Readme
This is a replicate ported fp16 model of https://huggingface.co/22h/vintedois-diffusion-v0-1 with LoRA capabilities.
LoRA, fp16 vintedois-diffusion-v0-1
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run cloneofsimo/vintedois_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"cloneofsimo/vintedois_lora:c43a53a23c00fdd1e2f0c403aecdc17296d58cc1dd455ae0fa613a0e5eb8232f",
{
input: {
width: 512,
height: 512,
prompt: "close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition",
lora_urls: "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
scheduler: "DPMSolverMultistep",
lora_scales: "0.5",
num_outputs: 1,
adapter_type: "sketch",
guidance_scale: 7,
negative_prompt: "blurry, bad anatomy, blurred, watermark, grainy, signature",
prompt_strength: 0.8,
num_inference_steps: 30
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run cloneofsimo/vintedois_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"cloneofsimo/vintedois_lora:c43a53a23c00fdd1e2f0c403aecdc17296d58cc1dd455ae0fa613a0e5eb8232f",
input={
"width": 512,
"height": 512,
"prompt": "close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 7,
"negative_prompt": "blurry, bad anatomy, blurred, watermark, grainy, signature",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run cloneofsimo/vintedois_lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "c43a53a23c00fdd1e2f0c403aecdc17296d58cc1dd455ae0fa613a0e5eb8232f",
"input": {
"width": 512,
"height": 512,
"prompt": "close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"adapter_type": "sketch",
"guidance_scale": 7,
"negative_prompt": "blurry, bad anatomy, blurred, watermark, grainy, signature",
"prompt_strength": 0.8,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/cloneofsimo/vintedois_lora@sha256:c43a53a23c00fdd1e2f0c403aecdc17296d58cc1dd455ae0fa613a0e5eb8232f \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition"' \
-i 'lora_urls="https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors"' \
-i 'scheduler="DPMSolverMultistep"' \
-i 'lora_scales="0.5"' \
-i 'num_outputs=1' \
-i 'adapter_type="sketch"' \
-i 'guidance_scale=7' \
-i 'negative_prompt="blurry, bad anatomy, blurred, watermark, grainy, signature"' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/cloneofsimo/vintedois_lora@sha256:c43a53a23c00fdd1e2f0c403aecdc17296d58cc1dd455ae0fa613a0e5eb8232f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition", "lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors", "scheduler": "DPMSolverMultistep", "lora_scales": "0.5", "num_outputs": 1, "adapter_type": "sketch", "guidance_scale": 7, "negative_prompt": "blurry, bad anatomy, blurred, watermark, grainy, signature", "prompt_strength": 0.8, "num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0026. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-02-09T22:30:30.027937Z",
"created_at": "2023-02-09T22:30:19.309173Z",
"data_removed": false,
"error": null,
"id": "r7fivxppnnh7jbz47v3jnsgbty",
"input": {
"width": 512,
"height": 512,
