fofr
/
pulid-lightning
Use a face to instantly make images. Uses SDXL Lightning checkpoints.
Prediction
fofr/pulid-lightning:a0321a0cID89ga3jk5jxrgg0cfbkfvj6hjb0StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A photo of a person
- face_style
- high-fidelity
- output_format
- webp
- output_quality
- 80
- negative_prompt
- checkpoint_model
- realistic
- number_of_images
- 1
{ "width": 1024, "height": 1024, "prompt": "A photo of a person", "face_image": "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "checkpoint_model": "realistic", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", { input: { width: 1024, height: 1024, prompt: "A photo of a person", face_image: "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", face_style: "high-fidelity", output_format: "webp", output_quality: 80, negative_prompt: "", checkpoint_model: "realistic", number_of_images: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", input={ "width": 1024, "height": 1024, "prompt": "A photo of a person", "face_image": "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "checkpoint_model": "realistic", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", "input": { "width": 1024, "height": 1024, "prompt": "A photo of a person", "face_image": "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "checkpoint_model": "realistic", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382 \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="A photo of a person"' \ -i 'face_image="https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp"' \ -i 'face_style="high-fidelity"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt=""' \ -i 'checkpoint_model="realistic"' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A photo of a person", "face_image": "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "checkpoint_model": "realistic", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-05-09T10:21:44.078988Z", "created_at": "2024-05-09T10:21:35.511000Z", "data_removed": false, "error": null, "id": "89ga3jk5jxrgg0cfbkfvj6hjb0", "input": { "width": 1024, "height": 1024, "prompt": "A photo of a person", "face_image": "https://replicate.delivery/pbxt/Kt8cUyAZgWIqv4GEW38rhHgqhVQp5vKkkvs1xgsaijicnz4b/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "", "checkpoint_model": "realistic", "number_of_images": 1 }, "logs": "Random seed set to: 3375421544\nChecking inputs\n✅ /tmp/inputs/image.png\n====================================\nChecking weights\n✅ ip-adapter_pulid_sdxl_fp16.safetensors\n✅ dreamshaperXL_lightningDPMSDE.safetensors\n✅ models/antelopev2\n✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors\n====================================\nRunning workflow\ngot prompt\nExecuting node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple\nmodel_type EPS\nUsing pytorch attention in VAE\nUsing pytorch attention in VAE\nclip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight', 'clip_g.logit_scale']\nloaded straight to GPU\nRequested to load SDXL\nLoading 1 new model\nExecuting node 33, title: Apply Pulid, class type: ApplyPulid\nExecuting node 22, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nRequested to load SDXLClipModel\nLoading 1 new model\nExecuting node 23, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode\nExecuting node 3, title: KSampler, class type: KSampler\nRequested to load SDXL\nLoading 1 new model\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 1.93it/s]\n 50%|█████ | 2/4 [00:01<00:01, 1.84it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 1.90it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.41it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.19it/s]\nRequested to load AutoencoderKL\nLoading 1 new model\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 47, title: Save Image, class type: SaveImage\nPrompt executed in 6.29 seconds\noutputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nComfyUI_00001_.png", "metrics": { "predict_time": 8.531323, "total_time": 8.567988 }, "output": [ "https://replicate.delivery/pbxt/g2Kybo6t34pCJ5zSewsh6ZiFKHeA23MlbYqmBVpMARy3WlySA/ComfyUI_00001_.webp" ], "started_at": "2024-05-09T10:21:35.547665Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/89ga3jk5jxrgg0cfbkfvj6hjb0", "cancel": "https://api.replicate.com/v1/predictions/89ga3jk5jxrgg0cfbkfvj6hjb0/cancel" }, "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382" }
