fofr
/
illusions
Create illusions with img2img and masking support
- Public
- 48.4K runs
-
L40S
- GitHub
Prediction
fofr/illusions:579b32dbIDqdblsslbv3blfk3prji47mfihaStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a painting of a 19th century town
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.75
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 0.75
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a painting of a 19th century town", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.75, num_inference_steps: 40, controlnet_conditioning_scale: 0.75 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a painting of a 19th century town"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg"' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.75' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=0.75'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-11-04T20:04:41.250206Z", "created_at": "2023-11-04T20:04:36.232637Z", "data_removed": false, "error": null, "id": "qdblsslbv3blfk3prji47mfiha", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }, "logs": "img2img mode\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:06, 4.23it/s]\n 7%|▋ | 2/30 [00:00<00:04, 5.97it/s]\n 10%|█ | 3/30 [00:00<00:03, 6.88it/s]\n 13%|█▎ | 4/30 [00:00<00:03, 7.41it/s]\n 17%|█▋ | 5/30 [00:00<00:03, 7.74it/s]\n 20%|██ | 6/30 [00:00<00:03, 7.95it/s]\n 23%|██▎ | 7/30 [00:00<00:02, 8.09it/s]\n 27%|██▋ | 8/30 [00:01<00:02, 8.18it/s]\n 30%|███ | 9/30 [00:01<00:02, 8.25it/s]\n 33%|███▎ | 10/30 [00:01<00:02, 8.29it/s]\n 37%|███▋ | 11/30 [00:01<00:02, 8.31it/s]\n 40%|████ | 12/30 [00:01<00:02, 8.33it/s]\n 43%|████▎ | 13/30 [00:01<00:02, 8.33it/s]\n 47%|████▋ | 14/30 [00:01<00:01, 8.34it/s]\n 50%|█████ | 15/30 [00:01<00:01, 8.35it/s]\n 53%|█████▎ | 16/30 [00:02<00:01, 8.35it/s]\n 57%|█████▋ | 17/30 [00:02<00:01, 8.35it/s]\n 60%|██████ | 18/30 [00:02<00:01, 8.35it/s]\n 63%|██████▎ | 19/30 [00:02<00:01, 8.35it/s]\n 67%|██████▋ | 20/30 [00:02<00:01, 8.35it/s]\n 70%|███████ | 21/30 [00:02<00:01, 8.35it/s]\n 73%|███████▎ | 22/30 [00:02<00:00, 8.35it/s]\n 77%|███████▋ | 23/30 [00:02<00:00, 8.35it/s]\n 80%|████████ | 24/30 [00:02<00:00, 8.35it/s]\n 83%|████████▎ | 25/30 [00:03<00:00, 8.35it/s]\n 87%|████████▋ | 26/30 [00:03<00:00, 8.35it/s]\n 90%|█████████ | 27/30 [00:03<00:00, 8.35it/s]\n 93%|█████████▎| 28/30 [00:03<00:00, 8.35it/s]\n 97%|█████████▋| 29/30 [00:03<00:00, 8.35it/s]\n100%|██████████| 30/30 [00:03<00:00, 8.35it/s]\n100%|██████████| 30/30 [00:03<00:00, 8.10it/s]", "metrics": { "predict_time": 5.069463, "total_time": 5.017569 }, "output": [ "https://replicate.delivery/pbxt/0mvORZpRyI4yH5wKdpHDtgqWqUGpsO5w0EcElf7g90eYXF1RA/output-0.png" ], "started_at": "2023-11-04T20:04:36.180743Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qdblsslbv3blfk3prji47mfiha", "cancel": "https://api.replicate.com/v1/predictions/qdblsslbv3blfk3prji47mfiha/cancel" }, "version": "fa68ea6dd119e4817e3f910b9316827e8d7a8210b919cfc2ad339fb3907cab37" }
