Readme
This model doesn't have a readme.
Generate photos of the most handsome man on Earth
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run extrange/qinxiang using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"extrange/qinxiang:9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b",
{
input: {
width: 1024,
height: 1024,
prompt: "profile of TOK, formal wear, professional photograph, DSLR",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 4,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run extrange/qinxiang using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"extrange/qinxiang:9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b",
input={
"width": 1024,
"height": 1024,
"prompt": "profile of TOK, formal wear, professional photograph, DSLR",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run extrange/qinxiang using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b",
"input": {
"width": 1024,
"height": 1024,
"prompt": "profile of TOK, formal wear, professional photograph, DSLR",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/extrange/qinxiang@sha256:9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="profile of TOK, formal wear, professional photograph, DSLR"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=4' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/extrange/qinxiang@sha256:9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "profile of TOK, formal wear, professional photograph, DSLR", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.058. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-10-27T00:31:06.031361Z",
"created_at": "2023-10-27T00:29:59.384097Z",
"data_removed": false,
"error": null,
"id": "iy2tuv3bjmmh35pwkeuzok2cwm",
"input": {
"width": 1024,
"height": 1024,
"prompt": "profile of TOK, formal wear, professional photograph, DSLR",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 43767\nEnsuring enough disk space...\nFree disk space: 1553610043392\nDownloading weights: https://pbxt.replicate.delivery/kNaheb5WGz3TG6gDZgmEQBBe27HmyvXff2R9iyLa3UIckzHHB/trained_model.tar\nb'Downloaded 186 MB bytes in 4.320s (43 MB/s)\\nExtracted 186 MB in 0.078s (2.4 GB/s)\\n'\nDownloaded weights in 4.760844707489014 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: profile of <s0><s1>, formal wear, professional photograph, DSLR\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<00:51, 1.05s/it]\n 4%|▍ | 2/50 [00:02<00:50, 1.05s/it]\n 6%|▌ | 3/50 [00:03<00:49, 1.04s/it]\n 8%|▊ | 4/50 [00:04<00:48, 1.05s/it]\n 10%|█ | 5/50 [00:05<00:47, 1.05s/it]\n 12%|█▏ | 6/50 [00:06<00:46, 1.05s/it]\n 14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]\n 16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]\n 18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]\n 