Generated inRandom seed set to: 3375421544 Checking inputs ✅ /tmp/inputs/image.png ==================================== Checking weights ✅ ip-adapter_pulid_sdxl_fp16.safetensors ✅ dreamshaperXL_lightningDPMSDE.safetensors ✅ models/antelopev2 ✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors ==================================== Running workflow got prompt Executing node 4, title: Load Checkpoint, class type: CheckpointLoaderSimple model_type EPS Using pytorch attention in VAE Using pytorch attention in VAE clip missing: ['clip_l.logit_scale', 'clip_l.transformer.text_projection.weight', 'clip_g.logit_scale'] loaded straight to GPU Requested to load SDXL Loading 1 new model Executing node 33, title: Apply Pulid, class type: ApplyPulid Executing node 22, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Requested to load SDXLClipModel Loading 1 new model Executing node 23, title: CLIP Text Encode (Prompt), class type: CLIPTextEncode Executing node 3, title: KSampler, class type: KSampler Requested to load SDXL Loading 1 new model 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 1.93it/s] 50%|█████ | 2/4 [00:01<00:01, 1.84it/s] 75%|███████▌ | 3/4 [00:01<00:00, 1.90it/s] 100%|██████████| 4/4 [00:01<00:00, 2.41it/s] 100%|██████████| 4/4 [00:01<00:00, 2.19it/s] Requested to load AutoencoderKL Loading 1 new model Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 47, title: Save Image, class type: SaveImage Prompt executed in 6.29 seconds outputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== ComfyUI_00001_.png
Prediction
fofr/pulid-lightning:a0321a0cIDfdjhdp59rsrgj0cfbkgb70mt94StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1152
- height
- 768
- prompt
- A screenshot of a person in a video game, unreal engine, ps5
- face_style
- high-fidelity
- output_format
- webp
- output_quality
- 80
- negative_prompt
- photo, photography
- checkpoint_model
- artistic
- number_of_images
- 1
{ "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", { input: { width: 1152, height: 768, prompt: "A screenshot of a person in a video game, unreal engine, ps5", face_image: "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", face_style: "high-fidelity", output_format: "webp", output_quality: 80, negative_prompt: "photo, photography", checkpoint_model: "artistic", number_of_images: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", input={ "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382 \ -i 'width=1152' \ -i 'height=768' \ -i 'prompt="A screenshot of a person in a video game, unreal engine, ps5"' \ -i 'face_image="https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp"' \ -i 'face_style="high-fidelity"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt="photo, photography"' \ -i 'checkpoint_model="artistic"' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-05-09T10:23:02.845388Z", "created_at": "2024-05-09T10:22:58.502000Z", "data_removed": false, "error": null, "id": "fdjhdp59rsrgj0cfbkgb70mt94", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }, "logs": "Random seed set to: 559882634\nChecking inputs\n✅ /tmp/inputs/image.png\n====================================\nChecking weights\n✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors\n✅ models/antelopev2\n✅ ProteusV0.4-Lighting.safetensors\n✅ ip-adapter_pulid_sdxl_fp16.safetensors\n✅ dreamshaperXL_lightningDPMSDE.safetensors\n====================================\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.18it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.09it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.14it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.73it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.47it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 47, title: Save Image, class type: SaveImage\nPrompt executed in 1.95 seconds\noutputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nComfyUI_00001_.png", "metrics": { "predict_time": 4.302588, "total_time": 4.343388 }, "output": [ "https://replicate.delivery/pbxt/3nXWaSvDV9pFHtyOsWxScx9kfrZegzN4BbQ3z6LOie9MwKllA/ComfyUI_00001_.webp" ], "started_at": "2024-05-09T10:22:58.542800Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/fdjhdp59rsrgj0cfbkgb70mt94", "cancel": "https://api.replicate.com/v1/predictions/fdjhdp59rsrgj0cfbkgb70mt94/cancel" }, "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382" }