Generated inimg2img mode 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:06, 4.23it/s] 7%|▋ | 2/30 [00:00<00:04, 5.97it/s] 10%|█ | 3/30 [00:00<00:03, 6.88it/s] 13%|█▎ | 4/30 [00:00<00:03, 7.41it/s] 17%|█▋ | 5/30 [00:00<00:03, 7.74it/s] 20%|██ | 6/30 [00:00<00:03, 7.95it/s] 23%|██▎ | 7/30 [00:00<00:02, 8.09it/s] 27%|██▋ | 8/30 [00:01<00:02, 8.18it/s] 30%|███ | 9/30 [00:01<00:02, 8.25it/s] 33%|███▎ | 10/30 [00:01<00:02, 8.29it/s] 37%|███▋ | 11/30 [00:01<00:02, 8.31it/s] 40%|████ | 12/30 [00:01<00:02, 8.33it/s] 43%|████▎ | 13/30 [00:01<00:02, 8.33it/s] 47%|████▋ | 14/30 [00:01<00:01, 8.34it/s] 50%|█████ | 15/30 [00:01<00:01, 8.35it/s] 53%|█████▎ | 16/30 [00:02<00:01, 8.35it/s] 57%|█████▋ | 17/30 [00:02<00:01, 8.35it/s] 60%|██████ | 18/30 [00:02<00:01, 8.35it/s] 63%|██████▎ | 19/30 [00:02<00:01, 8.35it/s] 67%|██████▋ | 20/30 [00:02<00:01, 8.35it/s] 70%|███████ | 21/30 [00:02<00:01, 8.35it/s] 73%|███████▎ | 22/30 [00:02<00:00, 8.35it/s] 77%|███████▋ | 23/30 [00:02<00:00, 8.35it/s] 80%|████████ | 24/30 [00:02<00:00, 8.35it/s] 83%|████████▎ | 25/30 [00:03<00:00, 8.35it/s] 87%|████████▋ | 26/30 [00:03<00:00, 8.35it/s] 90%|█████████ | 27/30 [00:03<00:00, 8.35it/s] 93%|█████████▎| 28/30 [00:03<00:00, 8.35it/s] 97%|█████████▋| 29/30 [00:03<00:00, 8.35it/s] 100%|██████████| 30/30 [00:03<00:00, 8.35it/s] 100%|██████████| 30/30 [00:03<00:00, 8.10it/s]
Prediction
fofr/illusions:579b32dbIDabpm3etbsjlwcoecccssfz75emStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a oil painting of a 19th century town, detailed textures, masterpiece
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.85
- sizing_strategy
- width/height
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 1.8
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a oil painting of a 19th century town, detailed textures, masterpiece", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.85, sizing_strategy: "width/height", num_inference_steps: 40, controlnet_conditioning_scale: 1.8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a oil painting of a 19th century town, detailed textures, masterpiece"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png"' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.85' \ -i 'sizing_strategy="width/height"' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=1.8'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-11-06T11:17:38.355511Z", "created_at": "2023-11-06T11:17:32.003260Z", "data_removed": false, "error": null, "id": "abpm3etbsjlwcoecccssfz75em", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU7t3nOm11Gc5WfomKnhTy7tW0xgz8tG6G1x9TlRRx3BCaf/pattern.png", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 }, "logs": "img2img mode\nUsing given dimensions\n 0%| | 0/34 [00:00<?, ?it/s]\n 3%|▎ | 1/34 [00:00<00:07, 4.23it/s]\n 6%|▌ | 2/34 [00:00<00:05, 5.98it/s]\n 9%|▉ | 3/34 [00:00<00:04, 6.87it/s]\n 12%|█▏ | 4/34 [00:00<00:04, 7.40it/s]\n 15%|█▍ | 5/34 [00:00<00:03, 7.73it/s]\n 18%|█▊ | 6/34 [00:00<00:03, 7.95it/s]\n 21%|██ | 7/34 [00:00<00:03, 8.10it/s]\n 24%|██▎ | 8/34 [00:01<00:03, 8.19it/s]\n 26%|██▋ | 9/34 [00:01<00:03, 8.24it/s]\n 29%|██▉ | 10/34 [00:01<00:02, 8.28it/s]\n 32%|███▏ | 11/34 [00:01<00:02, 8.31it/s]\n 35%|███▌ | 12/34 [00:01<00:02, 8.33it/s]\n 38%|███▊ | 13/34 [00:01<00:02, 8.34it/s]\n 41%|████ | 14/34 [00:01<00:02, 8.35it/s]\n 44%|████▍ | 15/34 [00:01<00:02, 8.36it/s]\n 47%|████▋ | 16/34 [00:02<00:02, 8.36it/s]\n 50%|█████ | 17/34 [00:02<00:02, 8.36it/s]\n 53%|█████▎ | 18/34 [00:02<00:01, 8.37it/s]\n 56%|█████▌ | 19/34 [00:02<00:01, 8.37it/s]\n 59%|█████▉ | 20/34 [00:02<00:01, 8.36it/s]\n 62%|██████▏ | 21/34 [00:02<00:01, 8.36it/s]\n 65%|██████▍ | 22/34 [00:02<00:01, 8.36it/s]\n 68%|██████▊ | 23/34 [00:02<00:01, 8.36it/s]\n 71%|███████ | 24/34 [00:02<00:01, 8.36it/s]\n 74%|███████▎ | 25/34 [00:03<00:01, 8.35it/s]\n 76%|███████▋ | 26/34 [00:03<00:00, 8.35it/s]\n 79%|███████▉ | 27/34 [00:03<00:00, 