20%|██ | 10/50 [00:10<00:41, 1.05s/it]\n 22%|██▏ | 11/50 [00:11<00:40, 1.05s/it]\n 24%|██▍ | 12/50 [00:12<00:39, 1.05s/it]\n 26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]\n 28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]\n 30%|███ | 15/50 [00:15<00:36, 1.05s/it]\n 32%|███▏ | 16/50 [00:16<00:35, 1.05s/it]\n 34%|███▍ | 17/50 [00:17<00:34, 1.05s/it]\n 36%|███▌ | 18/50 [00:18<00:33, 1.05s/it]\n 38%|███▊ | 19/50 [00:19<00:32, 1.05s/it]\n 40%|████ | 20/50 [00:20<00:31, 1.05s/it]\n 42%|████▏ | 21/50 [00:21<00:30, 1.05s/it]\n 44%|████▍ | 22/50 [00:23<00:29, 1.05s/it]\n 46%|████▌ | 23/50 [00:24<00:28, 1.05s/it]\n 48%|████▊ | 24/50 [00:25<00:27, 1.05s/it]\n 50%|█████ | 25/50 [00:26<00:26, 1.05s/it]\n 52%|█████▏ | 26/50 [00:27<00:25, 1.05s/it]\n 54%|█████▍ | 27/50 [00:28<00:24, 1.05s/it]\n 56%|█████▌ | 28/50 [00:29<00:23, 1.05s/it]\n 58%|█████▊ | 29/50 [00:30<00:22, 1.05s/it]\n 60%|██████ | 30/50 [00:31<00:20, 1.05s/it]\n 62%|██████▏ | 31/50 [00:32<00:19, 1.05s/it]\n 64%|██████▍ | 32/50 [00:33<00:18, 1.05s/it]\n 66%|██████▌ | 33/50 [00:34<00:17, 1.05s/it]\n 68%|██████▊ | 34/50 [00:35<00:16, 1.05s/it]\n 70%|███████ | 35/50 [00:36<00:15, 1.05s/it]\n 72%|███████▏ | 36/50 [00:37<00:14, 1.05s/it]\n 74%|███████▍ | 37/50 [00:38<00:13, 1.05s/it]\n 76%|███████▌ | 38/50 [00:39<00:12, 1.05s/it]\n 78%|███████▊ | 39/50 [00:40<00:11, 1.05s/it]\n 80%|████████ | 40/50 [00:41<00:10, 1.05s/it]\n 82%|████████▏ | 41/50 [00:42<00:09, 1.05s/it]\n 84%|████████▍ | 42/50 [00:44<00:08, 1.05s/it]\n 86%|████████▌ | 43/50 [00:45<00:07, 1.05s/it]\n 88%|████████▊ | 44/50 [00:46<00:06, 1.05s/it]\n 90%|█████████ | 45/50 [00:47<00:05, 1.05s/it]\n 92%|█████████▏| 46/50 [00:48<00:04, 1.05s/it]\n 94%|█████████▍| 47/50 [00:49<00:03, 1.05s/it]\n 96%|█████████▌| 48/50 [00:50<00:02, 1.05s/it]\n 98%|█████████▊| 49/50 [00:51<00:01, 1.05s/it]\n100%|██████████| 50/50 [00:52<00:00, 1.05s/it]\n100%|██████████| 50/50 [00:52<00:00, 1.05s/it]",
"metrics": {
"predict_time": 63.488887,
"total_time": 66.647264
},
"output": [
"https://pbxt.replicate.delivery/2T2Ba6koW2bVEJkZdN1Xt8Xav3RvQqm7fqyW2s5KJRRktF5IA/out-0.png",
"https://pbxt.replicate.delivery/QmL5otbAuOodC13yg0tT68iIflRHnQ8YFNSEnBhHJK0ktF5IA/out-1.png",
"https://pbxt.replicate.delivery/mfa2OI4DCesU0U7UbvNIC1zy6d4xTZDscA41LXjqRW8JbLyRA/out-2.png",
"https://pbxt.replicate.delivery/SJS8eGLCppXnVi2TIvZHoYMsRuNINZR5vssf4eFekjvmstIHB/out-3.png"
],
"started_at": "2023-10-27T00:30:02.542474Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/iy2tuv3bjmmh35pwkeuzok2cwm",
"cancel": "https://api.replicate.com/v1/predictions/iy2tuv3bjmmh35pwkeuzok2cwm/cancel"
},
"version": "9f927bc8a17986b557daa8e4f655ef7c09a112e4e0ec5ba6806f36e56ec9f56b"
}
Using seed: 43767
Ensuring enough disk space...
