fofr
/
latent-consistency-model
Super-fast, 0.6s per image. LCM with img2img, large batching and canny controlnet
Prediction
fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330IDobmukldbteo4i6lzfulhs47fh4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k
- num_images
- 1
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.45
- lcm_origin_steps
- 50
- num_inference_steps
- 4
{ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "lcm_origin_steps": 50, "num_inference_steps": 4 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", { input: { image: "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", width: 768, height: 768, prompt: "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", num_images: 1, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.45, lcm_origin_steps: 50, num_inference_steps: 4 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", input={ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.45, "lcm_origin_steps": 50, "num_inference_steps": 4 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "lcm_origin_steps": 50, "num_inference_steps": 4 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-25T13:26:05.837271Z", "created_at": "2023-10-25T13:26:03.310127Z", "data_removed": false, "error": null, "id": "obmukldbteo4i6lzfulhs47fh4", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "lcm_origin_steps": 50, "num_inference_steps": 4 }, "logs": "Using seed: 13611\nimg2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 17.19it/s]\n100%|██████████| 4/4 [00:00<00:00, 17.14it/s]\n100%|██████████| 4/4 [00:00<00:00, 17.13it/s]", "metrics": { "predict_time": 2.491598, "total_time": 2.527144 }, "output": [ "https://replicate.delivery/pbxt/gixujfS8h0Q5MyBjEQ1ABVeeHJgs2wcQqZUeEhblne9ntkNOC/out-0.png" ], "started_at": "2023-10-25T13:26:03.345673Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/obmukldbteo4i6lzfulhs47fh4", "cancel": "https://api.replicate.com/v1/predictions/obmukldbteo4i6lzfulhs47fh4/cancel" }, "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330" }
Generated inUsing seed: 13611 img2img mode 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 17.19it/s] 100%|██████████| 4/4 [00:00<00:00, 17.14it/s] 100%|██████████| 4/4 [00:00<00:00, 17.13it/s]
Prediction
fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330IDrso4t4tbtafl3wjtpk7oc6hiieStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- A landscape painting
- num_images
- 1
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.5
- lcm_origin_steps
- 50
- num_inference_steps
- 1
{ "image": "https://replicate.delivery/pbxt/JlG9dpBLCzl4oXNeKInF70UBTZWgK1fxn3Qc1ukoWnpnyCJf/download-1.png", "width": 768, "height": 768, "prompt": "A landscape painting", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.5, "lcm_origin_steps": 50, "num_inference_steps": 1 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", { input: { image: "https://replicate.delivery/pbxt/JlG9dpBLCzl4oXNeKInF70UBTZWgK1fxn3Qc1ukoWnpnyCJf/download-1.png", width: 768, height: 768, prompt: "A landscape painting", num_images: 1, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.5, lcm_origin_steps: 50, num_inference_steps: 1 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", input={ "image": "https://replicate.delivery/pbxt/JlG9dpBLCzl4oXNeKInF70UBTZWgK1fxn3Qc1ukoWnpnyCJf/download-1.png", "width": 768, "height": 768, "prompt": "A landscape painting", "num_images": 1, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.5, "lcm_origin_steps": 50, "num_inference_steps": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", "input": { "image": "https://replicate.delivery/pbxt/JlG9dpBLCzl4oXNeKInF70UBTZWgK1fxn3Qc1ukoWnpnyCJf/download-1.png", "width": 768, "height": 768, "prompt": "A landscape painting", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.5, "lcm_origin_steps": 