8.35it/s]\n 82%|████████▏ | 28/34 [00:03<00:00, 8.35it/s]\n 85%|████████▌ | 29/34 [00:03<00:00, 8.35it/s]\n 88%|████████▊ | 30/34 [00:03<00:00, 8.37it/s]\n 91%|█████████ | 31/34 [00:03<00:00, 8.40it/s]\n 94%|█████████▍| 32/34 [00:03<00:00, 8.40it/s]\n 97%|█████████▋| 33/34 [00:04<00:00, 8.40it/s]\n100%|██████████| 34/34 [00:04<00:00, 8.41it/s]\n100%|██████████| 34/34 [00:04<00:00, 8.14it/s]", "metrics": { "predict_time": 6.336421, "total_time": 6.352251 }, "output": [ "https://replicate.delivery/pbxt/wPzQWe7DDLR0VqMBqTC9LVfLxNs70RCkidOeC7HWKxQjqPrjA/output-0.png" ], "started_at": "2023-11-06T11:17:32.019090Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/abpm3etbsjlwcoecccssfz75em", "cancel": "https://api.replicate.com/v1/predictions/abpm3etbsjlwcoecccssfz75em/cancel" }, "version": "7f0be5988e9838359a66b7481bb9b18290eb11a3ae76ccedd9c9bafd14f5bf7b" }
Generated inimg2img mode Using given dimensions 0%| | 0/34 [00:00<?, ?it/s] 3%|▎ | 1/34 [00:00<00:07, 4.23it/s] 6%|▌ | 2/34 [00:00<00:05, 5.98it/s] 9%|▉ | 3/34 [00:00<00:04, 6.87it/s] 12%|█▏ | 4/34 [00:00<00:04, 7.40it/s] 15%|█▍ | 5/34 [00:00<00:03, 7.73it/s] 18%|█▊ | 6/34 [00:00<00:03, 7.95it/s] 21%|██ | 7/34 [00:00<00:03, 8.10it/s] 24%|██▎ | 8/34 [00:01<00:03, 8.19it/s] 26%|██▋ | 9/34 [00:01<00:03, 8.24it/s] 29%|██▉ | 10/34 [00:01<00:02, 8.28it/s] 32%|███▏ | 11/34 [00:01<00:02, 8.31it/s] 35%|███▌ | 12/34 [00:01<00:02, 8.33it/s] 38%|███▊ | 13/34 [00:01<00:02, 8.34it/s] 41%|████ | 14/34 [00:01<00:02, 8.35it/s] 44%|████▍ | 15/34 [00:01<00:02, 8.36it/s] 47%|████▋ | 16/34 [00:02<00:02, 8.36it/s] 50%|█████ | 17/34 [00:02<00:02, 8.36it/s] 53%|█████▎ | 18/34 [00:02<00:01, 8.37it/s] 56%|█████▌ | 19/34 [00:02<00:01, 8.37it/s] 59%|█████▉ | 20/34 [00:02<00:01, 8.36it/s] 62%|██████▏ | 21/34 [00:02<00:01, 8.36it/s] 65%|██████▍ | 22/34 [00:02<00:01, 8.36it/s] 68%|██████▊ | 23/34 [00:02<00:01, 8.36it/s] 71%|███████ | 24/34 [00:02<00:01, 8.36it/s] 74%|███████▎ | 25/34 [00:03<00:01, 8.35it/s] 76%|███████▋ | 26/34 [00:03<00:00, 8.35it/s] 79%|███████▉ | 27/34 [00:03<00:00, 8.35it/s] 82%|████████▏ | 28/34 [00:03<00:00, 8.35it/s] 85%|████████▌ | 29/34 [00:03<00:00, 8.35it/s] 88%|████████▊ | 30/34 [00:03<00:00, 8.37it/s] 91%|█████████ | 31/34 [00:03<00:00, 8.40it/s] 94%|█████████▍| 32/34 [00:03<00:00, 8.40it/s] 97%|█████████▋| 33/34 [00:04<00:00, 8.40it/s] 100%|██████████| 34/34 [00:04<00:00, 8.41it/s] 100%|██████████| 34/34 [00:04<00:00, 8.14it/s]
Prediction
fofr/illusions:579b32dbIDfa67gn3bgwlp3idv2ylncbla4eStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a oil painting of a 19th century town, detailed textures, masterpiece
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.85
- sizing_strategy
- width/height
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 1.8
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a oil painting of a 19th century town, detailed textures, masterpiece", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.85, sizing_strategy: "width/height", num_inference_steps: 40, controlnet_conditioning_scale: 1.8 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a oil painting of a 19th century town, detailed textures, masterpiece"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg"' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.85' \ -i 'sizing_strategy="width/height"' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=1.8'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-11-06T11:18:14.742806Z", "created_at": "2023-11-06T11:18:08.114850Z", "data_removed": false, "error": null, "id": "fa67gn3bgwlp3idv2ylncbla4e", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpU8SBPAZv0avvZ03CNqkiRBZlexOgeYEDjXg2UcBqF7tmeh/checkers_mid.