gnobitab / fusedream

Training-Free Text-to-Image Generation

  • Public
  • 2.4K runs
  • GitHub
  • Paper
  • License

FuseDream

FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization

by Xingchao Liu, Chengyue Gong, Lemeng Wu, Shujian Zhang, Hao Su and Qiang Liu from UCSD and UT Austin.

Introduction

FuseDream uses pre-trained GANs (we support BigGAN-256 and BigGAN-512 for now) and CLIP to achieve high-fidelity text-to-image generation.

Citations

If you use the code, please cite:

@inproceedings{
brock2018large,
title={Large Scale {GAN} Training for High Fidelity Natural Image Synthesis},
author={Andrew Brock and Jeff Donahue and Karen Simonyan},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=B1xsqj09Fm},
}

and

@misc{
liu2021fusedream,
title={FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimization}, 
author={Xingchao Liu and Chengyue Gong and Lemeng Wu and Shujian Zhang and Hao Su and Qiang Liu},
year={2021},
eprint={2112.01573},
archivePrefix={arXiv},
primaryClass={cs.CV}
}