fofr
/
sdxl-deep-dream
An SDXL fine-tune based on Deep Dream
- Public
- 1.2K runs
-
L40S
- SDXL fine-tune
Prediction
fofr/sdxl-deep-dream:699f0172IDejhtba3bzfc23two6e3w4xuuvqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- An artwork in the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 26
{ "width": 1024, "height": 1024, "prompt": "An artwork in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 }
npm install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the clientimport Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", { input: { width: 1024, height: 1024, prompt: "An artwork in the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 26 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the clientimport replicate
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", input={ "width": 1024, "height": 1024, "prompt": "An artwork in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", "input": { "width": 1024, "height": 1024, "prompt": "An artwork in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-02T21:26:01.946353Z", "created_at": "2023-09-02T21:25:50.994457Z", "data_removed": false, "error": null, "id": "ejhtba3bzfc23two6e3w4xuuvq", "input": { "width": 1024, "height": 1024, "prompt": "An artwork in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 }, "logs": "Using seed: 39821\nPrompt: An artwork in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:17, 1.29it/s]\n 9%|▊ | 2/23 [00:01<00:10, 2.09it/s]\n 13%|█▎ | 3/23 [00:01<00:07, 2.61it/s]\n 17%|█▋ | 4/23 [00:01<00:06, 2.96it/s]\n 22%|██▏ | 5/23 [00:01<00:05, 3.20it/s]\n 26%|██▌ | 6/23 [00:02<00:05, 3.35it/s]\n 30%|███ | 7/23 [00:02<00:04, 3.46it/s]\n 35%|███▍ | 8/23 [00:02<00:04, 3.54it/s]\n 39%|███▉ | 9/23 [00:02<00:03, 3.59it/s]\n 43%|████▎ | 10/23 [00:03<00:03, 3.62it/s]\n 48%|████▊ | 11/23 [00:03<00:03, 3.65it/s]\n 52%|█████▏ | 12/23 [00:03<00:03, 3.66it/s]\n 57%|█████▋ | 13/23 [00:04<00:02, 3.67it/s]\n 61%|██████ | 14/23 [00:04<00:02, 3.68it/s]\n 65%|██████▌ | 15/23 [00:04<00:02, 3.69it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 3.69it/s]\n 74%|███████▍ | 17/23 [00:05<00:01, 3.69it/s]\n 78%|███████▊ | 18/23 [00:05<00:01, 3.69it/s]\n 83%|████████▎ | 19/23 [00:05<00:01, 3.69it/s]\n 87%|████████▋ | 20/23 [00:05<00:00, 3.70it/s]\n 91%|█████████▏| 21/23 [00:06<00:00, 3.70it/s]\n 96%|█████████▌| 22/23 [00:06<00:00, 3.70it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.70it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.42it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.24it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.31it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.32it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.31it/s]", "metrics": { "predict_time": 9.71771, "total_time": 10.951896 }, "output": [ "https://pbxt.replicate.delivery/yJ3hRYzu3IprElEXCWWLYt3MfFOecLhO2eqIfRT8Pl7lmWBGB/out-0.png" ], "started_at": "2023-09-02T21:25:52.228643Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ejhtba3bzfc23two6e3w4xuuvq", "cancel": "https://api.replicate.com/v1/predictions/ejhtba3bzfc23two6e3w4xuuvq/cancel" }, "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf" }
