4aidep5m/cancel"
},
"version": "cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753"
}
Using seed: 17130
Prompt: In the style of MK1, a woman composed of water, transparent features, ready to fight
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.68it/s]
4%|▍ | 2/50 [00:00<00:13, 3.66it/s]
6%|▌ | 3/50 [00:00<00:12, 3.65it/s]
8%|▊ | 4/50 [00:01<00:12, 3.65it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:10, 3.64it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.66it/s]
30%|███ | 15/50 [00:04<00:09, 3.66it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]
40%|████ | 20/50 [00:05<00:08, 3.66it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]
50%|█████ | 25/50 [00:06<00:06, 3.66it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]
60%|██████ | 30/50 [00:08<00:05, 3.66it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
This model costs approximately $0.015 to run on Replicate, or 66 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 16 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 17130
Prompt: In the style of MK1, a woman composed of water, transparent features, ready to fight
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.68it/s]
4%|▍ | 2/50 [00:00<00:13, 3.66it/s]
6%|▌ | 3/50 [00:00<00:12, 3.65it/s]
8%|▊ | 4/50 [00:01<00:12, 3.65it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.64it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.65it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.64it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:10, 3.64it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.65it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.65it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.65it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.66it/s]
30%|███ | 15/50 [00:04<00:09, 3.66it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.66it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.66it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.66it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.66it/s]
40%|████ | 20/50 [00:05<00:08, 3.66it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.66it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.66it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.66it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.66it/s]
50%|█████ | 25/50 [00:06<00:06, 3.66it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.66it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.66it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.66it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.66it/s]
60%|██████ | 30/50 [00:08<00:05, 3.66it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.66it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.66it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.66it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.65it/s]
70%|███████ | 35/50 [00:09<00:04, 3.65it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.65it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.65it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.65it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.65it/s]
80%|████████ | 40/50 [00:10<00:02, 3.65it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.65it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.65it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.65it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.65it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.65it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.65it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.65it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.65it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]