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.85, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1.8 }, "logs": "img2img mode\nUsing given dimensions\n 0%| | 0/34 [00:00<?, ?it/s]\n 3%|▎ | 1/34 [00:00<00:07, 4.24it/s]\n 6%|▌ | 2/34 [00:00<00:05, 5.98it/s]\n 9%|▉ | 3/34 [00:00<00:04, 6.88it/s]\n 12%|█▏ | 4/34 [00:00<00:04, 7.40it/s]\n 15%|█▍ | 5/34 [00:00<00:03, 7.73it/s]\n 18%|█▊ | 6/34 [00:00<00:03, 7.95it/s]\n 21%|██ | 7/34 [00:00<00:03, 8.08it/s]\n 24%|██▎ | 8/34 [00:01<00:03, 8.17it/s]\n 26%|██▋ | 9/34 [00:01<00:03, 8.23it/s]\n 29%|██▉ | 10/34 [00:01<00:02, 8.27it/s]\n 32%|███▏ | 11/34 [00:01<00:02, 8.31it/s]\n 35%|███▌ | 12/34 [00:01<00:02, 8.33it/s]\n 38%|███▊ | 13/34 [00:01<00:02, 8.34it/s]\n 41%|████ | 14/34 [00:01<00:02, 8.35it/s]\n 44%|████▍ | 15/34 [00:01<00:02, 8.35it/s]\n 47%|████▋ | 16/34 [00:02<00:02, 8.35it/s]\n 50%|█████ | 17/34 [00:02<00:02, 8.36it/s]\n 53%|█████▎ | 18/34 [00:02<00:01, 8.37it/s]\n 56%|█████▌ | 19/34 [00:02<00:01, 8.37it/s]\n 59%|█████▉ | 20/34 [00:02<00:01, 8.37it/s]\n 62%|██████▏ | 21/34 [00:02<00:01, 8.37it/s]\n 65%|██████▍ | 22/34 [00:02<00:01, 8.37it/s]\n 68%|██████▊ | 23/34 [00:02<00:01, 8.37it/s]\n 71%|███████ | 24/34 [00:02<00:01, 8.37it/s]\n 74%|███████▎ | 25/34 [00:03<00:01, 8.36it/s]\n 76%|███████▋ | 26/34 [00:03<00:00, 8.36it/s]\n 79%|███████▉ | 27/34 [00:03<00:00, 8.37it/s]\n 82%|████████▏ | 28/34 [00:03<00:00, 8.36it/s]\n 85%|████████▌ | 29/34 [00:03<00:00, 8.36it/s]\n 88%|████████▊ | 30/34 [00:03<00:00, 8.36it/s]\n 91%|█████████ | 31/34 [00:03<00:00, 8.38it/s]\n 94%|█████████▍| 32/34 [00:03<00:00, 8.39it/s]\n 97%|█████████▋| 33/34 [00:04<00:00, 8.40it/s]\n100%|██████████| 34/34 [00:04<00:00, 8.40it/s]\n100%|██████████| 34/34 [00:04<00:00, 8.14it/s]", "metrics": { "predict_time": 6.633376, "total_time": 6.627956 }, "output": [ "https://replicate.delivery/pbxt/0RhRq9yiZgbaAVC9rgWHo9sjOEB2D3KpGieB4hcCm6i66z6IA/output-0.png" ], "started_at": "2023-11-06T11:18:08.109430Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fa67gn3bgwlp3idv2ylncbla4e", "cancel": "https://api.replicate.com/v1/predictions/fa67gn3bgwlp3idv2ylncbla4e/cancel" }, "version": "7f0be5988e9838359a66b7481bb9b18290eb11a3ae76ccedd9c9bafd14f5bf7b" }
Generated inimg2img mode Using given dimensions 0%| | 0/34 [00:00<?, ?it/s] 3%|▎ | 1/34 [00:00<00:07, 4.24it/s] 6%|▌ | 2/34 [00:00<00:05, 5.98it/s] 9%|▉ | 3/34 [00:00<00:04, 6.88it/s] 12%|█▏ | 4/34 [00:00<00:04, 7.40it/s] 15%|█▍ | 5/34 [00:00<00:03, 7.73it/s] 18%|█▊ | 6/34 [00:00<00:03, 7.95it/s] 21%|██ | 7/34 [00:00<00:03, 8.08it/s] 24%|██▎ | 8/34 [00:01<00:03, 8.17it/s] 26%|██▋ | 9/34 [00:01<00:03, 8.23it/s] 29%|██▉ | 10/34 [00:01<00:02, 8.27it/s] 32%|███▏ | 11/34 [00:01<00:02, 8.31it/s] 35%|███▌ | 12/34 [00:01<00:02, 8.33it/s] 38%|███▊ | 13/34 [00:01<00:02, 8.34it/s] 41%|████ | 14/34 [00:01<00:02, 8.35it/s] 44%|████▍ | 15/34 [00:01<00:02, 8.35it/s] 47%|████▋ | 16/34 [00:02<00:02, 8.35it/s] 50%|█████ | 17/34 [00:02<00:02, 8.36it/s] 53%|█████▎ | 18/34 [00:02<00:01, 8.37it/s] 56%|█████▌ | 19/34 [00:02<00:01, 8.37it/s] 59%|█████▉ | 20/34 [00:02<00:01, 8.37it/s] 62%|██████▏ | 21/34 [00:02<00:01, 8.37it/s] 65%|██████▍ | 22/34 [00:02<00:01, 8.37it/s] 68%|██████▊ | 23/34 [00:02<00:01, 8.37it/s] 