fofr
/
flux-dev-day
- Public
- 695 runs
-
H100
Prediction
fofr/flux-dev-day:0a9c0133IDb8t483dtm5rj40cj9t9vzqbhzrStatusSucceededSourceWebHardwareA100 (80GB)Total durationCreatedInput
- model
- dev
- prompt
- a DEV_DAY photo of a presentation with the text "Hello world"
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 3:2
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 90
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{ "model": "dev", "prompt": "a DEV_DAY photo of a presentation with the text \"Hello world\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }
npm install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the clientimport Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/flux-dev-day using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/flux-dev-day:0a9c01333feade4ed0b7aab4605a8c927aaf26d3f3bdb4b6dc423e229047a41c", { input: { model: "dev", prompt: "a DEV_DAY photo of a presentation with the text \"Hello world\"", lora_scale: 1, num_outputs: 1, aspect_ratio: "3:2", output_format: "webp", guidance_scale: 3.5, output_quality: 90, prompt_strength: 0.8, extra_lora_scale: 1, num_inference_steps: 28 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the clientimport replicate
Run fofr/flux-dev-day using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/flux-dev-day:0a9c01333feade4ed0b7aab4605a8c927aaf26d3f3bdb4b6dc423e229047a41c", input={ "model": "dev", "prompt": "a DEV_DAY photo of a presentation with the text \"Hello world\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/flux-dev-day using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "0a9c01333feade4ed0b7aab4605a8c927aaf26d3f3bdb4b6dc423e229047a41c", "input": { "model": "dev", "prompt": "a DEV_DAY photo of a presentation with the text \\"Hello world\\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-10-02T18:52:57.889013Z", "created_at": "2024-10-02T18:52:37.409000Z", "data_removed": false, "error": null, "id": "b8t483dtm5rj40cj9t9vzqbhzr", "input": { "model": "dev", "prompt": "a DEV_DAY photo of a presentation with the text \"Hello world\"", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "3:2", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 90, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 }, "logs": "Using seed: 60524\nPrompt: a DEV_DAY photo of a presentation with the text \"Hello world\"\n[!] txt2img mode\nUsing dev model\nfree=3382580088832\nDownloading weights\n2024-10-02T18:52:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk253538c/weights url=https://replicate.delivery/yhqm/A12vlnsfGTQMcSfPeFnZ3BSk3fn8BozGhASW0MCh1WSmESLOB/trained_model.tar\n2024-10-02T18:52:39Z | INFO | [ Complete ] dest=/tmp/tmpk253538c/weights size=\"172 MB\" total_elapsed=1.583s url=https://replicate.delivery/yhqm/A12vlnsfGTQMcSfPeFnZ3BSk3fn8BozGhASW0MCh1WSmESLOB/trained_model.tar\nDownloaded weights in 1.61s\nLoaded LoRAs in 2.43s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:16, 1.59it/s]\n 7%|▋ | 2/28 [00:01<00:14, 1.80it/s]\n 11%|█ | 3/28 [00:01<00:14, 1.69it/s]\n 14%|█▍ | 4/28 [00:02<00:14, 1.65it/s]\n 18%|█▊ | 5/28 [00:03<00:14, 1.62it/s]\n 21%|██▏ | 6/28 [00:03<00:13, 1.61it/s]\n 25%|██▌ | 7/28 [00:04<00:13, 1.60it/s]\n 29%|██▊ | 8/28 [00:04<00:12, 1.60it/s]\n 32%|███▏ | 9/28 [00:05<00:11, 1.59it/s]\n 36%|███▌ | 10/28 [00:06<00:11, 1.59it/s]\n 39%|███▉ | 11/28 [00:06<00:10, 1.59it/s]\n 43%|████▎ | 12/28 [00:07<00:10, 1.59it/s]\n 46%|████▋ | 13/28 [00:08<00:09, 1.58it/s]\n 50%|█████ | 14/28 [00:08<00:08, 1.58it/s]\n 54%|█████▎ | 15/28 [00:09<00:08, 1.58it/s]\n 57%|█████▋ | 16/28 [00:09<00:07, 1.58it/s]\n 61%|██████ | 17/28 [00:10<00:06, 1.58it/s]\n 64%|██████▍ | 18/28 [00:11<00:06, 1.58it/s]\n 68%|██████▊ | 19/28 [00:11<00:05, 1.58it/s]\n 71%|███████▏ | 20/28 [00:12<00:05, 1.58it/s]\n 75%|███████▌ | 21/28 [00:13<00:04, 1.58it/s]\n 79%|███████▊ | 22/28 [00:13<00:03, 1.58it/s]\n 82%|████████▏ | 23/28 [00:14<00:03, 1.58it/s]\n 86%|████████▌ | 24/28 [00:15<00:02, 1.58it/s]\n 89%|████████▉ | 25/28 [00:15<00:01, 1.58it/s]\n 93%|█████████▎| 26/28 [00:16<00:01, 1.58it/s]\n 96%|█████████▋| 27/28 [00:16<00:00, 1.58it/s]\n100%|██████████| 28/28 [00:17<00:00, 1.58it/s]\n100%|██████████| 28/28 [00:17<00:00, 1.59it/s]", "metrics": { "predict_time": 20.470321633, "total_time": 20.480013 }, "output": [ "https://replicate.delivery/yhqm/w2lmYgfp1hT1P6Qgdfxev7ClrZeWz50vnxqgG1bZAXdnISLOB/out-0.webp" ], "started_at": "2024-10-02T18:52:37.418691Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/b8t483dtm5rj40cj9t9vzqbhzr", "cancel": "https://api.replicate.com/v1/predictions/b8t483dtm5rj40cj9t9vzqbhzr/cancel" }, "version": "0a9c01333feade4ed0b7aab4605a8c927aaf26d3f3bdb4b6dc423e229047a41c" }
Generated inUsing seed: 60524 Prompt: a DEV_DAY photo of a presentation with the text "Hello world" [!] txt2img mode Using dev model free=3382580088832 Downloading weights 2024-10-02T18:52:37Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpk253538c/weights url=https://replicate.delivery/yhqm/A12vlnsfGTQMcSfPeFnZ3BSk3fn8BozGhASW0MCh1WSmESLOB/trained_model.tar 2024-10-02T18:52:39Z | INFO | [ Complete ] dest=/tmp/tmpk253538c/weights size="172 MB" total_elapsed=1.583s url=https://replicate.delivery/yhqm/A12vlnsfGTQMcSfPeFnZ3BSk3fn8BozGhASW0MCh1WSmESLOB/trained_model.tar Downloaded weights in 1.61s Loaded LoRAs in 2.43s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:16, 1.59it/s] 7%|▋ | 2/28 [00:01<00:14, 1.80it/s] 11%|█ | 3/28 [00:01<00:14, 1.69it/s] 14%|█▍ | 4/28 [00:02<00:14, 1.65it/s] 18%|█▊ | 5/28 [00:03<00:14, 1.62it/s] 21%|██▏ | 6/28 [00:03<00:13, 1.61it/s] 25%|██▌ | 7/28 [00:04<00:13, 1.60it/s] 29%|██▊ | 8/28 [00:04<00:12, 1.60it/s] 32%|███▏ | 9/28 [00:05<00:11, 1.59it/s] 36%|███▌ | 10/28 [00:06<00:11, 1.59it/s] 39%|███▉ | 11/28 [00:06<00:10, 1.59it/s] 43%|████▎ | 12/28 [00:07<00:10, 1.59it/s] 46%|████▋ | 13/28 [00:08<00:09, 1.58it/s] 50%|█████ | 14/28 [00:08<00:08, 1.58it/s] 54%|█████▎ | 15/28 [00:09<00:08, 1.58it/s] 57%|█████▋ | 16/28 [00:09<00:07, 1.58it/s] 61%|██████ | 17/28 [00:10<00:06, 1.58it/s] 64%|██████▍ | 18/28 [00:11<00:06, 1.58it/s] 68%|██████▊ | 19/28 [00:11<00:05, 1.58it/s] 71%|███████▏ | 20/28 [00:12<00:05, 1.58it/s] 75%|███████▌ | 21/28 [00:13<00:04, 1.58it/s] 79%|███████▊ | 22/28 [00:13<00:03, 1.58it/s] 82%|████████▏ | 23/28 [00:14<00:03, 1.58it/s] 86%|████████▌ | 24/28 [00:15<00:02, 1.58it/s] 89%|████████▉ | 25/28 [00:15<00:01, 1.58it/s] 93%|█████████▎| 26/28 [00:16<00:01, 1.58it/s] 96%|█████████▋| 27/28 [00:16<00:00, 1.58it/s] 100%|██████████| 28/28 [00:17<00:00, 1.58it/s] 100%|██████████| 28/28 [00:17<00:00, 1.59it/s]
Want to make some of these yourself?
Run this model