Free disk space: 1553610043392
Downloading weights: https://pbxt.replicate.delivery/kNaheb5WGz3TG6gDZgmEQBBe27HmyvXff2R9iyLa3UIckzHHB/trained_model.tar
b'Downloaded 186 MB bytes in 4.320s (43 MB/s)\nExtracted 186 MB in 0.078s (2.4 GB/s)\n'
Downloaded weights in 4.760844707489014 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: profile of <s0><s1>, formal wear, professional photograph, DSLR
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<00:51, 1.05s/it]
4%|▍ | 2/50 [00:02<00:50, 1.05s/it]
6%|▌ | 3/50 [00:03<00:49, 1.04s/it]
8%|▊ | 4/50 [00:04<00:48, 1.05s/it]
10%|█ | 5/50 [00:05<00:47, 1.05s/it]
12%|█▏ | 6/50 [00:06<00:46, 1.05s/it]
14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]
16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]
18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]
20%|██ | 10/50 [00:10<00:41, 1.05s/it]
22%|██▏ | 11/50 [00:11<00:40, 1.05s/it]
24%|██▍ | 12/50 [00:12<00:39, 1.05s/it]
26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]
28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]
30%|███ | 15/50 [00:15<00:36, 1.05s/it]
32%|███▏ | 16/50 [00:16<00:35, 1.05s/it]
34%|███▍ | 17/50 [00:17<00:34, 1.05s/it]
36%|███▌ | 18/50 [00:18<00:33, 1.05s/it]
38%|███▊ | 19/50 [00:19<00:32, 1.05s/it]
40%|████ | 20/50 [00:20<00:31, 1.05s/it]
42%|████▏ | 21/50 [00:21<00:30, 1.05s/it]
44%|████▍ | 22/50 [00:23<00:29, 1.05s/it]
46%|████▌ | 23/50 [00:24<00:28, 1.05s/it]
48%|████▊ | 24/50 [00:25<00:27, 1.05s/it]
50%|█████ | 25/50 [00:26<00:26, 1.05s/it]
52%|█████▏ | 26/50 [00:27<00:25, 1.05s/it]
54%|█████▍ | 27/50 [00:28<00:24, 1.05s/it]
56%|█████▌ | 28/50 [00:29<00:23, 1.05s/it]
58%|█████▊ | 29/50 [00:30<00:22, 1.05s/it]
60%|██████ | 30/50 [00:31<00:20, 1.05s/it]
62%|██████▏ | 31/50 [00:32<00:19, 1.05s/it]
64%|██████▍ | 32/50 [00:33<00:18, 1.05s/it]
66%|██████▌ | 33/50 [00:34<00:17, 1.05s/it]
68%|██████▊ | 34/50 [00:35<00:16, 1.05s/it]
70%|███████ | 35/50 [00:36<00:15, 1.05s/it]
72%|███████▏ | 36/50 [00:37<00:14, 1.05s/it]
74%|███████▍ | 37/50 [00:38<00:13, 1.05s/it]
76%|███████▌ | 38/50 [00:39<00:12, 1.05s/it]
78%|███████▊ | 39/50 [00:40<00:11, 1.05s/it]
80%|████████ | 40/50 [00:41<00:10, 1.05s/it]
82%|████████▏ | 41/50 [00:42<00:09, 1.05s/it]
84%|████████▍ | 42/50 [00:44<00:08, 1.05s/it]
86%|████████▌ | 43/50 [00:45<00:07, 1.05s/it]
88%|████████▊ | 44/50 [00:46<00:06, 1.05s/it]
90%|█████████ | 45/50 [00:47<00:05, 1.05s/it]
92%|█████████▏| 46/50 [00:48<00:04, 1.05s/it]
94%|█████████▍| 47/50 [00:49<00:03, 1.05s/it]
96%|█████████▌| 48/50 [00:50<00:02, 1.05s/it]
98%|█████████▊| 49/50 [00:51<00:01, 1.05s/it]
100%|██████████| 50/50 [00:52<00:00, 1.05s/it]
100%|██████████| 50/50 [00:52<00:00, 1.05s/it]
This model costs approximately $0.058 to run on Replicate, or 17 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 60 seconds. The predict time for this model varies significantly based on the inputs.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 43767
Ensuring enough disk space...