"prompt": "close up portrait of <1> in a Sci Fi suit - 4k uhd, hyper detailed, photorealistic, steampunk, lovecraft colors, dan mumford colors, psychedelic black light, epic composition",
"lora_urls": "https://replicate.delivery/pbxt/tLNfiG3fK2jZo0CrBG4cNTJNhEi7r117ANUBjWrLTkQRMraQA/tmpg9tq4is5me.safetensors",
"scheduler": "DPMSolverMultistep",
"lora_scales": "0.5",
"num_outputs": 1,
"guidance_scale": "7",
"negative_prompt": "blurry, bad anatomy, blurred, watermark, grainy, signature",
"num_inference_steps": "30"
},
"logs": "Using seed: 25844\nUsing disk cache...\nEmbedding <s1> replaced to <s0-0>\nEmbedding <s2> replaced to <s0-1>\n<s0-0>\nThe tokenizer already contains the token <s0-0>.\nReplacing <s0-0> embedding.\n<s0-1>\nThe tokenizer already contains the token <s0-1>.\nReplacing <s0-1> embedding.\nmerging time: 3.018888473510742\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:07, 3.78it/s]\n 7%|▋ | 2/30 [00:00<00:06, 4.26it/s]\n 10%|█ | 3/30 [00:00<00:06, 4.45it/s]\n 13%|█▎ | 4/30 [00:00<00:05, 4.57it/s]\n 17%|█▋ | 5/30 [00:01<00:05, 4.56it/s]\n 20%|██ | 6/30 [00:01<00:05, 4.54it/s]\n 23%|██▎ | 7/30 [00:01<00:05, 4.60it/s]\n 27%|██▋ | 8/30 [00:01<00:04, 4.62it/s]\n 30%|███ | 9/30 [00:01<00:04, 4.67it/s]\n 33%|███▎ | 10/30 [00:02<00:04, 4.63it/s]\n 37%|███▋ | 11/30 [00:02<00:04, 4.59it/s]\n 40%|████ | 12/30 [00:02<00:03, 4.64it/s]\n 43%|████▎ | 13/30 [00:02<00:03, 4.66it/s]\n 47%|████▋ | 14/30 [00:03<00:03, 4.66it/s]\n 50%|█████ | 15/30 [00:03<00:03, 4.64it/s]\n 53%|█████▎ | 16/30 [00:03<00:03, 4.61it/s]\n 57%|█████▋ | 17/30 [00:03<00:02, 4.60it/s]\n 60%|██████ | 18/30 [00:03<00:02, 4.63it/s]\n 63%|██████▎ | 19/30 [00:04<00:02, 4.63it/s]\n 67%|██████▋ | 20/30 [00:04<00:02, 4.63it/s]\n 70%|███████ | 21/30 [00:04<00:01, 4.65it/s]\n 73%|███████▎ | 22/30 [00:04<00:01, 4.62it/s]\n 77%|███████▋ | 23/30 [00:05<00:01, 4.65it/s]\n 80%|████████ | 24/30 [00:05<00:01, 4.65it/s]\n 83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s]\n 87%|████████▋ | 26/30 [00:05<00:00, 4.65it/s]\n 90%|█████████ | 27/30 [00:05<00:00, 4.65it/s]\n 93%|█████████▎| 28/30 [00:06<00:00, 4.64it/s]\n 97%|█████████▋| 29/30 [00:06<00:00, 4.65it/s]\n100%|██████████| 30/30 [00:06<00:00, 4.63it/s]\n100%|██████████| 30/30 [00:06<00:00, 4.60it/s]",
"metrics": {
"predict_time": 10.654866,
"total_time": 10.718764
},
"output": [
"https://replicate.delivery/pbxt/boT740OghXpnJNNSdOIQj05413hp51yzGExlfvOgWN1CMZOIA/out-0.png"
],
"started_at": "2023-02-09T22:30:19.373071Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/r7fivxppnnh7jbz47v3jnsgbty",
"cancel": "https://api.replicate.com/v1/predictions/r7fivxppnnh7jbz47v3jnsgbty/cancel"
},
"version": "2a7199fef2ad2cf1f14056744857604b92a5c3851472d60995d0bc25f12438f2"
}
Using seed: 25844
Using disk cache...
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
<s0-0>
The tokenizer already contains the token <s0-0>.
Replacing <s0-0> embedding.
<s0-1>
The tokenizer already contains the token <s0-1>.
Replacing <s0-1> embedding.