71%|███████ | 24/34 [00:02<00:01, 8.37it/s] 74%|███████▎ | 25/34 [00:03<00:01, 8.36it/s] 76%|███████▋ | 26/34 [00:03<00:00, 8.36it/s] 79%|███████▉ | 27/34 [00:03<00:00, 8.37it/s] 82%|████████▏ | 28/34 [00:03<00:00, 8.36it/s] 85%|████████▌ | 29/34 [00:03<00:00, 8.36it/s] 88%|████████▊ | 30/34 [00:03<00:00, 8.36it/s] 91%|█████████ | 31/34 [00:03<00:00, 8.38it/s] 94%|█████████▍| 32/34 [00:03<00:00, 8.39it/s] 97%|█████████▋| 33/34 [00:04<00:00, 8.40it/s] 100%|██████████| 34/34 [00:04<00:00, 8.40it/s] 100%|██████████| 34/34 [00:04<00:00, 8.14it/s]
Prediction
fofr/illusions:579b32dbIDn3t2u5lbsggunc3u6pyrebg764StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a oil painting of a 19th century town, detailed textures, masterpiece
- num_outputs
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.75
- sizing_strategy
- width/height
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 1
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a oil painting of a 19th century town, detailed textures, masterpiece", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.75, sizing_strategy: "width/height", num_inference_steps: 40, controlnet_conditioning_scale: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a oil painting of a 19th century town, detailed textures, masterpiece"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg"' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.75' \ -i 'sizing_strategy="width/height"' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-11-06T11:20:53.144204Z", "created_at": "2023-11-06T11:20:47.255907Z", "data_removed": false, "error": null, "id": "n3t2u5lbsggunc3u6pyrebg764", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a oil painting of a 19th century town, detailed textures, masterpiece", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JpUAy5SVqgmFpuYa6lp2WcQdyvMaKuOGbpZqixgeTloNPGu0/funky.jpg", "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "num_inference_steps": 40, "controlnet_conditioning_scale": 1 }, "logs": "img2img mode\nUsing given dimensions\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:06, 4.22it/s]\n 7%|▋ | 2/30 [00:00<00:04, 5.96it/s]\n 10%|█ | 3/30 [00:00<00:03, 6.86it/s]\n 13%|█▎ | 4/30 [00:00<00:03, 7.39it/s]\n 17%|█▋ | 5/30 [00:00<00:03, 7.72it/s]\n 20%|██ | 6/30 [00:00<00:03, 7.93it/s]\n 23%|██▎ | 7/30 [00:00<00:02, 8.07it/s]\n 27%|██▋ | 8/30 [00:01<00:02, 8.16it/s]\n 30%|███ | 9/30 [00:01<00:02, 8.22it/s]\n 33%|███▎ | 10/30 [00:01<00:02, 8.27it/s]\n 37%|███▋ | 11/30 [00:01<00:02, 8.30it/s]\n 40%|████ | 12/30 [00:01<00:02, 8.33it/s]\n 43%|████▎ | 13/30 [00:01<00:02, 8.35it/s]\n 47%|████▋ | 14/30 [00:01<00:01, 8.38it/s]\n 50%|█████ | 15/30 [00:01<00:01, 8.38it/s]\n 53%|█████▎ | 16/30 [00:02<00:01, 8.39it/s]\n 57%|█████▋ | 17/30 [00:02<00:01, 8.40it/s]\n 60%|██████ | 18/30 [00:02<00:01, 8.41it/s]\n 63%|██████▎ | 19/30 [00:02<00:01, 8.42it/s]\n 67%|██████▋ | 20/30 [00:02<00:01, 8.43it/s]\n 70%|███████ | 21/30 [00:02<00:01, 8.42it/s]\n 73%|███████▎ | 22/30 [00:02<00:00, 8.42it/s]\n 77%|███████▋ | 23/30 [00:02<00:00, 8.41it/s]\n 80%|████████ | 24/30 [00:02<00:00, 8.41it/s]\n 83%|████████▎ | 25/30 [00:03<00:00, 8.42it/s]\n 87%|████████▋ | 26/30 [00:03<00:00, 8.41it/s]\n 90%|█████████ | 27/30 [00:03<00:00, 8.41it/s]\n 93%|█████████▎| 28/30 [00:03<00:00, 8.41it/s]\n 97%|█████████▋| 29/30 [00:03<00:00, 8.41it/s]\n100%|██████████| 30/30 [00:03<00:00, 8.41it/s]\n100%|██████████| 30/30 [00:03<00:00, 8.13it/s]", "metrics": { "predict_time": 5.924251, "total_time": 5.888297 }, "output": [ "https://replicate.delivery/pbxt/Cs2FyeB1yDyiUatJBiWXqpbeeg5fiS4DOdfnDzhynhDiCfZdE/output-0.png" ], "started_at": "2023-11-06T11:20:47.219953Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/n3t2u5lbsggunc3u6pyrebg764", "cancel": "https://api.replicate.com/v1/predictions/n3t2u5lbsggunc3u6pyrebg764/cancel" }, "version": "7f0be5988e9838359a66b7481bb9b18290eb11a3ae76ccedd9c9bafd14f5bf7b" }
