garg-aayush / clarity-upscaler

  • Public
  • 1 run

Run garg-aayush/clarity-upscaler with an API

Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.

Input schema

The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.

Field Type Default value Description
image
string
input image
prompt
string
masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>
Prompt
negative_prompt
string
(worst quality, low quality, normal quality:2) JuggernautNegative-neg
Negative Prompt
scale_factor
number
2
Scale factor
dynamic
number
6

Min: 1

Max: 50

HDR, try from 3 - 9
creativity
number
0.35

Max: 1

Creativity, try from 0.3 - 0.9
resemblance
number
0.6

Max: 3

Resemblance, try from 0.3 - 1.6
tiling_width
integer (enum)
112

Options:

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256

Fractality, set lower tile width for a high Fractality
tiling_height
integer (enum)
144

Options:

16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256

Fractality, set lower tile height for a high Fractality
sd_model
string (enum)
juggernaut_reborn.safetensors [338b85bc4f]

Options:

epicrealism_naturalSinRC1VAE.safetensors [84d76a0328], juggernaut_reborn.safetensors [338b85bc4f], flat2DAnimerge_v45Sharp.safetensors

Stable Diffusion model checkpoint
scheduler
string (enum)
DPM++ 3M SDE Karras

Options:

DPM++ 2M Karras, DPM++ SDE Karras, DPM++ 2M SDE Exponential, DPM++ 2M SDE Karras, Euler a, Euler, LMS, Heun, DPM2, DPM2 a, DPM++ 2S a, DPM++ 2M, DPM++ SDE, DPM++ 2M SDE, DPM++ 2M SDE Heun, DPM++ 2M SDE Heun Karras, DPM++ 2M SDE Heun Exponential, DPM++ 3M SDE, DPM++ 3M SDE Karras, DPM++ 3M SDE Exponential, DPM fast, DPM adaptive, LMS Karras, DPM2 Karras, DPM2 a Karras, DPM++ 2S a Karras, Restart, DDIM, PLMS, UniPC

scheduler
num_inference_steps
integer
18

Min: 1

Max: 100

Number of denoising steps
seed
integer
1337
Random seed. Leave blank to randomize the seed
multistep_factor
number
0.8

Max: 2

Multiplier for the number of denoising steps. 0.9 for 90% less steps, 1.1 for 10% more steps
downscaling
boolean
False
Downscale the image before upscaling. Can improve quality and speed for images with high resolution but lower quality
downscaling_resolution
integer
768
Downscaling resolution
lora_links
string
Link to a lora file you want to use in your upscaling. Multiple links possible, seperated by comma
custom_sd_model
string
None
sharpen
number
0

Max: 10

Sharpen the image after upscaling. The higher the value, the more sharpening is applied. 0 for no sharpening
mask
string
Mask image to mark areas that should be preserved during upscaling
handfix
string (enum)
disabled

Options:

disabled, hands_only, image_and_hands

Use clarity to fix hands in the image
pattern
boolean
False
Upscale a pattern with seamless tiling
output_format
string (enum)
png

Options:

webp, jpg, png

Format of the output images

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{
  "type": "array",
  "items": {
    "type": "string",
    "format": "uri"
  },
  "title": "Output"
}