50, "num_inference_steps": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-25T13:36:02.517853Z", "created_at": "2023-10-25T13:36:00.151015Z", "data_removed": false, "error": null, "id": "rso4t4tbtafl3wjtpk7oc6hiie", "input": { "image": "https://replicate.delivery/pbxt/JlG9dpBLCzl4oXNeKInF70UBTZWgK1fxn3Qc1ukoWnpnyCJf/download-1.png", "width": 768, "height": 768, "prompt": "A landscape painting", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.5, "lcm_origin_steps": 50, "num_inference_steps": 1 }, "logs": "Using seed: 25136\nimg2img mode\n 0%| | 0/1 [00:00<?, ?it/s]\n100%|██████████| 1/1 [00:00<00:00, 34.82it/s]", "metrics": { "predict_time": 2.371706, "total_time": 2.366838 }, "output": [ "https://replicate.delivery/pbxt/05gCCuIzueVvKSFILbYlvDdeoDe6CSEERL4yL8QuFcwDeyGHB/out-0.png" ], "started_at": "2023-10-25T13:36:00.146147Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/rso4t4tbtafl3wjtpk7oc6hiie", "cancel": "https://api.replicate.com/v1/predictions/rso4t4tbtafl3wjtpk7oc6hiie/cancel" }, "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330" }
Generated inUsing seed: 25136 img2img mode 0%| | 0/1 [00:00<?, ?it/s] 100%|██████████| 1/1 [00:00<00:00, 34.82it/s]
Prediction
fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330IDpgy5tztbuabr6iufud6xdsefgmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- detailed
- num_images
- 4
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.3
- lcm_origin_steps
- 50
- num_inference_steps
- 8
{ "image": "https://replicate.delivery/pbxt/JlGuQsJACihJI9TmPKfK0n4xaqQNpMkC31R7ffe3yGH4qJb4/out-0-31.png", "width": 768, "height": 768, "prompt": "detailed", "num_images": 4, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.3, "lcm_origin_steps": 50, "num_inference_steps": 8 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", { input: { image: "https://replicate.delivery/pbxt/JlGuQsJACihJI9TmPKfK0n4xaqQNpMkC31R7ffe3yGH4qJb4/out-0-31.png", width: 768, height: 768, prompt: "detailed", num_images: 4, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.3, lcm_origin_steps: 50, num_inference_steps: 8 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", input={ "image": "https://replicate.delivery/pbxt/JlGuQsJACihJI9TmPKfK0n4xaqQNpMkC31R7ffe3yGH4qJb4/out-0-31.png", "width": 768, "height": 768, "prompt": "detailed", "num_images": 4, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.3, "lcm_origin_steps": 50, "num_inference_steps": 8 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330", "input": { "image": "https://replicate.delivery/pbxt/JlGuQsJACihJI9TmPKfK0n4xaqQNpMkC31R7ffe3yGH4qJb4/out-0-31.png", "width": 768, "height": 768, "prompt": "detailed", "num_images": 4, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.3, "lcm_origin_steps": 50, "num_inference_steps": 8 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-10-25T14:25:28.987702Z", "created_at": "2023-10-25T14:25:22.166620Z", "data_removed": false, "error": null, "id": "pgy5tztbuabr6iufud6xdsefgm", "input": { "image": "https://replicate.delivery/pbxt/JlGuQsJACihJI9TmPKfK0n4xaqQNpMkC31R7ffe3yGH4qJb4/out-0-31.png", "width": 768, "height": 768, "prompt": "detailed", "num_images": 4, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.3, "lcm_origin_steps": 50, "num_inference_steps": 8 }, "logs": "Using seed: 19562\nimg2img mode\n 0%| | 0/8 [00:00<?, ?it/s]\n 12%|█▎ | 1/8 [00:00<00:01, 5.20it/s]\n 25%|██▌ | 2/8 [00:00<00:01, 5.17it/s]\n 38%|███▊ | 3/8 [00:00<00:00, 5.15it/s]\n 50%|█████ | 4/8 [00:00<00:00, 5.15it/s]\n 62%|██████▎ | 5/8 [00:00<00:00, 5.13it/s]\n 75%|███████▌ | 6/8 [00:01<00:00, 5.14it/s]\n 88%|████████▊ | 7/8 [00:01<00:00, 5.13it/s]\n100%|██████████| 8/8 [00:01<00:00, 5.13it/s]\n100%|██████████| 8/8 [00:01<00:00, 5.14it/s]", "metrics": { "predict_time": 6.882068, "total_time": 6.821082 }, "output": [ "https://replicate.delivery/pbxt/UFdRWvOfO3RYWSPnljDlzefevlqfTdCwXyDf4IKyMXBuVXbcE/out-0.png", "https://replicate.delivery/pbxt/OGY4alQTl2IQDVVNZ0gwdHWohOlc0DCTiClxGefZeHGu6ajjA/out-1.png", "https://replicate.delivery/pbxt/XOUmbWEwGn6mEBUWhHFoqLMFAaeMTDY3L0UozhX4CVOsu24IA/out-2.png", "https://replicate.delivery/pbxt/8c9qee7Ty9oseIwO4l7lrxUM2T7egBs6vOjMUfdEwugFrrNOC/out-3.png" ], "started_at": "2023-10-25T14:25:22.105634Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pgy5tztbuabr6iufud6xdsefgm", "cancel": "https://api.replicate.com/v1/predictions/pgy5tztbuabr6iufud6xdsefgm/cancel" }, "version": "92b456763bbd035ef9dda7cc778c9cc8628cb4b48b8af813d541e78565342330" }
Generated inUsing seed: 19562 img2img mode 0%| | 0/8 [00:00<?, ?it/s] 12%|█▎ | 1/8 [00:00<00:01, 5.20it/s] 25%|██▌ | 2/8 [00:00<00:01, 5.17it/s] 38%|███▊ | 3/8 [00:00<00:00, 5.15it/s] 50%|█████ | 4/8 [00:00<00:00, 5.15it/s] 62%|██████▎ | 5/8 [00:00<00:00, 5.13it/s] 75%|███████▌ | 6/8 [00:01<00:00, 5.14it/s] 88%|████████▊ | 7/8 [00:01<00:00, 5.13it/s] 100%|██████████| 8/8 [00:01<00:00, 5.13it/s] 100%|██████████| 8/8 [00:01<00:00, 5.14it/s]
Prediction
fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38fIDgzba3qzb6emol5pofnorirzxoeStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k
- num_images
- 1
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.45
- sizing_strategy
- width/height
- lcm_origin_steps
- 50
- canny_low_threshold
- 100
- num_inference_steps
- 4
- canny_high_threshold
- 200
- control_guidance_end
- 1
- control_guidance_start
- 0
- controlnet_conditioning_scale
- 2
{ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", { input: { image: "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", width: 768, height: 768, prompt: "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", num_images: 1, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.45, sizing_strategy: "width/height", lcm_origin_steps: 50, canny_low_threshold: 100, num_inference_steps: 4, canny_high_threshold: 200, control_guidance_end: 1, control_guidance_start: 0, controlnet_conditioning_scale: 2 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", input={ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-17T12:00:35.501424Z", "created_at": "2023-11-17T12:00:34.508128Z", "data_removed": false, "error": null, "id": "gzba3qzb6emol5pofnorirzxoe", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }, "logs": "Using seed: 24059\nFound 1 prompt:\n- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nMaking 1 image\nUsing given dimensions\nimg2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 16.05it/s]\n100%|██████████| 4/4 [00:00<00:00, 17.03it/s]\n100%|██████████| 4/4 [00:00<00:00, 16.86it/s]", "metrics": { "predict_time": 0.973905, "total_time": 0.993296 }, "output": [ "https://replicate.delivery/pbxt/w4j2qVhyr7ZNMlospFRwbUjtefYYsBO6uRWIKeW8k0cGfBlHB/out-0.jpg" ], "started_at": "2023-11-17T12:00:34.527519Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/gzba3qzb6emol5pofnorirzxoe", "cancel": "https://api.replicate.com/v1/predictions/gzba3qzb6emol5pofnorirzxoe/cancel" }, "version": "fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f" }
Generated inUsing seed: 24059 Found 1 prompt: - Self-portrait oil painting, a beautiful cyborg with golden hair, 8k Making 1 image Using given dimensions img2img mode 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 16.05it/s] 100%|██████████| 4/4 [00:00<00:00, 17.03it/s] 100%|██████████| 4/4 [00:00<00:00, 16.86it/s]
Prediction
fofr/latent-consistency-model:d6ea4b0610c9121f3dd0fcbb1d47eb1b10f8d944b6ce4ac3d8aadcec9695dd53IDnnhfewdbjde7sphjmzl3k2avmuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k Self-portrait oil painting, a beautiful cyborg with purple hair, 8k Self-portrait oil painting, a beautiful cyborg with ginger hair, 8k Self-portrait oil painting, a beautiful cyborg with green hair, 8k
