You're looking at a specific version of this model. Jump to the model overview.

findix /sd-scripts:fbd7a9ec

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
pretrained_model_name_or_path
string
CompVis/stable-diffusion-v1-4
base model name or path | 底模名称或路径
train_data_zip
string
train dataset zip file | 训练数据集zip压缩包
network_weights
string
pretrained weights for LoRA network | 若需要从已有的 LoRA 模型上继续训练,请上传文件
training_comment
string
this LoRA model credit from replicate-sd-scripts
training_comment | 训练介绍,可以写作者名或者使用触发关键词
output_name
string
CompVis/stable-diffusion-v1-4
output model name | 模型保存名称
save_model_as
string (enum)
safetensors

Options:

ckpt, pt, safetensors

model save ext | 模型保存格式 ckpt, pt, safetensors
resolution
string
512
image resolution must be 'size' or 'width,height'. 图片分辨率,正方形边长 或 宽,高。支持非正方形,但必须是 64 倍数
batch_size
integer
1

Min: 1

batch size 一次性训练图片批处理数量,根据显卡质量对应调高
max_train_epoches
integer
10

Min: 1

max train epoches | 最大训练 epoch
save_every_n_epochs
integer
2

Min: 1

save every n epochs | 每 N 个 epoch 保存一次
network_dim
integer
32

Min: 1

network dim | 常用 4~128,不是越大越好
network_alpha
integer
32

Min: 1

network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率
clip_skip
integer
2
clip skip | 玄学 一般用 2
seed
integer
1337

Min: 1

reproducable seed | 设置跑测试用的种子,输入一个prompt和这个种子大概率得到训练图。可以用来试触发关键词
noise_offset
number
0
noise offset | 在训练中添加噪声偏移来改良生成非常暗或者非常亮的图像,如果启用,推荐参数为 0.1
keep_tokens
integer
0
keep heading N tokens when shuffling caption tokens | 在随机打乱 tokens 时,保留前 N 个不变
learning_rate
number
0.00006
Learning rate | 学习率
unet_lr
number
0.00006
UNet learning rate | UNet 学习率
text_encoder_lr
number
0.000007
Text Encoder learning rate | Text Encoder 学习率
lr_scheduler
string (enum)
cosine_with_restarts

Options:

linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup

"linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup" | PyTorch自带6种动态学习率函数 constant,常量不变, constant_with_warmup 线性增加后保持常量不变, linear 线性增加线性减少, polynomial 线性增加后平滑衰减, cosine 余弦波曲线, cosine_with_restarts 余弦波硬重启,瞬间最大值。 推荐默认cosine_with_restarts或者polynomial,配合输出多个epoch结果更玄学
lr_warmup_steps
integer
0
warmup steps | 仅在 lr_scheduler 为 constant_with_warmup 时需要填写这个值
lr_scheduler_num_cycles
integer
1

Min: 1

cosine_with_restarts restart cycles | 余弦退火重启次数,仅在 lr_scheduler 为 cosine_with_restarts 时起效
min_bucket_reso
integer
256

Min: 1

arb min resolution | arb 最小分辨率
max_bucket_reso
integer
1024

Min: 1

arb max resolution | arb 最大分辨率
persistent_data_loader_workers
boolean
True
makes workers persistent, further reduces/eliminates the lag in between epochs. however it may increase memory usage | 跑的更快,吃内存。大概能提速2.5倍,容易爆内存,保留加载训练集的worker,减少每个 epoch 之间的停顿
optimizer_type
string (enum)
Lion

Options:

adaFactor, AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation

优化器,"adaFactor","AdamW","AdamW8bit","Lion","SGDNesterov","SGDNesterov8bit","DAdaptation", 推荐 新优化器Lion。推荐学习率unetlr=lr=6e-5,tenclr=7e-6
network_module
string (enum)
networks.lora

Options:

networks.lora

Network module

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'format': 'uri', 'title': 'Output', 'type': 'string'}