Free disk space: 1553610043392
Downloading weights: https://pbxt.replicate.delivery/kNaheb5WGz3TG6gDZgmEQBBe27HmyvXff2R9iyLa3UIckzHHB/trained_model.tar
b'Downloaded 186 MB bytes in 4.320s (43 MB/s)\nExtracted 186 MB in 0.078s (2.4 GB/s)\n'
Downloaded weights in 4.760844707489014 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: profile of <s0><s1>, formal wear, professional photograph, DSLR
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<00:51, 1.05s/it]
4%|▍ | 2/50 [00:02<00:50, 1.05s/it]
6%|▌ | 3/50 [00:03<00:49, 1.04s/it]
8%|▊ | 4/50 [00:04<00:48, 1.05s/it]
10%|█ | 5/50 [00:05<00:47, 1.05s/it]
12%|█▏ | 6/50 [00:06<00:46, 1.05s/it]
14%|█▍ | 7/50 [00:07<00:45, 1.05s/it]
16%|█▌ | 8/50 [00:08<00:44, 1.05s/it]
18%|█▊ | 9/50 [00:09<00:43, 1.05s/it]
20%|██ | 10/50 [00:10<00:41, 1.05s/it]
22%|██▏ | 11/50 [00:11<00:40, 1.05s/it]
24%|██▍ | 12/50 [00:12<00:39, 1.05s/it]
26%|██▌ | 13/50 [00:13<00:38, 1.05s/it]
28%|██▊ | 14/50 [00:14<00:37, 1.05s/it]
30%|███ | 15/50 [00:15<00:36, 1.05s/it]
32%|███▏ | 16/50 [00:16<00:35, 1.05s/it]
34%|███▍ | 17/50 [00:17<00:34, 1.05s/it]
36%|███▌ | 18/50 [00:18<00:33, 1.05s/it]
38%|███▊ | 19/50 [00:19<00:32, 1.05s/it]
40%|████ | 20/50 [00:20<00:31, 1.05s/it]
42%|████▏ | 21/50 [00:21<00:30, 1.05s/it]
44%|████▍ | 22/50 [00:23<00:29, 1.05s/it]
46%|████▌ | 23/50 [00:24<00:28, 1.05s/it]
48%|████▊ | 24/50 [00:25<00:27, 1.05s/it]
50%|█████ | 25/50 [00:26<00:26, 1.05s/it]
52%|█████▏ | 26/50 [00:27<00:25, 1.05s/it]
54%|█████▍ | 27/50 [00:28<00:24, 1.05s/it]
56%|█████▌ | 28/50 [00:29<00:23, 1.05s/it]
58%|█████▊ | 29/50 [00:30<00:22, 1.05s/it]
60%|██████ | 30/50 [00:31<00:20, 1.05s/it]
62%|██████▏ | 31/50 [00:32<00:19, 1.05s/it]
64%|██████▍ | 32/50 [00:33<00:18, 1.05s/it]
66%|██████▌ | 33/50 [00:34<00:17, 1.05s/it]
68%|██████▊ | 34/50 [00:35<00:16, 1.05s/it]
70%|███████ | 35/50 [00:36<00:15, 1.05s/it]
72%|███████▏ | 36/50 [00:37<00:14, 1.05s/it]
74%|███████▍ | 37/50 [00:38<00:13, 1.05s/it]
76%|███████▌ | 38/50 [00:39<00:12, 1.05s/it]
78%|███████▊ | 39/50 [00:40<00:11, 1.05s/it]
80%|████████ | 40/50 [00:41<00:10, 1.05s/it]
82%|████████▏ | 41/50 [00:42<00:09, 1.05s/it]
84%|████████▍ | 42/50 [00:44<00:08, 1.05s/it]
86%|████████▌ | 43/50 [00:45<00:07, 1.05s/it]
88%|████████▊ | 44/50 [00:46<00:06, 1.05s/it]
90%|█████████ | 45/50 [00:47<00:05, 1.05s/it]
92%|█████████▏| 46/50 [00:48<00:04, 1.05s/it]
94%|█████████▍| 47/50 [00:49<00:03, 1.05s/it]
96%|█████████▌| 48/50 [00:50<00:02, 1.05s/it]
98%|█████████▊| 49/50 [00:51<00:01, 1.05s/it]
100%|██████████| 50/50 [00:52<00:00, 1.05s/it]
100%|██████████| 50/50 [00:52<00:00, 1.05s/it]