- num_images
- 1
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.45
- sizing_strategy
- width/height
- lcm_origin_steps
- 50
- canny_low_threshold
- 100
- num_inference_steps
- 4
- canny_high_threshold
- 200
- control_guidance_end
- 1
- control_guidance_start
- 0
- controlnet_conditioning_scale
- 2
{ "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with purple hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with ginger hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with green hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:d6ea4b0610c9121f3dd0fcbb1d47eb1b10f8d944b6ce4ac3d8aadcec9695dd53", { input: { width: 768, height: 768, prompt: "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with purple hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with ginger hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with green hair, 8k", num_images: 1, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.45, sizing_strategy: "width/height", lcm_origin_steps: 50, canny_low_threshold: 100, num_inference_steps: 4, canny_high_threshold: 200, control_guidance_end: 1, control_guidance_start: 0, controlnet_conditioning_scale: 2 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:d6ea4b0610c9121f3dd0fcbb1d47eb1b10f8d944b6ce4ac3d8aadcec9695dd53", input={ "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with purple hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with ginger hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with green hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "d6ea4b0610c9121f3dd0fcbb1d47eb1b10f8d944b6ce4ac3d8aadcec9695dd53", "input": { "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\\nSelf-portrait oil painting, a beautiful cyborg with purple hair, 8k\\nSelf-portrait oil painting, a beautiful cyborg with ginger hair, 8k\\nSelf-portrait oil painting, a beautiful cyborg with green hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-16T10:45:02.316006Z", "created_at": "2023-11-16T10:43:26.640869Z", "data_removed": false, "error": null, "id": "nnhfewdbjde7sphjmzl3k2avmu", "input": { "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with purple hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with ginger hair, 8k\nSelf-portrait oil painting, a beautiful cyborg with green hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }, "logs": "Using seed: 32287\nFound 4 prompts:\n- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\n- Self-portrait oil painting, a beautiful cyborg with purple hair, 8k\n- Self-portrait oil painting, a beautiful cyborg with ginger hair, 8k\n- Self-portrait oil painting, a beautiful cyborg with green hair, 8k\nMaking 4 images\ntxt2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:00, 3.52it/s]\n 50%|█████ | 2/4 [00:00<00:00, 4.37it/s]\n 75%|███████▌ | 3/4 [00:00<00:00, 4.73it/s]\n100%|██████████| 4/4 [00:00<00:00, 4.92it/s]\n100%|██████████| 4/4 [00:00<00:00, 4.67it/s]", "metrics": { "predict_time": 5.59005, "total_time": 95.675137 }, "output": [ "https://replicate.delivery/pbxt/eTbeue6ymKb3YIkWA48CfvePUfjK6W7GPucK7YTIeNs0VJd8IA/out-0.png", "https://replicate.delivery/pbxt/DsOPJafrjt24L65eY3yAFq8rLiaNE8UCscqaznqTLthsS64RA/out-1.png", "https://replicate.delivery/pbxt/kB9ELGAmN8YfXqtNHtjB7lpdohOh2kGZj7tA743fBQutS64RA/out-2.png", "https://replicate.delivery/pbxt/iffO9dQXPphT9kp6zhS1yFIDiFp0rNMyR37ygXsJuNjtS64RA/out-3.png" ], "started_at": "2023-11-16T10:44:56.725956Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nnhfewdbjde7sphjmzl3k2avmu", "cancel": "https://api.replicate.com/v1/predictions/nnhfewdbjde7sphjmzl3k2avmu/cancel" }, "version": "d6ea4b0610c9121f3dd0fcbb1d47eb1b10f8d944b6ce4ac3d8aadcec9695dd53" }