Generated inUsing seed: 39821 Prompt: An artwork in the style of <s0><s1> txt2img mode 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:17, 1.29it/s] 9%|▊ | 2/23 [00:01<00:10, 2.09it/s] 13%|█▎ | 3/23 [00:01<00:07, 2.61it/s] 17%|█▋ | 4/23 [00:01<00:06, 2.96it/s] 22%|██▏ | 5/23 [00:01<00:05, 3.20it/s] 26%|██▌ | 6/23 [00:02<00:05, 3.35it/s] 30%|███ | 7/23 [00:02<00:04, 3.46it/s] 35%|███▍ | 8/23 [00:02<00:04, 3.54it/s] 39%|███▉ | 9/23 [00:02<00:03, 3.59it/s] 43%|████▎ | 10/23 [00:03<00:03, 3.62it/s] 48%|████▊ | 11/23 [00:03<00:03, 3.65it/s] 52%|█████▏ | 12/23 [00:03<00:03, 3.66it/s] 57%|█████▋ | 13/23 [00:04<00:02, 3.67it/s] 61%|██████ | 14/23 [00:04<00:02, 3.68it/s] 65%|██████▌ | 15/23 [00:04<00:02, 3.69it/s] 70%|██████▉ | 16/23 [00:04<00:01, 3.69it/s] 74%|███████▍ | 17/23 [00:05<00:01, 3.69it/s] 78%|███████▊ | 18/23 [00:05<00:01, 3.69it/s] 83%|████████▎ | 19/23 [00:05<00:01, 3.69it/s] 87%|████████▋ | 20/23 [00:05<00:00, 3.70it/s] 91%|█████████▏| 21/23 [00:06<00:00, 3.70it/s] 96%|█████████▌| 22/23 [00:06<00:00, 3.70it/s] 100%|██████████| 23/23 [00:06<00:00, 3.70it/s] 100%|██████████| 23/23 [00:06<00:00, 3.42it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.24it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.31it/s] 100%|██████████| 3/3 [00:00<00:00, 4.32it/s] 100%|██████████| 3/3 [00:00<00:00, 4.31it/s]
Prediction
fofr/sdxl-deep-dream:699f0172IDb4r6cotblg2zq6sgrsecphl3ymStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A portrait photo of a woman in the style of TOK, double exposure with dogs
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 1
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 26
{ "width": 1024, "height": 1024, "prompt": "A portrait photo of a woman in the style of TOK, double exposure with dogs", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 }
npm install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the clientimport Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", { input: { width: 1024, height: 1024, prompt: "A portrait photo of a woman in the style of TOK, double exposure with dogs", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 1, num_outputs: 1, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 26 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the clientimport replicate
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", input={ "width": 1024, "height": 1024, "prompt": "A portrait photo of a woman in the style of TOK, double exposure with dogs", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", "input": { "width": 1024, "height": 1024, "prompt": "A portrait photo of a woman in the style of TOK, double exposure with dogs", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-02T21:27:20.952009Z", "created_at": "2023-09-02T21:27:12.195631Z", "data_removed": false, "error": null, "id": "b4r6cotblg2zq6sgrsecphl3ym", "input": { "width": 1024, "height": 1024, "prompt": "A portrait photo of a woman in the style of TOK, double exposure with dogs", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 