Generated inRandom seed set to: 559882634 Checking inputs ✅ /tmp/inputs/image.png ==================================== Checking weights ✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors ✅ models/antelopev2 ✅ ProteusV0.4-Lighting.safetensors ✅ ip-adapter_pulid_sdxl_fp16.safetensors ✅ dreamshaperXL_lightningDPMSDE.safetensors ==================================== Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.18it/s] 50%|█████ | 2/4 [00:00<00:00, 2.09it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.14it/s] 100%|██████████| 4/4 [00:01<00:00, 2.73it/s] 100%|██████████| 4/4 [00:01<00:00, 2.47it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 47, title: Save Image, class type: SaveImage Prompt executed in 1.95 seconds outputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== ComfyUI_00001_.png
Prediction
fofr/pulid-lightning:a0321a0cIDzxkc73drpxrgp0cfbkj8k3rgbcStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1152
- height
- 768
- prompt
- A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest
- face_style
- stylized
- output_format
- webp
- output_quality
- 80
- negative_prompt
- photo, photography
- checkpoint_model
- artistic
- number_of_images
- 1
{ "width": 1152, "height": 768, "prompt": "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", "face_image": "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", { input: { width: 1152, height: 768, prompt: "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", face_image: "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", face_style: "stylized", output_format: "webp", output_quality: 80, negative_prompt: "photo, photography", checkpoint_model: "artistic", number_of_images: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", input={ "width": 1152, "height": 768, "prompt": "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", "face_image": "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", "input": { "width": 1152, "height": 768, "prompt": "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", "face_image": "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382 \ -i 'width=1152' \ -i 'height=768' \ -i 'prompt="A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest"' \ -i 'face_image="https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp"' \ -i 'face_style="stylized"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt="photo, photography"' \ -i 'checkpoint_model="artistic"' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", "face_image": "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-05-09T10:27:28.627159Z", "created_at": "2024-05-09T10:27:24.471000Z", "data_removed": false, "error": null, "id": "zxkc73drpxrgp0cfbkj8k3rgbc", "input": { "width": 1152, "height": 768, "prompt": "A closeup screenshot of a person in a fantasy video game, unreal engine, ps5, snowy forest", "face_image": "https://replicate.delivery/pbxt/Kt8i1m6BW6qyFwcfpVhSpafDrNt42L0bN0yfnRR89JTweTE1/0_1.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }, "logs": "Random seed set to: 1084633989\nChecking inputs\n✅ /tmp/inputs/image.png\n====================================\nChecking weights\n✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors\n✅ models/antelopev2\n✅ ProteusV0.4-Lighting.safetensors\n✅ ip-adapter_pulid_sdxl_fp16.safetensors\n✅ dreamshaperXL_lightningDPMSDE.safetensors\n====================================\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.23it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.14it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.20it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.79it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.53it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 47, title: Save Image, class type: SaveImage\nPrompt executed in 1.93 seconds\noutputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nComfyUI_00001_.png", "metrics": { "predict_time": 4.0836, "total_time": 4.156159 }, "output": [ "https://replicate.delivery/pbxt/ugRc6ByBLLZoKFDynsgfyqvZIvvNXnDgNkBagLalPNpHuSZJA/ComfyUI_00001_.webp" ], "started_at": "2024-05-09T10:27:24.543559Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/zxkc73drpxrgp0cfbkj8k3rgbc", "cancel": "https://api.replicate.com/v1/predictions/zxkc73drpxrgp0cfbkj8k3rgbc/cancel" }, "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382" }
Generated inRandom seed set to: 1084633989 Checking inputs ✅ /tmp/inputs/image.png ==================================== Checking weights ✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors ✅ models/antelopev2 ✅ ProteusV0.4-Lighting.safetensors ✅ ip-adapter_pulid_sdxl_fp16.safetensors ✅ dreamshaperXL_lightningDPMSDE.safetensors ==================================== Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.23it/s] 50%|█████ | 2/4 [00:00<00:00, 2.14it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.20it/s] 100%|██████████| 4/4 [00:01<00:00, 2.79it/s] 100%|██████████| 4/4 [00:01<00:00, 2.53it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 47, title: Save Image, class type: SaveImage Prompt executed in 1.93 seconds outputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== ComfyUI_00001_.png