Generated inimg2img mode Using given dimensions 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:06, 4.22it/s] 7%|▋ | 2/30 [00:00<00:04, 5.96it/s] 10%|█ | 3/30 [00:00<00:03, 6.86it/s] 13%|█▎ | 4/30 [00:00<00:03, 7.39it/s] 17%|█▋ | 5/30 [00:00<00:03, 7.72it/s] 20%|██ | 6/30 [00:00<00:03, 7.93it/s] 23%|██▎ | 7/30 [00:00<00:02, 8.07it/s] 27%|██▋ | 8/30 [00:01<00:02, 8.16it/s] 30%|███ | 9/30 [00:01<00:02, 8.22it/s] 33%|███▎ | 10/30 [00:01<00:02, 8.27it/s] 37%|███▋ | 11/30 [00:01<00:02, 8.30it/s] 40%|████ | 12/30 [00:01<00:02, 8.33it/s] 43%|████▎ | 13/30 [00:01<00:02, 8.35it/s] 47%|████▋ | 14/30 [00:01<00:01, 8.38it/s] 50%|█████ | 15/30 [00:01<00:01, 8.38it/s] 53%|█████▎ | 16/30 [00:02<00:01, 8.39it/s] 57%|█████▋ | 17/30 [00:02<00:01, 8.40it/s] 60%|██████ | 18/30 [00:02<00:01, 8.41it/s] 63%|██████▎ | 19/30 [00:02<00:01, 8.42it/s] 67%|██████▋ | 20/30 [00:02<00:01, 8.43it/s] 70%|███████ | 21/30 [00:02<00:01, 8.42it/s] 73%|███████▎ | 22/30 [00:02<00:00, 8.42it/s] 77%|███████▋ | 23/30 [00:02<00:00, 8.41it/s] 80%|████████ | 24/30 [00:02<00:00, 8.41it/s] 83%|████████▎ | 25/30 [00:03<00:00, 8.42it/s] 87%|████████▋ | 26/30 [00:03<00:00, 8.41it/s] 90%|█████████ | 27/30 [00:03<00:00, 8.41it/s] 93%|█████████▎| 28/30 [00:03<00:00, 8.41it/s] 97%|█████████▋| 29/30 [00:03<00:00, 8.41it/s] 100%|██████████| 30/30 [00:03<00:00, 8.41it/s] 100%|██████████| 30/30 [00:03<00:00, 8.13it/s]
Prediction
fofr/illusions:579b32dbIDw1v5b6acdxrm80ckea4tmdbencStatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a painting of a 19th century town
- num_outputs
- 1
- controlnet_end
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.75
- sizing_strategy
- width/height
- controlnet_start
- 0
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 0.75
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a painting of a 19th century town", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", controlnet_end: 1, guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.75, sizing_strategy: "width/height", controlnet_start: 0, num_inference_steps: 40, controlnet_conditioning_scale: 0.75 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a painting of a 19th century town"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg"' \ -i 'controlnet_end=1' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.75' \ -i 'sizing_strategy="width/height"' \ -i 'controlnet_start=0' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=0.75'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-11-28T11:32:22.900851Z", "created_at": "2024-11-28T11:30:20.911000Z", "data_removed": false, "error": null, "id": "w1v5b6acdxrm80ckea4tmdbenc", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }, "logs": "Using seed: 2467422454\nimg2img mode\nUsing given dimensions\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:06, 4.34it/s]\n 10%|█ | 3/30 [00:00<00:02, 9.44it/s]\n 17%|█▋ | 5/30 [00:00<00:02, 11.96it/s]\n 23%|██▎ | 7/30 [00:00<00:01, 13.41it/s]\n 30%|███ | 9/30 [00:00<00:01, 14.32it/s]\n 