26 }, "logs": "Using seed: 42966\nPrompt: A portrait photo of a woman in the style of <s0><s1>, double exposure with dogs\ntxt2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:05, 3.72it/s]\n 9%|▊ | 2/23 [00:00<00:05, 3.71it/s]\n 13%|█▎ | 3/23 [00:00<00:05, 3.70it/s]\n 17%|█▋ | 4/23 [00:01<00:05, 3.70it/s]\n 22%|██▏ | 5/23 [00:01<00:04, 3.70it/s]\n 26%|██▌ | 6/23 [00:01<00:04, 3.70it/s]\n 30%|███ | 7/23 [00:01<00:04, 3.70it/s]\n 35%|███▍ | 8/23 [00:02<00:04, 3.70it/s]\n 39%|███▉ | 9/23 [00:02<00:03, 3.71it/s]\n 43%|████▎ | 10/23 [00:02<00:03, 3.71it/s]\n 48%|████▊ | 11/23 [00:02<00:03, 3.71it/s]\n 52%|█████▏ | 12/23 [00:03<00:02, 3.71it/s]\n 57%|█████▋ | 13/23 [00:03<00:02, 3.71it/s]\n 61%|██████ | 14/23 [00:03<00:02, 3.71it/s]\n 65%|██████▌ | 15/23 [00:04<00:02, 3.71it/s]\n 70%|██████▉ | 16/23 [00:04<00:01, 3.71it/s]\n 74%|███████▍ | 17/23 [00:04<00:01, 3.71it/s]\n 78%|███████▊ | 18/23 [00:04<00:01, 3.71it/s]\n 83%|████████▎ | 19/23 [00:05<00:01, 3.71it/s]\n 87%|████████▋ | 20/23 [00:05<00:00, 3.71it/s]\n 91%|█████████▏| 21/23 [00:05<00:00, 3.71it/s]\n 96%|█████████▌| 22/23 [00:05<00:00, 3.71it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.71it/s]\n100%|██████████| 23/23 [00:06<00:00, 3.71it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:00, 4.38it/s]\n 67%|██████▋ | 2/3 [00:00<00:00, 4.37it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.36it/s]\n100%|██████████| 3/3 [00:00<00:00, 4.37it/s]", "metrics": { "predict_time": 8.748911, "total_time": 8.756378 }, "output": [ "https://pbxt.replicate.delivery/QiRSbDRvN3YFLFuDZh9GadHMC9H1f9Cb3vZByXCA0xrb1KwIA/out-0.png" ], "started_at": "2023-09-02T21:27:12.203098Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/b4r6cotblg2zq6sgrsecphl3ym", "cancel": "https://api.replicate.com/v1/predictions/b4r6cotblg2zq6sgrsecphl3ym/cancel" }, "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf" }
Generated inUsing seed: 42966 Prompt: A portrait photo of a woman in the style of <s0><s1>, double exposure with dogs txt2img mode 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:05, 3.72it/s] 9%|▊ | 2/23 [00:00<00:05, 3.71it/s] 13%|█▎ | 3/23 [00:00<00:05, 3.70it/s] 17%|█▋ | 4/23 [00:01<00:05, 3.70it/s] 22%|██▏ | 5/23 [00:01<00:04, 3.70it/s] 26%|██▌ | 6/23 [00:01<00:04, 3.70it/s] 30%|███ | 7/23 [00:01<00:04, 3.70it/s] 35%|███▍ | 8/23 [00:02<00:04, 3.70it/s] 39%|███▉ | 9/23 [00:02<00:03, 3.71it/s] 43%|████▎ | 10/23 [00:02<00:03, 3.71it/s] 48%|████▊ | 11/23 [00:02<00:03, 3.71it/s] 52%|█████▏ | 12/23 [00:03<00:02, 3.71it/s] 57%|█████▋ | 13/23 [00:03<00:02, 3.71it/s] 61%|██████ | 14/23 [00:03<00:02, 3.71it/s] 65%|██████▌ | 15/23 [00:04<00:02, 3.71it/s] 70%|██████▉ | 16/23 [00:04<00:01, 3.71it/s] 74%|███████▍ | 17/23 [00:04<00:01, 3.71it/s] 78%|███████▊ | 18/23 [00:04<00:01, 3.71it/s] 83%|████████▎ | 19/23 [00:05<00:01, 3.71it/s] 87%|████████▋ | 20/23 [00:05<00:00, 3.71it/s] 91%|█████████▏| 21/23 [00:05<00:00, 3.71it/s] 96%|█████████▌| 22/23 [00:05<00:00, 3.71it/s] 100%|██████████| 23/23 [00:06<00:00, 3.71it/s] 100%|██████████| 23/23 [00:06<00:00, 3.71it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:00, 4.38it/s] 67%|██████▋ | 2/3 [00:00<00:00, 4.37it/s] 100%|██████████| 3/3 [00:00<00:00, 4.36it/s] 100%|██████████| 3/3 [00:00<00:00, 4.37it/s]