Prediction
fofr/pulid-lightning:a0321a0cIDhy1be1dvcdrgj0cfbkjt2cdwmgStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1152
- height
- 768
- prompt
- A screenshot of a person in a video game, unreal engine, ps5
- face_style
- stylized
- output_format
- webp
- output_quality
- 80
- negative_prompt
- photo, photography
- checkpoint_model
- artistic
- number_of_images
- 1
{ "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", { input: { width: 1152, height: 768, prompt: "A screenshot of a person in a video game, unreal engine, ps5", face_image: "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", face_style: "stylized", output_format: "webp", output_quality: 80, negative_prompt: "photo, photography", checkpoint_model: "artistic", number_of_images: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", input={ "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382 \ -i 'width=1152' \ -i 'height=768' \ -i 'prompt="A screenshot of a person in a video game, unreal engine, ps5"' \ -i 'face_image="https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp"' \ -i 'face_style="stylized"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt="photo, photography"' \ -i 'checkpoint_model="artistic"' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-05-09T10:28:34.389205Z", "created_at": "2024-05-09T10:28:30.691000Z", "data_removed": false, "error": null, "id": "hy1be1dvcdrgj0cfbkjt2cdwmg", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in a video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8dp9R5JbK7ixrWbjM3fTXUiz4t0fi4JOSqyRkReHrMgYjm/guy.webp", "face_style": "stylized", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }, "logs": "Random seed set to: 763561143\nChecking inputs\n✅ /tmp/inputs/image.png\n====================================\nChecking weights\n✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors\n✅ models/antelopev2\n✅ ProteusV0.4-Lighting.safetensors\n✅ ip-adapter_pulid_sdxl_fp16.safetensors\n✅ dreamshaperXL_lightningDPMSDE.safetensors\n====================================\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.24it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.16it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.22it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.81it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.55it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 47, title: Save Image, class type: SaveImage\nPrompt executed in 1.92 seconds\noutputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nComfyUI_00001_.png", "metrics": { "predict_time": 3.656876, "total_time": 3.698205 }, "output": [ "https://replicate.delivery/pbxt/lkVnJA1sQWpdAt5Yphp9W8yVKLeNZkY1A0rHWk2YjFgouSZJA/ComfyUI_00001_.webp" ], "started_at": "2024-05-09T10:28:30.732329Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/hy1be1dvcdrgj0cfbkjt2cdwmg", "cancel": "https://api.replicate.com/v1/predictions/hy1be1dvcdrgj0cfbkjt2cdwmg/cancel" }, "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382" }
Generated inRandom seed set to: 763561143 Checking inputs ✅ /tmp/inputs/image.png ==================================== Checking weights ✅ Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors ✅ models/antelopev2 ✅ ProteusV0.4-Lighting.safetensors ✅ ip-adapter_pulid_sdxl_fp16.safetensors ✅ dreamshaperXL_lightningDPMSDE.safetensors ==================================== Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.24it/s] 50%|█████ | 2/4 [00:00<00:00, 2.16it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.22it/s] 100%|██████████| 4/4 [00:01<00:00, 2.81it/s] 100%|██████████| 4/4 [00:01<00:00, 2.55it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 47, title: Save Image, class type: SaveImage Prompt executed in 1.92 seconds outputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== ComfyUI_00001_.png
Prediction
fofr/pulid-lightning:a0321a0cIDbxp0f23dtsrgj0cfbkrsb4zmqwStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @fofrInput
- width
- 1152
- height
- 768
- prompt
- A screenshot of a person in an italian renaissance video game, unreal engine, ps5
- face_style
- high-fidelity
- output_format
- webp
- output_quality
- 80
