cjwbw
/
gorilla
Gorilla: Large Language Model Connected with Massive APIs
Prediction
cjwbw/gorilla:4a1a7ce8IDoj3y2nlbepfocmd42hrhheezveStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- I would like to translate 'I feel very good today.' from English to French.
- model_name
- gorilla-llm/gorilla-mpt-7b-hf-v0
- temperature
- 0.7
- max_new_tokens
- 1024
Output
code_parsed
1. Import the necessary T5Tokenizer and T5Model classes from the transformers library. 2. Instantiate the tokenizer and model with the 'google/byt5-small' pretrained model. 3. Use the tokenizer to tokenize the input English text, which is 'I feel very good today.'n4. Feed the tokenized input to the model and obtain the generated French text as output.domain_parsed
I feel very good today.' domainapi_call_parsed
Natural Language Processing Text2Text Generation\nraw_text_response
###EN: 'I feel very good today.' <<<domain>>>: Natural Language Processing Text2Text Generation\n<<<api_call>>>: T5Model.from_pretrained('google/byt5-small')\n<<<api_provider>>>: Hugging Face Transformers\n<<<explanation>>>: 1. Import the necessary T5Tokenizer and T5Model classes from the transformers library.\n2. Instantiate the tokenizer and model with the 'google/byt5-small' pretrained model.\n3. Use the tokenizer to tokenize the input English text, which is 'I feel very good today.'\n4. Feed the tokenized input to the model and obtain the generated French text as output.\n<<<code>>>: from transformers import T5Tokenizer, T5Model\ntokenizer = T5Tokenizer.from_pretrained('google/byt5-small')\nmodel = T5Model.from_pretrained('google/byt5-small')\ninput_text = \"translate English to French: I feel very good today.\"\ninput_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids\noutputs = model.generate(input_ids)\ntranslated_text = tokenizer.decode(outputs[0])\nprint(translated_text)" """ # Translate English text to French using a pre-trained T5 model.\nI feel very good today." <<<code>>>: from transformers import T5Tokenizer, T5Model\ntokenizer = T5Tokenizer.from_pretrained('google/byt5-small')\nmodel = T5Model.from_pretrained('google/byt5-small')\ninput_text = \"translate English to French: I feel very good today.\"\ninput_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids\noutputs = model.generate(input_ids)\ntranslated_text = tokenizer.decode(outputs[0])\nprint(translated_text)" # Translate 'I feel very good today.' to French using a T5 model." # Output: \"J'ai un sentiment très bien aujourd'hui.\"" from transformers import T5Tokenizer, T5Model\ntokenizer = T5Tokenizer.from_pretrained('google/byt5-small')\nmodel = T5Model.from_pretrained('google/byt5-small')\ninput_text = \"translate English to French: I feel very good today.\"\ninput_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids\noutputs = model.generate(input_ids)\ntranslated_text = tokenizer.decode(outputs[0])\nprint(translated_text)" # Translate 'I feel very good today.' to French using a T5 model." Dans cette instruction, nous allons vous apprendre comment transformer une phrase d'anglais en français à l'aide de la technologie T5. \n1. Importez T5Tokenizer et T5Model de transformers.\n2. Créez un tokenizer et un model avec le pretrained 'google/byt5-small' modèle.\n3. Translatez la phrase d'anglais en français en utilisant tokenizer et model.\n4. Imprimez le résultat de la translation sous forme de texte." from transformers import T5Tokenizer, T5Model\ntokenizer = T5Tokenizer.from_pretrained('google/byt5-small')\nmodel = T5Model.from_pretrained('google/byt5-small')\ninput_text = \"translate English to French: I feel very good today.\"\ninput_ids = tokenizer(input_text, return_tensors=\"pt\").input_ids\noutputs = model.generate(input_ids)\ntranslated_text = tokenizer.decode(outputs[0])\nprint(translated_text)" # Translate 'I feel very good today.' to French using a T5 model." <<<code>>>: from transformers import T5Tokenizer, T5Model\ntokenizer = T5Tokenizer.from_pretrained('google/byt5-small')\nmodel = T5Model.from_pretrained('google/byt5-small')\ninput_text = \"translate English to French: I feel very good today.\"\ninput_ids = tokenexplanation_parsed
Hugging Face Transformersapi_provider_parsed
T5Model.from_pretrained('google/byt5-small')\nGenerated inPrediction
cjwbw/gorilla:4a1a7ce8IDbc2uwn3btg3wvuu5tejtocsi5mStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- I would like to translate 'I feel very good today.' from English to French.