37%|███▋ | 11/30 [00:00<00:01, 14.89it/s]\n 43%|████▎ | 13/30 [00:00<00:01, 15.25it/s]\n 50%|█████ | 15/30 [00:01<00:00, 15.48it/s]\n 57%|█████▋ | 17/30 [00:01<00:00, 15.66it/s]\n 63%|██████▎ | 19/30 [00:01<00:00, 15.78it/s]\n 70%|███████ | 21/30 [00:01<00:00, 15.85it/s]\n 77%|███████▋ | 23/30 [00:01<00:00, 15.88it/s]\n 83%|████████▎ | 25/30 [00:01<00:00, 15.91it/s]\n 90%|█████████ | 27/30 [00:01<00:00, 15.96it/s]\n 97%|█████████▋| 29/30 [00:01<00:00, 15.99it/s]\n100%|██████████| 30/30 [00:02<00:00, 14.71it/s]", "metrics": { "predict_time": 2.954102423, "total_time": 121.989851 }, "output": [ "https://replicate.delivery/xezq/EZzDUXEEDm4feUeebNHJk9nqpCDNffRkCRRpueCnwdvfGbg1TA/output-0.png" ], "started_at": "2024-11-28T11:32:19.946748Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-dpj35fmfxv5fb5zm4yirhor24m3ptmog5fxviqlg3sppbnisgxsq", "get": "https://api.replicate.com/v1/predictions/w1v5b6acdxrm80ckea4tmdbenc", "cancel": "https://api.replicate.com/v1/predictions/w1v5b6acdxrm80ckea4tmdbenc/cancel" }, "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8" }
Generated inUsing seed: 2467422454 img2img mode Using given dimensions 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:06, 4.34it/s] 10%|█ | 3/30 [00:00<00:02, 9.44it/s] 17%|█▋ | 5/30 [00:00<00:02, 11.96it/s] 23%|██▎ | 7/30 [00:00<00:01, 13.41it/s] 30%|███ | 9/30 [00:00<00:01, 14.32it/s] 37%|███▋ | 11/30 [00:00<00:01, 14.89it/s] 43%|████▎ | 13/30 [00:00<00:01, 15.25it/s] 50%|█████ | 15/30 [00:01<00:00, 15.48it/s] 57%|█████▋ | 17/30 [00:01<00:00, 15.66it/s] 63%|██████▎ | 19/30 [00:01<00:00, 15.78it/s] 70%|███████ | 21/30 [00:01<00:00, 15.85it/s] 77%|███████▋ | 23/30 [00:01<00:00, 15.88it/s] 83%|████████▎ | 25/30 [00:01<00:00, 15.91it/s] 90%|█████████ | 27/30 [00:01<00:00, 15.96it/s] 97%|█████████▋| 29/30 [00:01<00:00, 15.99it/s] 100%|██████████| 30/30 [00:02<00:00, 14.71it/s]
Prediction
fofr/illusions:579b32dbIDtjnxcd3t1drm80ckea5t26p0g4StatusSucceededSourceWebHardwareL40STotal durationCreatedInput
- seed
- -1
- width
- 768
- height
- 768
- prompt
- a painting of a 19th century town
- num_outputs
- 1
- controlnet_end
- 1
- guidance_scale
- 7.5
- negative_prompt
- ugly, disfigured, low quality, blurry, nsfw
- prompt_strength
- 0.75
- sizing_strategy
- width/height
- controlnet_start
- 0
- num_inference_steps
- 40
- controlnet_conditioning_scale
- 0.75
{ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", { input: { seed: -1, image: "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", width: 768, height: 768, prompt: "a painting of a 19th century town", num_outputs: 1, control_image: "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", controlnet_end: 1, guidance_scale: 7.5, negative_prompt: "ugly, disfigured, low quality, blurry, nsfw", prompt_strength: 0.75, sizing_strategy: "width/height", controlnet_start: 0, num_inference_steps: 40, controlnet_conditioning_scale: 0.75 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/illusions:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", input={ "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/illusions using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8 \ -i 'seed=-1' \ -i 'image="https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png"' \ -i 'width=768' \ -i 'height=768' \ -i 'prompt="a painting of a 19th century town"' \ -i 'num_outputs=1' \ -i 'control_image="https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg"' \ -i 