merging time: 3.018888473510742
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:07, 3.78it/s]
7%|▋ | 2/30 [00:00<00:06, 4.26it/s]
10%|█ | 3/30 [00:00<00:06, 4.45it/s]
13%|█▎ | 4/30 [00:00<00:05, 4.57it/s]
17%|█▋ | 5/30 [00:01<00:05, 4.56it/s]
20%|██ | 6/30 [00:01<00:05, 4.54it/s]
23%|██▎ | 7/30 [00:01<00:05, 4.60it/s]
27%|██▋ | 8/30 [00:01<00:04, 4.62it/s]
30%|███ | 9/30 [00:01<00:04, 4.67it/s]
33%|███▎ | 10/30 [00:02<00:04, 4.63it/s]
37%|███▋ | 11/30 [00:02<00:04, 4.59it/s]
40%|████ | 12/30 [00:02<00:03, 4.64it/s]
43%|████▎ | 13/30 [00:02<00:03, 4.66it/s]
47%|████▋ | 14/30 [00:03<00:03, 4.66it/s]
50%|█████ | 15/30 [00:03<00:03, 4.64it/s]
53%|█████▎ | 16/30 [00:03<00:03, 4.61it/s]
57%|█████▋ | 17/30 [00:03<00:02, 4.60it/s]
60%|██████ | 18/30 [00:03<00:02, 4.63it/s]
63%|██████▎ | 19/30 [00:04<00:02, 4.63it/s]
67%|██████▋ | 20/30 [00:04<00:02, 4.63it/s]
70%|███████ | 21/30 [00:04<00:01, 4.65it/s]
73%|███████▎ | 22/30 [00:04<00:01, 4.62it/s]
77%|███████▋ | 23/30 [00:05<00:01, 4.65it/s]
80%|████████ | 24/30 [00:05<00:01, 4.65it/s]
83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s]
87%|████████▋ | 26/30 [00:05<00:00, 4.65it/s]
90%|█████████ | 27/30 [00:05<00:00, 4.65it/s]
93%|█████████▎| 28/30 [00:06<00:00, 4.64it/s]
97%|█████████▋| 29/30 [00:06<00:00, 4.65it/s]
100%|██████████| 30/30 [00:06<00:00, 4.63it/s]
100%|██████████| 30/30 [00:06<00:00, 4.60it/s]
This output was created using a different version of the model, cloneofsimo/vintedois_lora:2a7199fe.
This model costs approximately $0.0026 to run on Replicate, or 384 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia T4 GPU hardware. Predictions typically complete within 12 seconds.
This is a replicate ported fp16 model of https://huggingface.co/22h/vintedois-diffusion-v0-1 with LoRA capabilities.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 25844
Using disk cache...
Embedding <s1> replaced to <s0-0>
Embedding <s2> replaced to <s0-1>
<s0-0>
The tokenizer already contains the token <s0-0>.
Replacing <s0-0> embedding.
<s0-1>
The tokenizer already contains the token <s0-1>.
Replacing <s0-1> embedding.
merging time: 3.018888473510742
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:07, 3.78it/s]
7%|▋ | 2/30 [00:00<00:06, 4.26it/s]
10%|█ | 3/30 [00:00<00:06, 4.45it/s]
13%|█▎ | 4/30 [00:00<00:05, 4.57it/s]
17%|█▋ | 5/30 [00:01<00:05, 4.56it/s]
20%|██ | 6/30 [00:01<00:05, 4.54it/s]
23%|██▎ | 7/30 [00:01<00:05, 4.60it/s]
27%|██▋ | 8/30 [00:01<00:04, 4.62it/s]
30%|███ | 9/30 [00:01<00:04, 4.67it/s]
33%|███▎ | 10/30 [00:02<00:04, 4.63it/s]
37%|███▋ | 11/30 [00:02<00:04, 4.59it/s]
40%|████ | 12/30 [00:02<00:03, 4.64it/s]
43%|████▎ | 13/30 [00:02<00:03, 4.66it/s]
47%|████▋ | 14/30 [00:03<00:03, 4.66it/s]
50%|█████ | 15/30 [00:03<00:03, 4.64it/s]
53%|█████▎ | 16/30 [00:03<00:03, 4.61it/s]
57%|█████▋ | 17/30 [00:03<00:02, 4.60it/s]
60%|██████ | 18/30 [00:03<00:02, 4.63it/s]
63%|██████▎ | 19/30 [00:04<00:02, 4.63it/s]
67%|██████▋ | 20/30 [00:04<00:02, 4.63it/s]
70%|███████ | 21/30 [00:04<00:01, 4.65it/s]
73%|███████▎ | 22/30 [00:04<00:01, 4.62it/s]
77%|███████▋ | 23/30 [00:05<00:01, 4.65it/s]
80%|████████ | 24/30 [00:05<00:01, 4.65it/s]
83%|████████▎ | 25/30 [00:05<00:01, 4.62it/s]
87%|████████▋ | 26/30 [00:05<00:00, 4.65it/s]
90%|█████████ | 27/30 [00:05<00:00, 4.65it/s]
93%|█████████▎| 28/30 [00:06<00:00, 4.64it/s]
97%|█████████▋| 29/30 [00:06<00:00, 4.65it/s]
100%|██████████| 30/30 [00:06<00:00, 4.63it/s]
100%|██████████| 30/30 [00:06<00:00, 4.60it/s]