Prediction
fofr/sdxl-deep-dream:699f0172ID3dlt24dbw3hcpfe3s57shenk4eStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- image
- null
- width
- 1024
- height
- 1024
- prompt
- An impasto oil painting in the style of TOK
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 1
- num_outputs
- 4
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.9
- negative_prompt
- ugly, garish
- prompt_strength
- 0.68
- num_inference_steps
- 26
{ "image": null, "width": 1024, "height": 1024, "prompt": "An impasto oil painting in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, garish", "prompt_strength": 0.68, "num_inference_steps": 26 }
npm install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the clientimport Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", { input: { width: 1024, height: 1024, prompt: "An impasto oil painting in the style of TOK", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 1, num_outputs: 4, guidance_scale: 7.5, apply_watermark: false, high_noise_frac: 0.9, negative_prompt: "ugly, garish", prompt_strength: 0.68, num_inference_steps: 26 } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the clientimport replicate
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "fofr/sdxl-deep-dream:699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", input={ "width": 1024, "height": 1024, "prompt": "An impasto oil painting in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": False, "high_noise_frac": 0.9, "negative_prompt": "ugly, garish", "prompt_strength": 0.68, "num_inference_steps": 26 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Set theREPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run fofr/sdxl-deep-dream using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf", "input": { "width": 1024, "height": 1024, "prompt": "An impasto oil painting in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, garish", "prompt_strength": 0.68, "num_inference_steps": 26 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-02T21:38:36.915349Z", "created_at": "2023-09-02T21:38:06.060578Z", "data_removed": false, "error": null, "id": "3dlt24dbw3hcpfe3s57shenk4e", "input": { "image": null, "width": 1024, "height": 1024, "prompt": "An impasto oil painting in the style of TOK", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 1, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.9, "negative_prompt": "ugly, garish", "prompt_strength": 0.68, "num_inference_steps": 26 }, "logs": "Using seed: 5734\nPrompt: An impasto oil painting in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/23 [00:00<?, ?it/s]\n 4%|▍ | 1/23 [00:00<00:21, 1.01it/s]\n 9%|▊ | 2/23 [00:01<00:20, 1.01it/s]\n 13%|█▎ | 3/23 [00:02<00:19, 1.01it/s]\n 17%|█▋ | 4/23 [00:03<00:18, 1.01it/s]\n 22%|██▏ | 5/23 [00:04<00:17, 1.00it/s]\n 26%|██▌ | 6/23 [00:05<00:16, 1.00it/s]\n 30%|███ | 7/23 [00:06<00:15, 1.00it/s]\n 35%|███▍ | 8/23 [00:07<00:14, 1.00it/s]\n 