'controlnet_end=1' \ -i 'guidance_scale=7.5' \ -i 'negative_prompt="ugly, disfigured, low quality, blurry, nsfw"' \ -i 'prompt_strength=0.75' \ -i 'sizing_strategy="width/height"' \ -i 'controlnet_start=0' \ -i 'num_inference_steps=40' \ -i 'controlnet_conditioning_scale=0.75'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/illusions@sha256:579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-11-28T11:32:46.230072Z", "created_at": "2024-11-28T11:32:43.659000Z", "data_removed": false, "error": null, "id": "tjnxcd3t1drm80ckea5t26p0g4", "input": { "seed": -1, "image": "https://replicate.delivery/pbxt/JouANiZNiW2mwouIgIk1VySvjL9MBmaPD6Ib8HyfW81CJzRR/out-0-44.png", "width": 768, "height": 768, "prompt": "a painting of a 19th century town", "num_outputs": 1, "control_image": "https://replicate.delivery/pbxt/JouAO2zaHgb66YVChJagSYz0LcGqv3QgG4BS71mioFbBHWTZ/spiral_black_transparent-2513050263.jpg", "controlnet_end": 1, "guidance_scale": 7.5, "negative_prompt": "ugly, disfigured, low quality, blurry, nsfw", "prompt_strength": 0.75, "sizing_strategy": "width/height", "controlnet_start": 0, "num_inference_steps": 40, "controlnet_conditioning_scale": 0.75 }, "logs": "Using seed: 3311311052\nimg2img mode\nUsing given dimensions\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:03, 8.15it/s]\n 10%|█ | 3/30 [00:00<00:02, 12.79it/s]\n 17%|█▋ | 5/30 [00:00<00:01, 14.25it/s]\n 23%|██▎ | 7/30 [00:00<00:01, 14.90it/s]\n 30%|███ | 9/30 [00:00<00:01, 15.31it/s]\n 37%|███▋ | 11/30 [00:00<00:01, 15.55it/s]\n 43%|████▎ | 13/30 [00:00<00:01, 15.67it/s]\n 50%|█████ | 15/30 [00:00<00:00, 15.76it/s]\n 57%|█████▋ | 17/30 [00:01<00:00, 15.83it/s]\n 63%|██████▎ | 19/30 [00:01<00:00, 15.86it/s]\n 70%|███████ | 21/30 [00:01<00:00, 15.88it/s]\n 77%|███████▋ | 23/30 [00:01<00:00, 15.89it/s]\n 83%|████████▎ | 25/30 [00:01<00:00, 15.90it/s]\n 90%|█████████ | 27/30 [00:01<00:00, 15.90it/s]\n 97%|█████████▋| 29/30 [00:01<00:00, 15.89it/s]\n100%|██████████| 30/30 [00:01<00:00, 15.45it/s]", "metrics": { "predict_time": 2.561864317, "total_time": 2.571072 }, "output": [ "https://replicate.delivery/xezq/iA3MUV1f533LXqi4sHVlAerJhr03uES9OlBHAHrqaeq92ArnA/output-0.png" ], "started_at": "2024-11-28T11:32:43.668207Z", "status": "succeeded", "urls": { "stream": "https://stream.replicate.com/v1/files/bcwr-trpj5ikdlb3ons6twy3fo36eqpz4ciq4hgdk7xnfwv5kyvwjdqua", "get": "https://api.replicate.com/v1/predictions/tjnxcd3t1drm80ckea5t26p0g4", "cancel": "https://api.replicate.com/v1/predictions/tjnxcd3t1drm80ckea5t26p0g4/cancel" }, "version": "579b32db82b24584c3c6155fe3ae12e8fce50ba28b575c23e8a1f5f3a5e99ed8" }
Generated inUsing seed: 3311311052 img2img mode Using given dimensions 0%| | 0/30 [00:00<?, ?it/s] 3%|▎ | 1/30 [00:00<00:03, 8.15it/s] 10%|█ | 3/30 [00:00<00:02, 12.79it/s] 17%|█▋ | 5/30 [00:00<00:01, 14.25it/s] 23%|██▎ | 7/30 [00:00<00:01, 14.90it/s] 30%|███ | 9/30 [00:00<00:01, 15.31it/s] 37%|███▋ | 11/30 [00:00<00:01, 15.55it/s] 43%|████▎ | 13/30 [00:00<00:01, 15.67it/s] 50%|█████ | 15/30 [00:00<00:00, 15.76it/s] 57%|█████▋ | 17/30 [00:01<00:00, 15.83it/s] 63%|██████▎ | 19/30 [00:01<00:00, 15.86it/s] 70%|███████ | 21/30 [00:01<00:00, 15.88it/s] 77%|███████▋ | 23/30 [00:01<00:00, 15.89it/s] 83%|████████▎ | 25/30 [00:01<00:00, 15.90it/s] 90%|█████████ | 27/30 [00:01<00:00, 15.90it/s] 97%|█████████▋| 29/30 [00:01<00:00, 15.89it/s] 100%|██████████| 30/30 [00:01<00:00, 15.45it/s]
Want to make some of these yourself?
Run this model