- negative_prompt
- photo, photography
- checkpoint_model
- artistic
- number_of_images
- 1
{ "width": 1152, "height": 768, "prompt": "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }
Install Replicate’s Node.js client library:npm install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", { input: { width: 1152, height: 768, prompt: "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", face_image: "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", face_style: "high-fidelity", output_format: "webp", output_quality: 80, negative_prompt: "photo, photography", checkpoint_model: "artistic", number_of_images: 1 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:import replicate
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/pulid-lightning:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", input={ "width": 1152, "height": 768, "prompt": "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/pulid-lightning using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382 \ -i 'width=1152' \ -i 'height=768' \ -i 'prompt="A screenshot of a person in an italian renaissance video game, unreal engine, ps5"' \ -i 'face_image="https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png"' \ -i 'face_style="high-fidelity"' \ -i 'output_format="webp"' \ -i 'output_quality=80' \ -i 'negative_prompt="photo, photography"' \ -i 'checkpoint_model="artistic"' \ -i 'number_of_images=1'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/fofr/pulid-lightning@sha256:a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2024-05-09T10:41:21.645641Z", "created_at": "2024-05-09T10:41:17.270000Z", "data_removed": false, "error": null, "id": "bxp0f23dtsrgj0cfbkrsb4zmqw", "input": { "width": 1152, "height": 768, "prompt": "A screenshot of a person in an italian renaissance video game, unreal engine, ps5", "face_image": "https://replicate.delivery/pbxt/Kt8v9siysiEOn2p7zTlH7ZUceiPxUCxtC24wSPoJcP5j7vCl/mona-lisa.png", "face_style": "high-fidelity", "output_format": "webp", "output_quality": 80, "negative_prompt": "photo, photography", "checkpoint_model": "artistic", "number_of_images": 1 }, "logs": "Random seed set to: 3366515947\nChecking inputs\n✅ /tmp/inputs/image.png\n====================================\nChecking weights\n✅ ip-adapter_pulid_sdxl_fp16.safetensors\n✅ dreamshaperXL_lightningDPMSDE.safetensors\n✅ ProteusV0.4-Lighting.safetensors\n✅ models/antelopev2\n====================================\nRunning workflow\ngot prompt\nExecuting node 3, title: KSampler, class type: KSampler\n 0%| | 0/4 [00:00<?, ?it/s]\n 25%|██▌ | 1/4 [00:00<00:01, 2.19it/s]\n 50%|█████ | 2/4 [00:00<00:00, 2.14it/s]\n 75%|███████▌ | 3/4 [00:01<00:00, 2.18it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.77it/s]\n100%|██████████| 4/4 [00:01<00:00, 2.51it/s]\nExecuting node 8, title: VAE Decode, class type: VAEDecode\nExecuting node 47, title: Save Image, class type: SaveImage\nPrompt executed in 1.94 seconds\noutputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}}\n====================================\nComfyUI_00001_.png", "metrics": { "predict_time": 4.33157, "total_time": 4.375641 }, "output": [ "https://replicate.delivery/pbxt/ei78992rJky7SifqGCXyHrt16ejR8RVhpCThAix9h0HhSLllA/ComfyUI_00001_.webp" ], "started_at": "2024-05-09T10:41:17.314071Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/bxp0f23dtsrgj0cfbkrsb4zmqw", "cancel": "https://api.replicate.com/v1/predictions/bxp0f23dtsrgj0cfbkrsb4zmqw/cancel" }, "version": "a0321a0cef20aa9e0828f8a9873dc3fd019266bc929f2fb8d70b76d52e122382" }
Generated inRandom seed set to: 3366515947 Checking inputs ✅ /tmp/inputs/image.png ==================================== Checking weights ✅ ip-adapter_pulid_sdxl_fp16.safetensors ✅ dreamshaperXL_lightningDPMSDE.safetensors ✅ ProteusV0.4-Lighting.safetensors ✅ models/antelopev2 ==================================== Running workflow got prompt Executing node 3, title: KSampler, class type: KSampler 0%| | 0/4 [00:00<?, ?it/s] 25%|██▌ | 1/4 [00:00<00:01, 2.19it/s] 50%|█████ | 2/4 [00:00<00:00, 2.14it/s] 75%|███████▌ | 3/4 [00:01<00:00, 2.18it/s] 100%|██████████| 4/4 [00:01<00:00, 2.77it/s] 100%|██████████| 4/4 [00:01<00:00, 2.51it/s] Executing node 8, title: VAE Decode, class type: VAEDecode Executing node 47, title: Save Image, class type: SaveImage Prompt executed in 1.94 seconds outputs: {'47': {'images': [{'filename': 'ComfyUI_00001_.png', 'subfolder': '', 'type': 'output'}]}} ==================================== ComfyUI_00001_.png
Want to make some of these yourself?
Run this model