- model_name
- gorilla-llm/gorilla-falcon-7b-hf-v0
- temperature
- 0.7
- max_new_tokens
- 1024
Output
code_parsed
from transformers import pipeline translator = pipeline('translation_en_to_fr', model='Helsinki-NLP/opus-mt-en-fr') translated_text = translator("I feel very good today.")[0]['translation_text']"domain_parsed
Natural Language Processing Translation\napi_call_parsed
pipeline('translation_en_to_fr', model='Helsinki-NLP/opus-mt-en-fr')\nraw_text_response
\n<<<domain>>>: Natural Language Processing Translation\n<<<api_call>>>: pipeline('translation_en_to_fr', model='Helsinki-NLP/opus-mt-en-fr')\n<<<api_provider>>>: Hugging Face Transformers\n<<<explanation>>>: 1. We first import the pipeline function from the transformers library provided by Hugging Face.\n2. We then use the pipeline function to create a translation model.\n3. We specify the model 'Helsinki-NLP/opus-mt-en-fr' to be loaded. This model is trained for English to French translation tasks, which is exactly what we need for translating 'I feel very good today.'\n4. We can pass the English text as input and the model will return the translated French text.\n<<<code>>>: from transformers import pipeline\ntranslator = pipeline('translation_en_to_fr', model='Helsinki-NLP/opus-mt-en-fr')\ntranslated_text = translator(\"I feel very good today.\")[0]['translation_text']"explanation_parsed
1. We first import the pipeline function from the transformers library provided by Hugging Face. 2. We then use the pipeline function to create a translation model. 3. We specify the model 'Helsinki-NLP/opus-mt-en-fr' to be loaded. This model is trained for English to French translation tasks, which is exactly what we need for translating 'I feel very good today.'n4. We can pass the English text as input and the model will return the translated French text.api_provider_parsed
Hugging Face Transformers\nGenerated inPrediction
cjwbw/gorilla:4a1a7ce8IDazql2s3blxyfvwtdjnsyot3rbaStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- prompt
- I want to build a robot that can detecting objects in an image ‘cat.jpeg’. Input: [‘cat.jpeg’]
- model_name
- gorilla-llm/gorilla-falcon-7b-hf-v0
- temperature
- 0.7
- max_new_tokens
- 1024
Output
code_parsed
from transformers import Mask2FormerForUniversalSegmentation from PIL import Image image = Image.open('cat.jpeg') # Replace 'cat.jpeg' with the path to your image model = Mask2FormerForUniversalSegmentation.from_pretrained('facebook/mask2former-swin-tiny-coco-instance') inputs = processor(images=image, return_tensors='pt') outputs = model(**inputs) "domain_parsed
Computer Vision Image Segmentation\napi_call_parsed
Mask2FormerForUniversalSegmentation.from_pretrained('facebook/mask2former-swin-tiny-coco-instance')\nraw_text_response
\n<<<domain>>>: Computer Vision Image Segmentation\n<<<api_call>>>: Mask2FormerForUniversalSegmentation.from_pretrained('facebook/mask2former-swin-tiny-coco-instance')\n<<<api_provider>>>: Hugging Face Transformers\n<<<explanation>>>: 1. Import the required classes from the transformers library, such as Mask2FormerForUniversalSegmentation for the image segmentation model.\n2. Use the from_pretrained method of the Mask2FormerForUniversalSegmentation class to load the pre-trained model 'facebook/mask2former-swin-tiny-coco-instance'.\n3. This model is designed for universal segmentation tasks, which includes detecting instances of objects in images.\n4. Load the image 'cat.jpeg' and process it using this model to get the segmentation results.\n<<<code>>>: from transformers import Mask2FormerForUniversalSegmentation\nfrom PIL import Image\nimage = Image.open('cat.jpeg')\n# Replace 'cat.jpeg' with the path to your image\nmodel = Mask2FormerForUniversalSegmentation.from_pretrained('facebook/mask2former-swin-tiny-coco-instance')\ninputs = processor(images=image, return_tensors='pt')\noutputs = model(**inputs)\n"explanation_parsed
1. Import the required classes from the transformers library, such as Mask2FormerForUniversalSegmentation for the image segmentation model. 2. Use the from_pretrained method of the Mask2FormerForUniversalSegmentation class to load the pre-trained model 'facebook/mask2former-swin-tiny-coco-instance'. 3. This model is designed for universal segmentation tasks, which includes detecting instances of objects in images. 4. Load the image 'cat.jpeg' and process it using this model to get the segmentation results.api_provider_parsed
Hugging Face Transformers\nGenerated in
Want to make some of these yourself?
Run this model