Generated inUsing seed: 32287 Found 4 prompts: - Self-portrait oil painting, a beautiful cyborg with golden hair, 8k - Self-portrait oil painting, a beautiful cyborg with purple hair, 8k - Self-portrait oil painting, a beautiful cyborg with ginger hair, 8k - Self-portrait oil painting, a beautiful cyborg with green hair, 8k Making 4 images txt2img mode 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:00, 3.52it/s] 50%|█████ | 2/4 [00:00<00:00, 4.37it/s] 75%|███████▌ | 3/4 [00:00<00:00, 4.73it/s] 100%|██████████| 4/4 [00:00<00:00, 4.92it/s] 100%|██████████| 4/4 [00:00<00:00, 4.67it/s]
Prediction
fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38fIDuzzsxzjb2sus5xl5jqnxpjlyoqStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @fofrInput
- width
- 768
- height
- 768
- prompt
- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k
- num_images
- 1
- guidance_scale
- 8
- archive_outputs
- prompt_strength
- 0.45
- sizing_strategy
- width/height
- lcm_origin_steps
- 50
- canny_low_threshold
- 100
- num_inference_steps
- 4
- canny_high_threshold
- 200
- control_guidance_end
- 1
- control_guidance_start
- 0
- controlnet_conditioning_scale
- 2
{ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", { input: { image: "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", width: 768, height: 768, prompt: "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", num_images: 1, guidance_scale: 8, archive_outputs: false, prompt_strength: 0.45, sizing_strategy: "width/height", lcm_origin_steps: 50, canny_low_threshold: 100, num_inference_steps: 4, canny_high_threshold: 200, control_guidance_end: 1, control_guidance_start: 0, controlnet_conditioning_scale: 2 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/latent-consistency-model:fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", input={ "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": False, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run fofr/latent-consistency-model using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-11-17T12:01:14.214049Z", "created_at": "2023-11-17T12:01:12.926959Z", "data_removed": false, "error": null, "id": "uzzsxzjb2sus5xl5jqnxpjlyoq", "input": { "image": "https://replicate.delivery/pbxt/JlG0Efd2ubBp9yGnlOi7I9Se2rXnJSrPFogLf0YieKgjnWN6/download-6.png", "width": 768, "height": 768, "prompt": "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", "num_images": 1, "guidance_scale": 8, "archive_outputs": false, "prompt_strength": 0.45, "sizing_strategy": "width/height", "lcm_origin_steps": 50, "canny_low_threshold": 100, "num_inference_steps": 4, "canny_high_threshold": 200, "control_guidance_end": 1, "control_guidance_start": 0, "controlnet_conditioning_scale": 2 }, "logs": "Using seed: 38477\nFound 1 prompt:\n- Self-portrait oil painting, a beautiful cyborg with golden hair, 8k\nMaking 1 image\nUsing given dimensions\nimg2img mode\n 0%| | 0/4 [00:00<?, ?it/s]\n 50%|█████ | 2/4 [00:00<00:00, 17.91it/s]\n100%|██████████| 4/4 [00:00<00:00, 17.82it/s]\n100%|██████████| 4/4 [00:00<00:00, 17.81it/s]", "metrics": { "predict_time": 0.845919, "total_time": 1.28709 }, "output": [ "https://replicate.delivery/pbxt/LF23xWrMie2vMCmbiswetET2BLperpEtNodZSN4yNfDkAClHB/out-0.jpg" ], "started_at": "2023-11-17T12:01:13.368130Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/uzzsxzjb2sus5xl5jqnxpjlyoq", "cancel": "https://api.replicate.com/v1/predictions/uzzsxzjb2sus5xl5jqnxpjlyoq/cancel" }, "version": "fd0f02756ae5c3244cfb45c0603296e7418c07d1501bc6e9463ea2d215d5e38f" }
Generated inUsing seed: 38477 Found 1 prompt: - Self-portrait oil painting, a beautiful cyborg with golden hair, 8k Making 1 image Using given dimensions img2img mode 0%| | 0/4 [00:00<?, ?it/s] 50%|█████ | 2/4 [00:00<00:00, 17.91it/s] 100%|██████████| 4/4 [00:00<00:00, 17.82it/s] 100%|██████████| 4/4 [00:00<00:00, 17.81it/s]
Want to make some of these yourself?
Run this model