You're looking at a specific version of this model. Jump to the model overview.
cloneofsimo /hotshot-xl-lora-controlnet:e3a0c2d7
Input schema
The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
Hi there doggo!
|
The main prompt that guides the image generation.
|
negative_prompt |
string
|
|
A negative prompt to avoid certain features in the generated images.
|
width |
integer
|
672
|
The width of the generated images.
|
height |
integer
|
384
|
The height of the generated images.
|
original_width |
integer
|
1920
|
The width of the `original_size` of images. If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
original_height |
integer
|
1080
|
The `original_size height` of the images.
|
target_width |
integer
|
512
|
The `target_size width` of the images.
|
target_height |
integer
|
512
|
The `target_size height` of the images.
|
steps |
integer
|
30
|
The number of steps for the prediction.
|
video_length |
integer
|
8
|
The length of the video in frames.
|
video_duration |
integer
|
1000
|
The duration of the video in milliseconds.
|
lora |
string
|
The URL for LoRA weights.
|
|
control_type |
string
|
The type of control net to use for conditional generation.
|
|
gif_path |
string
|
The path to the GIF for conditional generation.
|
|
control_guidance_start |
number
|
0
|
The start of the control guidance.
|
control_guidance_end |
number
|
1
|
The end of the control guidance.
|
controlnet_conditioning_scale |
number
|
0.7
|
The scale of the controlnet conditioning.
|
seed |
integer
|
455
|
The seed for the random number generator.
|
Output schema
The shape of the response you’ll get when you run this model with an API.
Schema
{'items': {'format': 'path', 'type': 'string'},
'title': 'Output',
'type': 'array'}