39%|███▉ | 9/23 [00:08<00:13, 1.00it/s]\n 43%|████▎ | 10/23 [00:09<00:12, 1.00it/s]\n 48%|████▊ | 11/23 [00:10<00:11, 1.00it/s]\n 52%|█████▏ | 12/23 [00:11<00:10, 1.00it/s]\n 57%|█████▋ | 13/23 [00:12<00:09, 1.00it/s]\n 61%|██████ | 14/23 [00:13<00:08, 1.00it/s]\n 65%|██████▌ | 15/23 [00:14<00:07, 1.00it/s]\n 70%|██████▉ | 16/23 [00:15<00:06, 1.00it/s]\n 74%|███████▍ | 17/23 [00:16<00:05, 1.00it/s]\n 78%|███████▊ | 18/23 [00:17<00:05, 1.00s/it]\n 83%|████████▎ | 19/23 [00:18<00:04, 1.00s/it]\n 87%|████████▋ | 20/23 [00:19<00:03, 1.00s/it]\n 91%|█████████▏| 21/23 [00:20<00:02, 1.00s/it]\n 96%|█████████▌| 22/23 [00:21<00:01, 1.00s/it]\n100%|██████████| 23/23 [00:22<00:00, 1.01s/it]\n100%|██████████| 23/23 [00:22<00:00, 1.00it/s]\n 0%| | 0/3 [00:00<?, ?it/s]\n 33%|███▎ | 1/3 [00:00<00:01, 1.24it/s]\n 67%|██████▋ | 2/3 [00:01<00:00, 1.23it/s]\n100%|██████████| 3/3 [00:02<00:00, 1.23it/s]\n100%|██████████| 3/3 [00:02<00:00, 1.23it/s]", "metrics": { "predict_time": 30.855989, "total_time": 30.854771 }, "output": [ "https://pbxt.replicate.delivery/7gZfXg002UXnGCW3HQT1R1m3WOyliaG2Gb1PTqxTKVGt6KwIA/out-0.png", "https://pbxt.replicate.delivery/7SkgUCfKPvxjGC8dXRMZfSRwbohoRy1WzNgLXm3AnCf2qrAjA/out-1.png", "https://pbxt.replicate.delivery/O3aLV87IPAoZDFkAYQjWoVhP8I8TUeaJTSpO2lV3CA4t6KwIA/out-2.png", "https://pbxt.replicate.delivery/fuIXaErnNoTpVCQGByd37fCUTVcTdikXYYXVffX2ZZXzVXBGB/out-3.png" ], "started_at": "2023-09-02T21:38:06.059360Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3dlt24dbw3hcpfe3s57shenk4e", "cancel": "https://api.replicate.com/v1/predictions/3dlt24dbw3hcpfe3s57shenk4e/cancel" }, "version": "699f01724f16795f299132073a81d4a20fa26db37ae1014de68c8029b52a1aaf" }
Generated inUsing seed: 5734 Prompt: An impasto oil painting in the style of <s0><s1> txt2img mode 0%| | 0/23 [00:00<?, ?it/s] 4%|▍ | 1/23 [00:00<00:21, 1.01it/s] 9%|▊ | 2/23 [00:01<00:20, 1.01it/s] 13%|█▎ | 3/23 [00:02<00:19, 1.01it/s] 17%|█▋ | 4/23 [00:03<00:18, 1.01it/s] 22%|██▏ | 5/23 [00:04<00:17, 1.00it/s] 26%|██▌ | 6/23 [00:05<00:16, 1.00it/s] 30%|███ | 7/23 [00:06<00:15, 1.00it/s] 35%|███▍ | 8/23 [00:07<00:14, 1.00it/s] 39%|███▉ | 9/23 [00:08<00:13, 1.00it/s] 43%|████▎ | 10/23 [00:09<00:12, 1.00it/s] 48%|████▊ | 11/23 [00:10<00:11, 1.00it/s] 52%|█████▏ | 12/23 [00:11<00:10, 1.00it/s] 57%|█████▋ | 13/23 [00:12<00:09, 1.00it/s] 61%|██████ | 14/23 [00:13<00:08, 1.00it/s] 65%|██████▌ | 15/23 [00:14<00:07, 1.00it/s] 70%|██████▉ | 16/23 [00:15<00:06, 1.00it/s] 74%|███████▍ | 17/23 [00:16<00:05, 1.00it/s] 78%|███████▊ | 18/23 [00:17<00:05, 1.00s/it] 83%|████████▎ | 19/23 [00:18<00:04, 1.00s/it] 87%|████████▋ | 20/23 [00:19<00:03, 1.00s/it] 91%|█████████▏| 21/23 [00:20<00:02, 1.00s/it] 96%|█████████▌| 22/23 [00:21<00:01, 1.00s/it] 100%|██████████| 23/23 [00:22<00:00, 1.01s/it] 100%|██████████| 23/23 [00:22<00:00, 1.00it/s] 0%| | 0/3 [00:00<?, ?it/s] 33%|███▎ | 1/3 [00:00<00:01, 1.24it/s] 67%|██████▋ | 2/3 [00:01<00:00, 1.23it/s] 100%|██████████| 3/3 [00:02<00:00, 1.23it/s] 100%|██████████| 3/3 [00:02<00:00, 1.23it/s]
Want to make some of these yourself?
Run this model